Prof. Dr. Laurenz Wiskott
Theory of Neural Systems
Theory of Neural Systems
Ruhr-Universität Bochum
Institut für Neuroinformatik
Universitätsstraße 150
Building NB, Room NB 3/29
Universitätsstraße 150
Building NB, Room NB 3/29
D-44801 Bochum, Germany
Affiliations at the Ruhr-University
Dean of Studies of the Bachelor/Master program Applied Computer Science
Department of Physics and Astronomy
Department of Electrical Engineering and Information Sciences
Research Department of Neuroscience
International Graduate School of Neuroscience
Center for Mind and Cognition
Center for Mind, Brain and Cognitive Evolution
Selected Publications
-
Analysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and TransformerReyhanian, S., Fayyaz, Z., & Wiskott, L.In Proceedings of the 33rd International Conference on Artificial Neural Networks (ICANN 2024), Lugano, Switzerland Springer Nature Switzerland
@inproceedings{ReyhanianFayyazWiskott2024, author = {Reyhanian, Shirin and Fayyaz, Zahra and Wiskott, Laurenz}, title = {Analysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and Transformer}, booktitle = {Proceedings of the 33rd International Conference on Artificial Neural Networks (ICANN 2024), Lugano, Switzerland}, publisher = {Springer Nature Switzerland}, month = {September}, year = {2024}, doi = {10.1007/978-3-031-72341-4_6}, }
Reyhanian, S., Fayyaz, Z., & Wiskott, L.. (2024). Analysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and Transformer. In Proceedings of the 33rd International Conference on Artificial Neural Networks (ICANN 2024), Lugano, Switzerland. Springer Nature Switzerland. http://doi.org/10.1007/978-3-031-72341-4_6Hebbian Descent: A Unified View on Log-Likelihood LearningMelchior, J., Schiewer, R., & Wiskott, L.Neural Computation, 36(9), 1669–1712@article{MelchiorSchiewerWiskott2024, author = {Melchior, Jan and Schiewer, Robin and Wiskott, Laurenz}, title = {Hebbian Descent: A Unified View on Log-Likelihood Learning}, journal = {Neural Computation}, volume = {36}, number = {9}, pages = {1669–1712}, month = {August}, year = {2024}, doi = {10.1162/neco_a_01684}, }
Melchior, J., Schiewer, R., & Wiskott, L.. (2024). Hebbian Descent: A Unified View on Log-Likelihood Learning. Neural Computation, 36(9), 1669–1712. http://doi.org/10.1162/neco_a_01684A neural network model for online one-shot storage of pattern sequencesMelchior, J., Altamimi, A., Bayati, M., Cheng, S., & Wiskott, L.PLOS ONE, 19(6), 1–28@article{MelchiorAltamimiBayatiEtAl2024, author = {Melchior, Jan and Altamimi, Aya and Bayati, Mehdi and Cheng, Sen and Wiskott, Laurenz}, title = {A neural network model for online one-shot storage of pattern sequences}, journal = {PLOS ONE}, volume = {19}, number = {6}, pages = {1–28}, month = {June}, year = {2024}, doi = {10.1371/journal.pone.0304076}, }
Melchior, J., Altamimi, A., Bayati, M., Cheng, S., & Wiskott, L.. (2024). A neural network model for online one-shot storage of pattern sequences. PLOS ONE, 19(6), 1–28. http://doi.org/10.1371/journal.pone.0304076*Best Paper Nominee* Gaining Insights into Course Difficulty Variations Using Item Response TheoryBaucks, F., Schmucker, R., & Wiskott, L.In LAK24: 14th International Learning Analytics and Knowledge Conference (pp. 450–461) New York, NY, USA: Association for Computing Machinery@inproceedings{BaucksSchmuckerWiskott2024, author = {Baucks, Frederik and Schmucker, Robin and Wiskott, Laurenz}, title = {*Best Paper Nominee* Gaining Insights into Course Difficulty Variations Using Item Response Theory}, booktitle = {LAK24: 14th International Learning Analytics and Knowledge Conference}, pages = {450–461}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, month = {March}, year = {2024}, doi = {10.1145/3636555.3636902}, }
