Publications

in press

Lins, J., & Schöner, G.. (in press). Mouse Tracking Shows Attraction to Alternative Targets While Grounding Spatial Relations. In Proceedings of the 39th Annual Conference of the Cognitive Science Society (to appear). Austin, TX: Cognitive Science Society.
2017

Walther, T., & Würtz, R. P.. (2017). Unsupervised Acquisition of Human Body Models using Principles of Organic Computing. ArXiv e-prints. Retrieved from http://arxiv.org/abs/1704.03724
Knips, G., Zibner, S. K. U., Reimann, H., & Schöner, G.. (2017). A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating. Frontiers in Neurorobotics, 11(March), 9:1–14. http://doi.org/10.3389/fnbot.2017.00009
Melchior, J., Wang, N., & Wiskott, L.. (2017). Gaussian-binary restricted Boltzmann machines for modeling natural image statistics. PLOS ONE, 12(2), 1–24. http://doi.org/10.1371/journal.pone.0171015
Cheng, S. (2017). Gedächtnisverbesserung: Möglichkeiten und kritische Betrachtung. In F. Hüttemann & Liggieri, K. (Eds.), Die Grenze . Diskurse des Transhumanismus. (p. invited contribution). Bielefeld: transcript Verlag.
Cheng, S. (2017). Consolidation of Episodic Memory: An Epiphenomenon of Semantic Learning. In N. Axmacher & Rasch, B. (Eds.), Cognitive Neuroscience of Memory Consolidation (pp. 57–72). Cham, Switzerland: Springer International Publishing. http://doi.org/10.1007/978-3-319-45066-7_4
Draht, F., Zhang, S., Rayan, A., Schönfeld, F., Wiskott, L., & Manahan-Vaughan, D. (2017). Experience-Dependency of Reliance on Local Visual and Idiothetic Cues for Spatial Representations Created in the Absence of Distal Information. Frontiers in Behavioral Neuroscience, 11(92). http://doi.org/10.3389/fnbeh.2017.00092
Escalante-B., A. N. (2017). Extensions of Hierarchical Slow Feature Analysis for Efficient Classification and Regression on High-Dimensional Data. Doctoral thesis, Ruhr University Bochum, Faculty of Electrical Engineering and Information Technology (Submitted).
Glasmachers, T. (2017). A Fast Incremental BSP Tree Archive for Non-dominated Points. In Evolutionary Multi-Criterion Optimization (EMO). Springer.
Horn, D., Ibisch, A., & Tschentscher, M.. (2017). Automatisierte Videoanalyse. In C. Moritz & Corsten, M. (Eds.), Handbuch Qualitative Videoanalyse (pp. 1–17). Springer VS Verlag.
Irmer, T., Glasmachers, T., & Maji, S. (2017). Texture attribute synthesis and transfer using feed-forward CNNs. In Winter Conference on Applications of Computer Vision (WACV). IEEE.
Jancke, D. (2017). Catching the voltage gradient—asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. Neurophoton., 4(3), 031206. http://doi.org/10.1117/1.NPh.4.3.031206
Kompella, V. R., & Wiskott, L.. (2017). Intrinsically Motivated Acquisition of Modular Slow Features for Humanoids in Continuous and Non-Stationary Environments. arXiv preprint arXiv:1701.04663.
Krause, O., Glasmachers, T., & Igel, C. (2017). Qualitative and Quantitative Assessment of Step Size Adaptation Rules. In Conference on Foundations of Genetic Algorithms (FOGA). ACM.
Lomp, O., Faubel, C., & Schöner, G.. (2017). A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity. Frontiers in Neurorobotics, 11(April), 23. http://doi.org/10.3389/fnbot.2017.00023
Richter, M., Lins, J., & Schöner, G.. (2017). A neural dynamic model generates descriptions of object-oriented actions. Topics in Cognitive Science, 9(1), 35–47. http://doi.org/10.1111/tops.12240
Tschentscher, M., Pruß, B., & Horn, D.. (2017). A Simulated Car-Park Environment for the Evaluation of Video-Based On-Site Parking Guidance Systems. In Proceedings of the IEEE Intelligent Vehicles Symposium (Vol. 28, pp. 1564–1569).
