• INI
  • Available Theses & Projects

Available Theses & Projects

Autonomous Robotics

Computational Neuroscience

Investigating the neural mechanisms of spatial navigation

Research has unveiled a number of cell types in the mammalian brain which code for different aspects of spatial behavior, such as head direction cells, place cells or grid cells. These cell types offer us a unique window into the neural mechanisms of higher lever cognitive functions. We offer bachelor and master level theses investigating these mechanisms by means of computational modeling and data analysis.

Optical Imaging Group

PhD position - JOINT RESEARCH, EU funded Project, ERA-Net Neuron

"I-See" - Improving intracortical visual prostheses. Our multidisciplinary EU-funded project brings together scientists from different fields and complementary experimental and theoretical know-how. The project part of the PhD position comprises electrical stimulation in the mouse brain combined with cutting-edge (optogenetic) voltage imaging techniques (Knöpfel Lab, Imperial College London). The aim of our international consortium (Switzerland, Canada, UK, and Germany) is to improve the ability of cortical prostheses to 'mimic' the language of the brain and increase the safety and longevity of visual prosthetic devices.

PhD position - RUB-China Scholarship Council (CSC)

Our lab participates in a new call offered by the RUB to attract students from China. This is also to strengthen existing education and research cooperation with Chinese universities and research institutions. The China Scholarship Council (CSC) offers scholarships to highly qualified Chinese candidates who wish to study and/or carry out research at the Ruhr University Bochum, Germany.

Scalable Machine Learning

The Institut für Neuroinformatik (INI) is a central research unit of the Ruhr-Universität Bochum. We aim to understand the fundamental principles through which organisms generate behavior and cognition while linked to their environments through sensory systems and while acting in those environments through effector systems. Inspired by our insights into such natural cognitive systems, we seek new solutions to problems of information processing in artificial cognitive systems. We draw from a variety of disciplines that include experimental approaches from psychology and neurophysiology as well as theoretical approaches from physics, mathematics, electrical engineering and applied computer science, in particular machine learning, artificial intelligence, and computer vision.

Universitätsstr. 150, Building NB, Room 3/32
D-44801 Bochum, Germany

Tel: (+49) 234 32-28967
Fax: (+49) 234 32-14210