Baucks, F., Schmucker, R., & Wiskott, L.. (2024). *Best Paper Nominee* Gaining Insights into Course Difficulty Variations Using Item Response Theory. In LAK24: 14th International Learning Analytics and Knowledge Conference (pp. 450–461). New York, NY, USA: Association for Computing Machinery. http://doi.org/10.1145/3636555.3636902tachAId—An interactive tool supporting the design of human-centered AI solutionsBauroth, M., Rath-Manakidis, P., Langholf, V., Wiskott, L., & Glasmachers, T.Frontiers in Artificial Intelligence, 7@article{BaurothRath-ManakidisLangholfEtAl2024, author = {Bauroth, Max and Rath-Manakidis, Pavlos and Langholf, Valentin and Wiskott, Laurenz and Glasmachers, Tobias}, title = {tachAId—An interactive tool supporting the design of human-centered AI solutions}, journal = {Frontiers in Artificial Intelligence}, volume = {7}, year = {2024}, doi = {10.3389/frai.2024.1354114}, }
Bauroth, M., Rath-Manakidis, P., Langholf, V., Wiskott, L., & Glasmachers, T.. (2024). tachAId—An interactive tool supporting the design of human-centered AI solutions. Frontiers in Artificial Intelligence, 7. http://doi.org/10.3389/frai.2024.1354114Interpretable Brain-Inspired Representations Improve RL Performance on Visual Navigation TasksLange, M., Engelhardt, R. C., Konen, W., & Wiskott, L.In eXplainable AI approaches for Deep Reinforcement Learning@inproceedings{LangeEngelhardtKonenEtAl2024, author = {Lange, Moritz and Engelhardt, Raphael C. and Konen, Wolfgang and Wiskott, Laurenz}, title = {Interpretable Brain-Inspired Representations Improve RL Performance on Visual Navigation Tasks}, booktitle = {eXplainable AI approaches for Deep Reinforcement Learning}, year = {2024}, }
Lange, M., Engelhardt, R. C., Konen, W., & Wiskott, L.. (2024). Interpretable Brain-Inspired Representations Improve RL Performance on Visual Navigation Tasks. In eXplainable AI approaches for Deep Reinforcement Learning. Retrieved from https://openreview.net/forum?id=s1oVgaZ3dQ*Best Paper Award* Improving Reinforcement Learning Efficiency with Auxiliary Tasks in Non-visual Environments: A ComparisonLange, M., Krystiniak, N., Engelhardt, R. C., Konen, W., & Wiskott, L.In G. Nicosia, Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P. M., & Umeton, R. (Eds.), Machine Learning, Optimization, and Data Science (pp. 177–191) Cham: Springer Nature Switzerland@inproceedings{LangeKrystiniakEngelhardtEtAl2024, author = {Lange, Moritz and Krystiniak, Noah and Engelhardt, Raphael C. and Konen, Wolfgang and Wiskott, Laurenz}, title = {*Best Paper Award* Improving Reinforcement Learning Efficiency with Auxiliary Tasks in Non-visual Environments: A Comparison}, booktitle = {Machine Learning, Optimization, and Data Science}, editor = {Nicosia, Giuseppe and Ojha, Varun and La Malfa, Emanuele and La Malfa, Gabriele and Pardalos, Panos M. and Umeton, Renato}, pages = {177–191}, publisher = {Springer Nature Switzerland}, address = {Cham}, year = {2024}, doi = {10.1007/978-3-031-53966-4_14}, }
Lange, M., Krystiniak, N., Engelhardt, R. C., Konen, W., & Wiskott, L.. (2024). *Best Paper Award* Improving Reinforcement Learning Efficiency with Auxiliary Tasks in Non-visual Environments: A Comparison. In G. Nicosia, Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P. M., & Umeton, R. (Eds.), Machine Learning, Optimization, and Data Science (pp. 177–191). Cham: Springer Nature Switzerland. http://doi.org/10.1007/978-3-031-53966-4_14Modularity in Nervous Systems - a Key to Efficient Adaptivity for Deep Reinforcement LearningSchilling, M., Hammer, B., Ohl, F. W., Ritter, H. J., & Wiskott, L.Cogn. Comput., 16(5), 2358–2373@article{SchillingHammerOhlEtAl2024, author = {Schilling, Malte and Hammer, Barbara and Ohl, Frank W. and Ritter, Helge J. and Wiskott, Laurenz}, title = {Modularity in Nervous Systems - a Key to Efficient Adaptivity for Deep Reinforcement Learning}, journal = {Cogn. Comput.}, volume = {16}, number = {5}, pages = {2358–2373}, year = {2024}, doi = {10.1007/S12559-022-10080-W}, }