Weghenkel, B., Fischer, A., & Wiskott, L.. (2017). Graph-based predictable feature analysis. Machine Learning, 1–22. http://doi.org/10.1007/s10994-017-5632-x
Werning, M., & Cheng, S.. (2017). Taxonomy and Unity of Memory. In S. Bernecker & Michaelian, K. (Eds.), The Routledge Handbook of Philosophy of Memory (p. forthcoming). London: Routledge.
2016

Babichev, A., Cheng, S., & Dabaghian, Y. A. (2016). Topological Schemas of Cognitive Maps and Spatial Learning. Frontiers in Computational Neuroscience, 10, 18. http://doi.org/10.3389/fncom.2016.00018
Cheng, S., & Werning, M. (2016). What is episodic memory if it is a natural kind? Synthese, 193(5), 1345–1385. http://doi.org/10.1007/s11229-014-0628-6
Cheng, S., Werning, M., & Suddendorf, T. (2016). Dissociating memory traces and scenario construction in mental time travel. Neuroscience & Biobehavioral Reviews, 60, 82–89. http://doi.org/10.1016/j.neubiorev.2015.11.011
Doğan, Ü., Glasmachers, T., & Igel, C. (2016). A Unified View on Multi-class Support Vector Classification. Journal of Machine Learning Research, 17(45), 1–32.
Escalante-B., A. N., & Wiskott, L.. (2016). Theoretical analysis of the optimal free responses of graph-based SFA for the design of training graphs. Journal of Machine Learning Research, 17(157), 1–36. Retrieved from http://jmlr.org/papers/v17/15-311.html
Escalante-B., A. N., & Wiskott, L.. (2016, January). Improved graph-based SFA: Information preservation complements the slowness principle. e-print arXiv:1601.03945. Retrieved from http://arxiv.org/abs/1601.03945
Glasmachers, T. (2016). Finite Sum Acceleration vs. Adaptive Learning Rates for the Training of Kernel Machines on a Budget. In NIPS workshop on Optimization for Machine Learning.
Glasmachers, T. (2016). Small Stochastic Average Gradient Steps. In NIPS workshop on Optimizing the Optimizers.
Hock, H. S., & Schöner, G.. (2016). Nonlinear dynamics in the perceptual grouping of connected surfaces. Vision Research, 126, 80–96. http://doi.org/10.1016/j.visres.2015.06.006
Horn, D., Demirciğlu, A., Bischl, B., Glasmachers, T., & Weihs, C. (2016). A Comparative Study on Large Scale Kernelized Support Vector Machines. Advances in Data Analysis and Classification (ADAC), 1–17.
Krause, O., Glasmachers, T., Hansen, N., & Igel, C. (2016). Unbounded Population MO-CMA-ES for the Bi-Objective BBOB Test Suite. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).
Krause, O., Glasmachers, T., & Igel, C. (2016). Multi-objective Optimization with Unbounded Solution Sets. In NIPS workshop on Bayesian Optimization.
Lomp, O., Richter, M., Zibner, S. K. U., & Schöner, G.. (2016). Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar. Frontiers in Neurorobotics, 10(November), 14. http://doi.org/10.3389/fnbot.2016.00014
Loshchilov, I., & Glasmachers, T.. (2016). Anytime Bi-Objective Optimization with a Hybrid Multi-Objective CMA-ES (HMO-CMA-ES). In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).
Melchior, J., Fischer, A., & Wiskott, L.. (2016). How to Center Deep Boltzmann Machines. Journal of Machine Learning Research, 17(99), 1–61. Retrieved from http://jmlr.org/papers/v17/14-237.html
Michael, M., Feist, C., Schuller, F., & Tschentscher, M.. (2016). Fast Change Detection for Camera-based Surveillance Systems. In Proceedings of the IEEE International Conference on Intelligent Transportation Systems (Vol. 19, pp. 1–8).
