• RUB
  • INI
  • Available Theses & Projects

Available Theses & Projects

Autonomous Robotics

Computational Neuroscience

Databases and Information Systems

Deep Learning for Optimization of Spatial Light Modulators

Spatial Light Modulators can be used to modulate the effective shape of light, e.g., a laser beam. They are thus useful in industrial applications like laser cutting where beam shapes need to be adapted quickly. However, generating complex shapes is time-consuming and error-prone using current algorithms based on Fourier transformations. In this work, a deep learning approach that automatically generates the correct modulations to obtain the desired shape should be explored. The Thesis is conducted in cooperation with the company LIDROTEC(https://www.lidrotec.de/).

Neural Data Science

Reinforcement learning models of spatial cognition in pigeons

A famous computational challenge is the Travelling Salesman Problem, in which a traveller needs to find the shortest route to visit a set of cities. Humans and other animals are very good at finding efficient solutions to practical tasks related to the Traveling Salesman Problem, but we do not know which strategies or algorithms they use to solve the problem. In computer science promising approaches to find an optimal solution include (deep) reinforcement learning [1]. Do humans and other animals use a strategy, similar to a reinforcement learning approach? In this project you will implement a reinforcement learning model of animal behaviour and compare the behaviour of the model with the animal behaviour to identify the underlying strategy and algorithm.

Transient oscillations in the brain during decision making

Neural oscillations are a key feature of brain activity and have been studied extensively in the context of cognitive functions and sensorimotor processing. However, recent studies have highlighted that oscillations in the brain are often transient in nature, consisting only of a few oscillation cycles, rather than being sustained throughout performing a cognitive task. In this project you will analyse oscillations recorded in the local field potential of mice performing a decision-making task (using open neural data from the International Brain Laboratory). The results of this project are important to better understand how transient oscillations contribute to information processing in the brain and affect behaviour.

Optical Imaging Group

PhD position - JOINT RESEARCH, EU funded Project, ERA-Net Neuron

"I-See" - Improving intracortical visual prostheses. Our multidisciplinary EU-funded project brings together scientists from different fields and complementary experimental and theoretical know-how. The project part of the PhD position comprises electrical stimulation in the mouse brain combined with cutting-edge (optogenetic) voltage imaging techniques (Knöpfel Lab, Imperial College London). The aim of our international consortium (Switzerland, Canada, UK, and Germany) is to improve the ability of cortical prostheses to 'mimic' the language of the brain and increase the safety and longevity of visual prosthetic devices.

PhD position - RUB-China Scholarship Council (CSC)

Our lab participates in a new call offered by the RUB to attract students from China. This is also to strengthen existing education and research cooperation with Chinese universities and research institutions. The China Scholarship Council (CSC) offers scholarships to highly qualified Chinese candidates who wish to study and/or carry out research at the Ruhr University Bochum, Germany.

Theory of Neural Systems

The Institut für Neuroinformatik (INI) is a central research unit of the Ruhr-Universität Bochum. We aim to understand the fundamental principles through which organisms generate behavior and cognition while linked to their environments through sensory systems and while acting in those environments through effector systems. Inspired by our insights into such natural cognitive systems, we seek new solutions to problems of information processing in artificial cognitive systems. We draw from a variety of disciplines that include experimental approaches from psychology and neurophysiology as well as theoretical approaches from physics, mathematics, electrical engineering and applied computer science, in particular machine learning, artificial intelligence, and computer vision.

Universitätsstr. 150, Building NB, Room 3/32
D-44801 Bochum, Germany

Tel: (+49) 234 32-28967
Fax: (+49) 234 32-14210