Schilling, M., Hammer, B., Ohl, F. W., Ritter, H. J., & Wiskott, L.. (2024). Modularity in Nervous Systems - a Key to Efficient Adaptivity for Deep Reinforcement Learning. Cogn. Comput., 16(5), 2358–2373. http://doi.org/10.1007/S12559-022-10080-W2023
A Tutorial on the Spectral Theory of Markov ChainsSeabrook, E., & Wiskott, L.Neural Computation, 35(11), 1713–1796@article{SeabrookWiskott2023, author = {Seabrook, Eddie and Wiskott, Laurenz}, title = {A Tutorial on the Spectral Theory of Markov Chains}, journal = {Neural Computation}, volume = {35}, number = {11}, pages = {1713–1796}, month = {October}, year = {2023}, doi = {10.1162/neco_a_01611}, }
Seabrook, E., & Wiskott, L.. (2023). A Tutorial on the Spectral Theory of Markov Chains. Neural Computation, 35(11), 1713–1796. http://doi.org/10.1162/neco_a_01611A map of spatial navigation for neuroscienceParra-Barrero, E., Vijayabaskaran, S., Seabrook, E., Wiskott, L., & Cheng, S.Neuroscience & Biobehavioral Reviews, 152, 105200@article{Parra-BarreroVijayabaskaranSeabrookEtAl2023, author = {Parra-Barrero, Eloy and Vijayabaskaran, Sandhiya and Seabrook, Eddie and Wiskott, Laurenz and Cheng, Sen}, title = {A map of spatial navigation for neuroscience}, journal = {Neuroscience & Biobehavioral Reviews}, volume = {152}, pages = {105200}, month = {September}, year = {2023}, doi = {10.1016/j.neubiorev.2023.105200}, }
Parra-Barrero, E., Vijayabaskaran, S., Seabrook, E., Wiskott, L., & Cheng, S.. (2023). A map of spatial navigation for neuroscience. Neuroscience & Biobehavioral Reviews, 152, 105200. http://doi.org/10.1016/j.neubiorev.2023.105200Modeling the function of episodic memory in spatial learningZeng, X., Diekmann, N., Wiskott, L., & Cheng, S.Frontiers in Psychology, 14@article{ZengDiekmannWiskottEtAl2023, author = {Zeng, Xiangshuai and Diekmann, Nicolas and Wiskott, Laurenz and Cheng, Sen}, title = {Modeling the function of episodic memory in spatial learning}, journal = {Frontiers in Psychology}, volume = {14}, year = {2023}, doi = {10.3389/fpsyg.2023.1160648}, }
Zeng, X., Diekmann, N., Wiskott, L., & Cheng, S.. (2023). Modeling the function of episodic memory in spatial learning. Frontiers in Psychology, 14. http://doi.org/10.3389/fpsyg.2023.11606482022
A Model of Semantic Completion in Generative Episodic MemoryFayyaz, Z., Altamimi, A., Zoellner, C., Klein, N., Wolf, O. T., Cheng, S., & Wiskott, L.Neural Computation, 34(9), 1841–1870@article{FayyazAltamimiZoellnerEtAl2022, author = {Fayyaz, Zahra and Altamimi, Aya and Zoellner, Carina and Klein, Nicole and Wolf, Oliver T. and Cheng, Sen and Wiskott, Laurenz}, title = {A Model of Semantic Completion in Generative Episodic Memory}, journal = {Neural Computation}, volume = {34}, number = {9}, pages = {1841–1870}, month = {August}, year = {2022}, doi = {10.1162/neco_a_01520}, }
Fayyaz, Z., Altamimi, A., Zoellner, C., Klein, N., Wolf, O. T., Cheng, S., & Wiskott, L.. (2022). A Model of Semantic Completion in Generative Episodic Memory. Neural Computation, 34(9), 1841–1870. http://doi.org/10.1162/neco_a_01520Latent Representation Prediction NetworksHlynsson, H. D., Schüler, M., Schiewer, R., Glasmachers, T., & Wiskott, L.International Journal of Pattern Recognition and Artificial Intelligence, 36(01), 2251002@article{HlynssonSchülerSchiewerEtAl2022, author = {Hlynsson, Hlynur David and Schüler, Merlin and Schiewer, Robin and Glasmachers, Tobias and Wiskott, Laurenz}, title = {Latent Representation Prediction Networks}, journal = {International Journal of Pattern Recognition and Artificial Intelligence}, volume = {36}, number = {01}, pages = {2251002}, year = {2022}, doi = {10.1142/S0218001422510028}, }