Park, E., Reimann, H., & Schöner, G.. (2016). Coordination of muscle torques stabilizes upright standing posture: an UCM analysis. Experimental Brain Research, 234(6), 1757–1767. http://doi.org/10.1007/s00221-016-4576-x
Raket, L. L., Grimme, B., Schöner, G., Igel, C., & Markussen, B. (2016). Separating Timing, Movement Conditions and Individual Differences in the Analysis of Human Movement. PLoS Computational Biology, 12(9), 1–27. http://doi.org/10.1371/journal.pcbi.1005092
Rekauzke, S., Nortmann, N., Staadt, R., Hock, H. S., Schöner, G., & Jancke, D.. (2016). Temporal asymmetry in dark-bright processing initiates propagating activity across primary visual cortex. J Neurosci, 36(6), 1902–1913.
Schönfeld, F. (2016). A computational model of spatial encoding in the hippocampus. Doctoral thesis, Ruhr-Universität Bochum.
Spoida, K., Eickelbeck, D., Karapinar, R., Eckhardt, T., Mark, M. D., Jancke, D., et al. (2016). Melanopsin variants as intrinsic optogenetic On and Off switches for transient versus sustained activation of G protein pathways. Curr Biol., 26(9), 1206–1212.
Tekülve, J., Zibner, S. K. U., & Schöner, G.. (2016). A neural process model of learning to sequentially organize and activate pre-reaches. In Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2016 Joint IEEE International Conferences on.
Tomforde, S., Rudolph, S., Bellman, K., & Würtz, R. P.. (2016). "Self-Improving System Integration" – Preface for the SISSY′16 Workshop. In Proc. ICAC (p. 275). http://doi.org/10.1109/ICAC.2016.74
Tomforde, S., Rudolph, S., Bellman, K., & Würtz, R. P.. (2016). An Organic Computing Perspective on Self-Improving System Interweaving at Runtime. In Proc. ICAC (pp. 276–284). http://doi.org/10.1109/ICAC.2016.15
Weihs, C., & Glasmachers, T.. (2016). Supervised Classification. In C. Weihs, Jannach, D., Vatolkin, I., & Rudolph, G. (Eds.), Music Data Analysis: Foundations and Applications.
2015

Fahmy, G., Alqallaf, A., & Wurtz, R.. (2015). Phase based detection of JPEG counter forensics. In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 37–40). http://doi.org/10.1109/ICECS.2015.7440243
Neher, T., Cheng, S., & Wiskott, L.. (2015). Memory Storage Fidelity in the Hippocampal Circuit: The Role of Subregions and Input Statistics. PLOS Computational Biology, 11(5), 1–25. http://doi.org/10.1371/journal.pcbi.1004250
Bayati, M., Valizadeh, A., Abbassian, A., & Cheng, S.. (2015). Self-organization of synchronous activity propagation in neuronal networks driven by local excitation. Frontiers in Computational Neuroscience, 9, 69. http://doi.org/10.3389/fncom.2015.00069
Bodenstein, C., Tremer, M., Overhoff, J., & Würtz, R. P.. (2015). A smartphone-controlled autonomous robot. In Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery, Zhangjiajie, China, Aug. 15-17 (pp. 2360–2367). http://doi.org/10.1109/FSKD.2015.7382314
Dinse, H. R., & Tegenthoff, M. (2015). Evoking plasticity through sensory stimulation: Implications for learning and rehabilitation . e-Neuroforum, 1(1), .
Escalante-B., A. N., & Wiskott, L.. (2015). Theoretical Analysis of the Optimal Free Responses of Graph-Based SFA for the Design of Training Graphs. e-print arXiv:1509.08329 (Accepted in Journal of Machine Learning Research). Retrieved from http://arxiv.org/abs/1509.08329
Günther, M., Böhringer, S., Wieczorek, D., & Würtz, R. P.. (2015). Reconstruction of Images from Gabor Graphs with Applications in Facial Image Processing. International Journal of Wavelets, Multiresolution and Information Processing, 13(4), 1550019-1–25. http://doi.org/10.1142/S0219691315500198
Haag, L. M., Heba, S., Lenz, M., Glaubitz, B., Höffken, O., Kalisch, T., et al. (2015). Resting BOLD fluctuations in the primary somatosensory cortex correlate with tactile acuity. Cortex, 64, 20–28.