Hlynsson, H. D., Schüler, M., Schiewer, R., Glasmachers, T., & Wiskott, L.. (2022). Latent Representation Prediction Networks. International Journal of Pattern Recognition and Artificial Intelligence, 36(01), 2251002. http://doi.org/10.1142/S02180014225100282019
Improved graph-based SFA: information preservation complements the slowness principleEscalante-B., A. N., & Wiskott, L.Machine Learning@article{Escalante-B.Wiskott2019, author = {Escalante-B., Alberto N. and Wiskott, Laurenz}, title = {Improved graph-based SFA: information preservation complements the slowness principle}, journal = {Machine Learning}, month = {December}, year = {2019}, doi = {10.1007/s10994-019-05860-9}, }
Escalante-B., A. N., & Wiskott, L.. (2019). Improved graph-based SFA: information preservation complements the slowness principle. Machine Learning. http://doi.org/10.1007/s10994-019-05860-9Measuring the Data Efficiency of Deep Learning MethodsHlynsson, H., Escalante-B., A., & Wiskott, L.In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods SCITEPRESS - Science and Technology Publications@inproceedings{HlynssonEscalante-B.Wiskott2019, author = {Hlynsson, Hlynur and Escalante-B., Alberto and Wiskott, Laurenz}, title = {Measuring the Data Efficiency of Deep Learning Methods}, booktitle = {Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods}, publisher = {SCITEPRESS - Science and Technology Publications}, year = {2019}, doi = {10.5220/0007456306910698}, }
Hlynsson, H., Escalante-B., A., & Wiskott, L.. (2019). Measuring the Data Efficiency of Deep Learning Methods. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology Publications. http://doi.org/10.5220/00074563069106982018
The Interaction between Semantic Representation and Episodic MemoryFang, J., Rüther, N., Bellebaum, C., Wiskott, L., & Cheng, S.Neural Computation, 30(2), 293–332@article{FangRütherBellebaumEtAl2018, author = {Fang, Jing and Rüther, Naima and Bellebaum, Christian and Wiskott, Laurenz and Cheng, Sen}, title = {The Interaction between Semantic Representation and Episodic Memory}, journal = {Neural Computation}, volume = {30}, number = {2}, pages = {293–332}, month = {February}, year = {2018}, doi = {10.1162/neco_a_01044}, }
Fang, J., Rüther, N., Bellebaum, C., Wiskott, L., & Cheng, S.. (2018). The Interaction between Semantic Representation and Episodic Memory. Neural Computation, 30(2), 293–332. http://doi.org/10.1162/neco_a_01044Slowness as a Proxy for Temporal Predictability: An Empirical ComparisonWeghenkel, B., & Wiskott, L.Neural Computation, 30(5), 1151–1179@article{WeghenkelWiskott2018, author = {Weghenkel, Björn and Wiskott, Laurenz}, title = {Slowness as a Proxy for Temporal Predictability: An Empirical Comparison}, journal = {Neural Computation}, volume = {30}, number = {5}, pages = {1151–1179}, year = {2018}, doi = {10.1162/neco_a_01070}, }
Weghenkel, B., & Wiskott, L.. (2018). Slowness as a Proxy for Temporal Predictability: An Empirical Comparison. Neural Computation, 30(5), 1151–1179. http://doi.org/10.1162/neco_a_010702017
Gaussian-binary restricted Boltzmann machines for modeling natural image statisticsMelchior, J., Wang, N., & Wiskott, L.PLOS ONE, 12(2), 1–24@article{MelchiorWangWiskott2017, author = {Melchior, Jan and Wang, Nan and Wiskott, Laurenz}, title = {Gaussian-binary restricted Boltzmann machines for modeling natural image statistics}, journal = {PLOS ONE}, volume = {12}, number = {2}, pages = {1–24}, month = {February}, year = {2017}, doi = {10.1371/journal.pone.0171015}, }
Melchior, J., Wang, N., & Wiskott, L.. (2017). Gaussian-binary restricted Boltzmann machines for modeling natural image statistics. PLOS ONE, 12(2), 1–24. http://doi.org/10.1371/journal.pone.01710152016
Theoretical analysis of the optimal free responses of graph-based SFA for the design of training graphs.Escalante-B., A. N., & Wiskott, L.Journal of Machine Learning Research, 17(157), 1–36@article{Escalante-B.Wiskott2016b, author = {Escalante-B., Alberto N. and Wiskott, Laurenz}, title = {Theoretical analysis of the optimal free responses of graph-based SFA for the design of training graphs.}, journal = {Journal of Machine Learning Research}, volume = {17}, number = {157}, pages = {1–36}, year = {2016}, }
Escalante-B., A. N., & Wiskott, L.. (2016). Theoretical analysis of the optimal free responses of graph-based SFA for the design of training graphs. Journal of Machine Learning Research, 17(157), 1–36. Retrieved from http://jmlr.org/papers/v17/15-311.htmlHow to Center Deep Boltzmann MachinesMelchior, J., Fischer, A., & Wiskott, L.Journal of Machine Learning Research, 17(99), 1–61@article{MelchiorFischerWiskott2016, author = {Melchior, Jan and Fischer, Asja and Wiskott, Laurenz}, title = {How to Center Deep Boltzmann Machines}, journal = {Journal of Machine Learning Research}, volume = {17}, number = {99}, pages = {1–61}, year = {2016}, }
Melchior, J., Fischer, A., & Wiskott, L.. (2016). How to Center Deep Boltzmann Machines. Journal of Machine Learning Research, 17(99), 1–61. Retrieved from http://jmlr.org/papers/v17/14-237.html2015
Memory Storage Fidelity in the Hippocampal Circuit: The Role of Subregions and Input StatisticsNeher, T., Cheng, S., & Wiskott, L.PLoS Computational Biology, 11(5), e1004250@article{NeherChengWiskott2015, author = {Neher, Torsten and Cheng, Sen and Wiskott, Laurenz}, title = {Memory Storage Fidelity in the Hippocampal Circuit: The Role of Subregions and Input Statistics}, journal = {PLoS Computational Biology}, volume = {11}, number = {5}, pages = {e1004250}, year = {2015}, doi = {10.1371/journal.pcbi.1004250}, }
Neher, T., Cheng, S., & Wiskott, L.. (2015). Memory Storage Fidelity in the Hippocampal Circuit: The Role of Subregions and Input Statistics. PLoS Computational Biology, 11(5), e1004250. http://doi.org/10.1371/journal.pcbi.1004250Modeling place field activity with hierarchical slow feature analysisSchoenfeld, F., & Wiskott, L.Frontiers in Computational Neuroscience, 9(51)@article{SchoenfeldWiskott2015, author = {Schoenfeld, Fabian and Wiskott, Laurenz}, title = {Modeling place field activity with hierarchical slow feature analysis}, journal = {Frontiers in Computational Neuroscience}, volume = {9}, number = {51}, year = {2015}, doi = {10.3389/fncom.2015.00051}, }
Schoenfeld, F., & Wiskott, L.. (2015). Modeling place field activity with hierarchical slow feature analysis. Frontiers in Computational Neuroscience, 9(51). http://doi.org/10.3389/fncom.2015.000512011
A theory of Slow Feature Analysis for transformation-based input signals with an application to complex cellsSprekeler, H., & Wiskott, L.Neural Computation, 23(2), 303–335@article{SprekelerWiskott2011, author = {Sprekeler, Henning and Wiskott, Laurenz}, title = {A theory of Slow Feature Analysis for transformation-based input signals with an application to complex cells}, journal = {Neural Computation}, volume = {23}, number = {2}, pages = {303–335}, year = {2011}, doi = {10.1162/NECO_a_00072}, }
Sprekeler, H., & Wiskott, L.. (2011). A theory of Slow Feature Analysis for transformation-based input signals with an application to complex cells. Neural Computation, 23(2), 303–335. http://doi.org/10.1162/NECO_a_00072-
2018-01 - 2018-05
Simons, Berkeley, California - Visiting scholar
Visiting scholar at the Simons Institute for the Theory of Computing at the University of California, Berkeley, USA