Hansen, E., Grimme, B., Reimann, H., & Schöner, G.. (2015). Carry-over coarticulation in joint angles. Experimental Brain Research, 233(9), 2555–2569. http://doi.org/10.1007/s00221-015-4327-4
Horn, D., & Brüggenthies, M. (2015). Video-based Parking Space Detection: Localisation of Vehicles and Development of an Infrastructure for a Routeing System. In Proceedings of the Forum Bauinformatik (pp. 175–182).
Ibisch, A., Houben, S., Michael, M., Kesten, R., & Schuller, F. (2015). Arbitrary object localization and tracking via multiple-camera surveillance system embedded in a parking garage. In Proceedings of the SPIE (p. 94070G-94070G-12).
Kompella, V. R., Stollenga, M., Luciw, M., & Schmidhuber, J. (2015). Continual curiosity-driven skill acquisition from high-dimensional video inputs for humanoid robots. Artificial Intelligence.
Kosilek, R. P., Frohner, R., Würtz, R. P., Berr, C. M., Schopohl, J., Reincke, M., & Schneider, H. J. (2015). Automatic face classification in Cushing′s syndrome and acromegaly: Review, current results and future perspectives. European Journal of Endocrinology, 173(4), M39–M44. http://doi.org/10.1530/EJE-15-0429
Krause, O., & Glasmachers, T.. (2015). A CMA-ES with Multiplicative Covariance Matrix Updates. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).
Lobato, D., Sandamirskaya, Y., Richter, M., & Schöner, G.. (2015). Parsing of action sequences: A neural dynamics approach. Paladyn, Journal of Behavioral Robotics, 6(1), 119–135. http://doi.org/10.1515/pjbr-2015-0008
Mattos, D., Schöner, G., Zatsiorsky, V. M., & Latash, M. L. (2015). Task-specific stability of abundant systems: Structure of variance and motor equivalence. Neuroscience, 310, 600–615. http://doi.org/10.1016/j.neuroscience.2015.09.071
Mattos, D., Schöner, G., Zatsiorsky, V. M., & Latash, M. L. (2015). Motor equivalence during multi-finger accurate force production. Experimental Brain Research, 233, 487–502. http://doi.org/10.1007/s00221-014-4128-1
Michael, M., & Schlipsing, M.. (2015). Extending Traffic Light Recognition: Efficient Classification of Phase and Pictogram. In Proceedings of the IEEE International Joint Conference on Neural Networks.
Neher, T., Cheng, S., & Wiskott, L.. (2015). Memory Storage Fidelity in the Hippocampal Circuit: The Role of Subregions and Input Statistics. PLoS Comput Biol, 11, e1004250. http://doi.org/10.1371/journal.pcbi.1004250
Nortmann, N., Rekauzke, S., Azimi, Z., Onat, S., König, P., & Jancke, D.. (2015). Visual homeostatic processing in V1: When probability meets dynamics . Frontiers in Systems Neuroscience , 9.
Nortmann, N., Rekauzke, S., Onat, S., König, P., & Jancke, D.. (2015). Primary Visual Cortex Represents the Difference Between Past and Present. Cerebral Cortex, 25(6), 1427–1440.
Reimann, H., Lins, J., & Schöner, G.. (2015). The Dynamics of Neural Activation Variables. Paladyn, Journal of Behavioral Robotics, 6(1), 57–70.
Richthofer, S., & Wiskott, L.. (2015). Predictable Feature Analysis. In Workshop New Challenges in Neural Computation 2015 (NC2) (pp. 68–75). Retrieved from https://www.techfak.uni-bielefeld.de/ fschleif/mlr/mlr_03_2015.pdf
Richthofer, S., & Wiskott, L.. (2015). Predictable Feature Analysis. In 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) (pp. 190–196). http://doi.org/10.1109/ICMLA.2015.158
Ritter, P., Born, J., Brecht, M., Dinse, H. R., Heinemann, U., Pleger, B., et al. (2015). State-dependencies of learning across brain scales. Frontiers in Computational Neuroscience, 9.
Sandamirskaya, Y., & Storck, T. (2015). Artificial Neural Networks — Methods and Applications in Bio-/Neuroinformatics. In P. Koprinkova-Hristova, Mladenov, V., & Kasabov, N. K. (Eds.) (Vol. 4). Springer.
Schoenfeld, F., & Wiskott, L.. (2015). Modeling place field activity with hierarchical slow feature analysis. Frontiers in Computational Neuroscience, 9(51). http://doi.org/10.3389/fncom.2015.00051
Schönfeld, F., & Wiskott, L.. (2015). Modeling place field activity with hierarchical slow feature analysis. frontiers in Computational Neuroscience, 9(51). http://doi.org/10.3389/fncom.2015.00051
Tschentscher, M., Koch, C., König, M., Salmen, J., & Schlipsing, M.. (2015). Scalable real-time parking lot classification: An evaluation of image features and supervised learning algorithms. In Proceedings of the IEEE International Joint Conference on Neural Networks.
Zibner, S. K. U., Tekülve, J., & Schöner, G.. (2015). The Neural Dynamics of Goal-Directed Arm Movements: A Developmental Perspective. In Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2015 Joint IEEE International Conferences on (pp. 154–161).
Zibner, S. K. U., Tekülve, J., & Schöner, G.. (2015). The Sequential Organization of Movement is Critical to the Development of Reaching: A Neural Dynamics Account. In Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2015 Joint IEEE International Conferences on (pp. 39–46).
2014

Demic, S., & Cheng, S.. (2014). Modeling the Dynamics of Disease States in Depression. PLOS ONE, 9(10), 1–14. http://doi.org/10.1371/journal.pone.0110358
Lomp, O., Terzić, K., Faubel, C., du Buf, J. M. H., & Schöner, G.. (2014). Instance-based Object Recognition with Simultaneous Pose Estimation Using Keypoint Maps and Neural Dynamics. In S. Wermter, Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P. D., , S. M., et al. (Eds.), ICANN 2014 (Vol. 8681, pp. 451–458). Hamburg.
Muret, D., Dinse, H. R., Macchione, S., Urquizar, C., Farne, A., & Reilly, K. T. (2014). Touch improvement at the hand transfers to the face. Curr. Biol., 24(16), R736–737.
Azizi, A. H., Schieferstein, N., & Cheng, S.. (2014). The transformation from grid cells to place cells is robust to noise in the grid pattern. Hippocampus, 24(8), 912–919. http://doi.org/10.1002/hipo.22306
Balliu, B., Würtz, R. P., Horsthemke, B., Wieczorek, D., & Böhringer, S. (2014). Classification and visualization based on derived image features: application to genetic syndromes. PLOS One, 9(11), e109033. http://doi.org/10.1371/journal.pone.0109033
Bell, C., Storck, T., & Sandamirskaya, Y.. (2014). Learning to Look: a Dynamic Neural Fields Architecture for Gaze Shift Generation. In International Conference for Artificial Neural Networks, ICANN. Hamburg, Germany.
Bellman, K., Tomforde, S., & Würtz, R. P.. (2014). "Self-Improving System Integration" – Preface for the SISSY14 Workshop. In Proc. SASO, London (p. 122). IEEE.
Bellman, K., Tomforde, S., & Würtz, R. P.. (2014). Interwoven Systems: Self-improving Systems Integration. In Proc. SASO, London (pp. 123–127). IEEE.
Bruns, P., Camargo, C. J., Campanella, H., Esteve, J., Dinse, H. R., & Röder, B. (2014). Tactile Acuity Charts: A Reliable Measure of Spatial Acuity. PloS one, 9(2), e87384.
Chavane, F., Sharon, D., Jancke, D., Marre, O., Fregnac, Y., & Grinvald, A. (2014). Optogenetic Assessment of Horizontal Interactions in Primary Visual Cortex (pg 4976, 2014). J Neurosci, 34(26), 8930–8930.
Dähne, S., Wilbert, N., & Wiskott, L.. (2014). Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells. PLoS Comput Biol, 10(5), e1003564. http://doi.org/10.1371/journal.pcbi.1003564
Danafar, S., Rancoita, P. M. V., Glasmachers, T., Whittingstall, K., & Schmidhuber, J. (2014). Testing Hypotheses by Regularized Maximum Mean Discrepancy. International Journal of Computer and Information Technology (IJCIT), 3(2).