-
since Nov 2008
INI, Bochum, Germany - Professor (W3)
Professor (W3) at the Institute for Neural Computation at the Ruhr-University Bochum
-
2006-2008
ITB, Berlin, Germany - Professor (W2)
Professor (W2) for Computational Neuroscience and Neuroinformatics at the Institute for Theoretical Biology at the Humboldt-University Berlin
-
2000-2006
ITB, Berlin, Germany - Junior research group leader
Junior research group leader at the Institute for Theoretical Biology at the Humboldt-University Berlin (supported by the Volkswagen Foundation)
-
1999-2000
ITB, Berlin, Germany - Research associate
Research associate with Prof. Andreas V. M. Herz at the Innovationskolleg Theoretische Biologie at the Humboldt-University Berlin
-
1998-1999
Wiko, Berlin, Germany - Fellow
Fellow at the Wissenschaftskolleg zu Berlin / Institute for Advanced Study in Berlin, Germany
-
1995-1998
CNL, San Diego, California - Research associate
Research associate with Prof. Terrence Sejnowski at the Computational Neurobiology Laboratory at the Salk Institute for Biological Studies, San Diego, California (supported by a Lynen Research Fellowship from the Alexander von Humboldt Foundation, Germany)
-
Oct. 1995
INI, Bochum, Germany - PhD (Dr. rer. nat.) in physics
-
1993, 1994
USC, Los Angeles, California - Visiting research assistant
Visiting research assistant (6 months) at the Laboratory for Computational and Biological Vision at the University of Southern California, Los Angeles, California
-
1990-1995
INI, Bochum, Germany - Research assistant
Research assistant with Prof. Christoph von der Malsburg at the Institute for Neural Computation at the Ruhr-University Bochum, Germany with several visits at the Laboratory for Computational and Biological Vision at the University of Southern California, Los Angeles, California
-
Sep. 1990
Uni, Osnabrück, Germany - Diploma in physics
Diploma in physics at the University Osnabrück, Germany
-
1989-1990
Uni, Osnabrück, Germany - Studies of physics
Studies of physics at the University Osnabrück, Germany
-
1986-1988
MPI, Göttingen, Germany - Undergraduate research assistant
Undergraduate research assistant at the Max-Planck-Institute for Biophysical Chemistry in Göttingen, developing an operating system for a parallel computer
-
1985-1989
Uni, Göttingen, Germany - Studies of physics
Studies of physics at the University Göttingen, Germany
-
Exploring the limits of hierarchical world models in reinforcement learningSchiewer, R., Subramoney, A., & Wiskott, L.Scientific Reports, 14(1)
@article{SchiewerSubramoneyWiskott2024, author = {Schiewer, Robin and Subramoney, Anand and Wiskott, Laurenz}, title = {Exploring the limits of hierarchical world models in reinforcement learning}, journal = {Scientific Reports}, volume = {14}, number = {1}, month = {November}, year = {2024}, doi = {10.1038/s41598-024-76719-w}, }
Schiewer, R., Subramoney, A., & Wiskott, L.. (2024). Exploring the limits of hierarchical world models in reinforcement learning. Scientific Reports, 14(1). http://doi.org/10.1038/s41598-024-76719-wAnalysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and TransformerReyhanian, S., Fayyaz, Z., & Wiskott, L.In Proceedings of the 33rd International Conference on Artificial Neural Networks (ICANN 2024), Lugano, Switzerland Springer Nature Switzerland@inproceedings{ReyhanianFayyazWiskott2024, author = {Reyhanian, Shirin and Fayyaz, Zahra and Wiskott, Laurenz}, title = {Analysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and Transformer}, booktitle = {Proceedings of the 33rd International Conference on Artificial Neural Networks (ICANN 2024), Lugano, Switzerland}, publisher = {Springer Nature Switzerland}, month = {September}, year = {2024}, doi = {10.1007/978-3-031-72341-4_6}, }
Reyhanian, S., Fayyaz, Z., & Wiskott, L.. (2024). Analysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and Transformer. In Proceedings of the 33rd International Conference on Artificial Neural Networks (ICANN 2024), Lugano, Switzerland. Springer Nature Switzerland. http://doi.org/10.1007/978-3-031-72341-4_6Hebbian Descent: A Unified View on Log-Likelihood LearningMelchior, J., Schiewer, R., & Wiskott, L.Neural Computation, 36(9), 1669–1712@article{MelchiorSchiewerWiskott2024, author = {Melchior, Jan and Schiewer, Robin and Wiskott, Laurenz}, title = {Hebbian Descent: A Unified View on Log-Likelihood Learning}, journal = {Neural Computation}, volume = {36}, number = {9}, pages = {1669–1712}, month = {August}, year = {2024}, doi = {10.1162/neco_a_01684}, }
Melchior, J., Schiewer, R., & Wiskott, L.. (2024). Hebbian Descent: A Unified View on Log-Likelihood Learning. Neural Computation, 36(9), 1669–1712. http://doi.org/10.1162/neco_a_01684A neural network model for online one-shot storage of pattern sequencesMelchior, J., Altamimi, A., Bayati, M., Cheng, S., & Wiskott, L.PLOS ONE, 19(6), 1–28@article{MelchiorAltamimiBayatiEtAl2024, author = {Melchior, Jan and Altamimi, Aya and Bayati, Mehdi and Cheng, Sen and Wiskott, Laurenz}, title = {A neural network model for online one-shot storage of pattern sequences}, journal = {PLOS ONE}, volume = {19}, number = {6}, pages = {1–28}, month = {June}, year = {2024}, doi = {10.1371/journal.pone.0304076}, }
Melchior, J., Altamimi, A., Bayati, M., Cheng, S., & Wiskott, L.. (2024). A neural network model for online one-shot storage of pattern sequences. PLOS ONE, 19(6), 1–28. http://doi.org/10.1371/journal.pone.0304076*Best Paper Nominee* Gaining Insights into Course Difficulty Variations Using Item Response TheoryBaucks, F., Schmucker, R., & Wiskott, L.In LAK24: 14th International Learning Analytics and Knowledge Conference (pp. 450–461) New York, NY, USA: Association for Computing Machinery@inproceedings{BaucksSchmuckerWiskott2024, author = {Baucks, Frederik and Schmucker, Robin and Wiskott, Laurenz}, title = {*Best Paper Nominee* Gaining Insights into Course Difficulty Variations Using Item Response Theory}, booktitle = {LAK24: 14th International Learning Analytics and Knowledge Conference}, pages = {450–461}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, month = {March}, year = {2024}, doi = {10.1145/3636555.3636902}, }
Baucks, F., Schmucker, R., & Wiskott, L.. (2024). *Best Paper Nominee* Gaining Insights into Course Difficulty Variations Using Item Response Theory. In LAK24: 14th International Learning Analytics and Knowledge Conference (pp. 450–461). New York, NY, USA: Association for Computing Machinery. http://doi.org/10.1145/3636555.3636902Gaining Insights into Group-Level Course Difficulty via Differential Course FunctioningBaucks, F., Schmucker, R., Borchers, C., Pardos, Z. A., & Wiskott, L.In Proceedings of the Eleventh ACM Conference on Learning @ Scale (pp. 165–176) Atlanta, GA, USA: Association for Computing Machinery@inproceedings{BaucksSchmuckerBorchersEtAl2024, author = {Baucks, Frederik and Schmucker, Robin and Borchers, Conrad and Pardos, Zachary A. and Wiskott, Laurenz}, title = {Gaining Insights into Group-Level Course Difficulty via Differential Course Functioning}, booktitle = {Proceedings of the Eleventh ACM Conference on Learning @ Scale}, pages = {165–176}, publisher = {Association for Computing Machinery}, series = {L@S ′24}, address = {New York, NY, USA}, year = {2024}, doi = {10.1145/3657604.3662028}, }