Glasmachers, T. (2014). Handling Sharp Ridges with Local Supremum Transformations. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).
Glasmachers, T. (2014). Optimized Approximation Sets for Low-dimensional Benchmark Pareto Fronts. In Parallel Problem Solving from Nature (PPSN). Springer.
Glasmachers, T., Naujoks, B., & Rudolph, G. (2014). Start Small, Grow Big - Saving Multiobjective Function Evaluations. In Parallel Problem Solving from Nature (PPSN). Springer.
Hernandes, A. C., Guerrero, H. B., Becker, M., Jokeit, J. S., & Schöner, G.. (2014). A comparison between reactive potential fields and Attractor Dynamics. 2014 IEEE 5th Colombian Workshop on Circuits and Systems, CWCAS 2014 - Conference Proceedings, (3), 0–3. http://doi.org/10.1109/CWCAS.2014.6994609
Houben, S. (2014). Towards the intrinsic self-calibration of a vehicle-mounted omni-directional radially symmetric camera. In Proceedings of IEEE Intelligent Vehicles Symposium (pp. 878–883).
Ibisch, A., Houben, S., Schlipsing, M., Kesten, R., Reimche, P., Schuller, F., & Altinger, H. (2014). Towards highly automated driving in a parking garage: General object localization and tracking using an environment-embedded camera system. In Proceedings of the IEEE Intelligent Vehicles Symposium (pp. 426–431).
Kattenstroth, J. C., Kalisch, T., Tegenthoff, M., & Dinse, H. R.. (2014). Tanz im Alter: Fitness für Gehirn, Geist und Körper . In C. Behrens & Rosenberg, C. (Eds.), TanzZeit – LebensZeit, Tanzforschung 2014 (pp. 115–135). Leipzig: Henschel Verlag .
Knips, G., Zibner, S. K. U., Reimann, H., Popova, I., & Schöner, G.. (2014). A neural dynamics architecture for grasping that integrates perception and movement generation and enables on-line updating. In International Conference on Intelligent Robots and Systems (IROS) (pp. 646–653).
Knips, G., Zibner, S. K. U., Reimann, H., Popova, I., & Schöner, G.. (2014). Reaching and grasping novel objects: Using neural dynamics to integrate and organize scene and object perception with movement generation. In International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EPIROB) (pp. 416–423).
Kompella, V. R. (2014). Slow Feature Analysis for Curiosity-Driven Agents, 2014 IEEE WCCI Tutorial.
Kompella, V. R. (2014). Slowness Learning for Curiosity-Driven Agents. Doctoral thesis, Università della svizzera italiana (USI).
Kompella, V. R., Kazerounian, S., & Schmidhuber, J. (2014). An Anti-hebbian Learning Rule to Represent Drive Motivations for Reinforcement Learning. In From Animals to Animats 13 (pp. 176–187). Springer International Publishing.
Kompella, V. R., Stollenga, M. F., Luciw, M. D., & Schmidhuber, J. (2014). Explore to See, Learn to Perceive, Get the Actions for Free: SKILLABILITY. In Proceedings of IEEE Joint Conference of Neural Networks (IJCNN).
Kozyrev, V., Eysel, U. T., & Jancke, D.. (2014). Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proceedings of the National Academy of Sciences, 111(37), 13553–13558.
Krause, T. U., Schrör, P. Y., & Würtz, R. P.. (2014). Spiking network simulations. In B. Hammer, Martinetz, T., & Villmann, T. (Eds.), Proceedings of New Challenges in Neural Computation, Münster (pp. 14–15).
Ladda, A. M., Pfannmoeller, J. P., Kalisch, T., Roschka, S., Platz, T., Dinse, H. R., & Lotze, M. (2014). Effects of combining 2 weeks of passive sensory stimulation with active hand motor training in healthy adults. PloS one, 9(1), e84402.
Lessmann, M., & Würtz, R. P.. (2014). Learning of invariant object recognition from temporal correlation in a hierarchical network. Neural Networks, 54, 70–84. http://doi.org/10.1016/j.neunet.2014.02.011
Lessmann, M., & Würtz, R. P.. (2014). Online Learning of Invariant Object Recognition in a Hierarchical Neural Network. In S. Wermter, Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., et al. (Eds.), Proc. ICANN (pp. 427–434). Springer.