Baucks, F., Schmucker, R., Borchers, C., Pardos, Z. A., & Wiskott, L.. (2024). Gaining Insights into Group-Level Course Difficulty via Differential Course Functioning. In Proceedings of the Eleventh ACM Conference on Learning @ Scale (pp. 165–176). Atlanta, GA, USA: Association for Computing Machinery. http://doi.org/10.1145/3657604.3662028Empowering Advisors: Designing a Dashboard for University Student GuidanceBaucks, F., & Wiskott, L.In P. Salden & Leschke, J. (Eds.), Learning Analytics und Künstliche Intelligenz in Studium und Lehre: Erfahrungen und Schlussfolgerungen aus einer hochschulweiten Erprobung (pp. 27–44) Wiesbaden: Springer Fachmedien Wiesbaden@inbook{BaucksWiskott2024, author = {Baucks, Frederik and Wiskott, Laurenz}, title = {Empowering Advisors: Designing a Dashboard for University Student Guidance}, editor = {Salden, Peter and Leschke, Jonas}, pages = {27–44}, publisher = {Springer Fachmedien Wiesbaden}, address = {Wiesbaden}, year = {2024}, doi = {10.1007/978-3-658-42993-5_2}, }
Baucks, F., & Wiskott, L.. (2024). Empowering Advisors: Designing a Dashboard for University Student Guidance. In P. Salden & Leschke, J. (Eds.), Learning Analytics und Künstliche Intelligenz in Studium und Lehre: Erfahrungen und Schlussfolgerungen aus einer hochschulweiten Erprobung (pp. 27–44). Wiesbaden: Springer Fachmedien Wiesbaden. http://doi.org/10.1007/978-3-658-42993-5_2tachAId—An interactive tool supporting the design of human-centered AI solutionsBauroth, M., Rath-Manakidis, P., Langholf, V., Wiskott, L., & Glasmachers, T.Frontiers in Artificial Intelligence, 7@article{BaurothRath-ManakidisLangholfEtAl2024, author = {Bauroth, Max and Rath-Manakidis, Pavlos and Langholf, Valentin and Wiskott, Laurenz and Glasmachers, Tobias}, title = {tachAId—An interactive tool supporting the design of human-centered AI solutions}, journal = {Frontiers in Artificial Intelligence}, volume = {7}, year = {2024}, doi = {10.3389/frai.2024.1354114}, }
Bauroth, M., Rath-Manakidis, P., Langholf, V., Wiskott, L., & Glasmachers, T.. (2024). tachAId—An interactive tool supporting the design of human-centered AI solutions. Frontiers in Artificial Intelligence, 7. http://doi.org/10.3389/frai.2024.1354114Ökolopoly: Case Study on Large Action Spaces in Reinforcement LearningEngelhardt, R. C., Raycheva, R., Lange, M., Wiskott, L., & Konen, W.In G. Nicosia, Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P. M., & Umeton, R. (Eds.), Machine Learning, Optimization, and Data Science (pp. 109–123) Cham: Springer Nature Switzerland@inproceedings{EngelhardtRaychevaLangeEtAl2024, author = {Engelhardt, Raphael C. and Raycheva, Ralitsa and Lange, Moritz and Wiskott, Laurenz and Konen, Wolfgang}, title = {Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning}, booktitle = {Machine Learning, Optimization, and Data Science}, editor = {Nicosia, Giuseppe and Ojha, Varun and La Malfa, Emanuele and La Malfa, Gabriele and Pardalos, Panos M. and Umeton, Renato}, pages = {109–123}, publisher = {Springer Nature Switzerland}, address = {Cham}, year = {2024}, }
Engelhardt, R. C., Raycheva, R., Lange, M., Wiskott, L., & Konen, W. (2024). Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning. In G. Nicosia, Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P. M., & Umeton, R. (Eds.), Machine Learning, Optimization, and Data Science (pp. 109–123). Cham: Springer Nature Switzerland.Interpretable Brain-Inspired Representations Improve RL Performance on Visual Navigation TasksLange, M., Engelhardt, R. C., Konen, W., & Wiskott, L.In eXplainable AI approaches for Deep Reinforcement Learning@inproceedings{LangeEngelhardtKonenEtAl2024, author = {Lange, Moritz and Engelhardt, Raphael C. and Konen, Wolfgang and Wiskott, Laurenz}, title = {Interpretable Brain-Inspired Representations Improve RL Performance on Visual Navigation Tasks}, booktitle = {eXplainable AI approaches for Deep Reinforcement Learning}, year = {2024}, }
2024