Lins, J., & Schöner, G.. (2014). Neural Fields. In S. Coombes, beim Graben, P., Potthast, R., & , J. W. (Eds.) (pp. 319–339). Springer Berlin Heidelberg.
Lissek, S., Vallana, G. S., Schlaffke, L., Lenz, M., Dinse, H. R., & Tegenthoff, M. (2014). Opposing effects of dopamine antagonism in a motor sequence task—tiapride increases cortical excitability and impairs motor learning. Frontiers in behavioral neuroscience, 8.
Luciw, M., Kazerounian, S., Sandamirskaya, Y., Schöner, G., & Schmidhuber, J. (2014). Reinforcement-Driven Shaping of Sequence Learning in Neural Dynamics. In Simulation of Adaptive Behavior, SAB.
Maruyama, S., Dineva, E., Spencer, J. P., & Schöner, G.. (2014). Change occurs when body meets environment: A review of the embodied nature of development. Japanese Psychological Research, 56, 385–401. http://doi.org/10.1111/jpr.12065
Norman, J., Hock, H., & Schoner, G.. (2014). Contrasting accounts of direction and shape perception in short-range motion: Counterchange compared with motion energy detection. Attention, perception & psychophysics, 76, 1350–70. http://doi.org/10.3758/s13414-014-0650-2
Oubbati, F., Richter, M., & Schöner, G.. (2014). A neural dynamics to organize timed movement : Demonstration in a robot ball bouncing task. In 4th International Conference on Development and Learning and on Epigenetic Robotics (pp. 291–298). Palazzo Ducale, Genoa, Italy.
Pyka, M., & Cheng, S.. (2014). Pattern Association and Consolidation Emerges from Connectivity Properties between Cortex and Hippocampus. PLOS ONE, 9(1), 1–14. http://doi.org/10.1371/journal.pone.0085016
Pyka, M., Klatt, S., & Cheng, S.. (2014). Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections. Frontiers in Neuroanatomy, 8, 91. http://doi.org/10.3389/fnana.2014.00091
Richter, M., Lins, J., Schneegans, S., Sandamirskaya, Y., & Schöner, G.. (2014). Autonomous Neural Dynamics to Test Hypotheses in a Model of Spatial Language. In P. Bello, Guarini, M., McShane, M., & Scassellati, B. (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society (pp. 2847–2852). Austin, TX: Cognitive Science Society.
Richter, M., Lins, J., Schneegans, S., & Schöner, G.. (2014). A neural dynamic architecture resolves phrases about spatial relations in visual scenes. In 24th International Conference on Artificial Neural Networks (ICANN) (pp. 201–208). Heidelberg, Germany: Springer.
Sandamirskaya, Y., & Storck, T. (2014). Neural-Dynamic Architecture for Looking: Shift from Visual to Motor Target Representation for Memory Saccade. In IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL EPIROB 2014).
Schlipsing, M. (2014). Videobasierte Leistungserfassung im Fußball. Doctoral thesis, Ruhr-Universität Bochum.
Schlipsing, M., Salmen, J., Tschentscher, M., & Igel, C. (2014). Adaptive pattern recognition in real-time video-based soccer analysis. Journal of Real-Time Image Processing, 1–17.
Schneegans, S., Spencer, J. P., Schöner, G., Hwang, S., & Hollingworth, A. (2014). Dynamic interactions between visual working memory and saccade target selection. Journal of vision, 14(11), 9.
Scholz, J. P., & Schöner, G.. (2014). Use of the Uncontrolled Manifold (UCM) Approach to Understand MotorVariability, Motor Equivalence, and Self-motion. In M. F. Levin (Ed.), Progress in Motor Control (Vol. 826, p. Chapter 7). Springer International Publishing. http://doi.org/10.1007/978-3-319-47313-0
Schöner, G. (2014). Embodied Cognition, Neural Field Models of. In Encyclopedia of Computational Neuroscience (pp. 1084–1092). Springer Berlin Heidelberg.
Schöner, G. (2014). Dynamical Systems Thinking: From Metaphor to Neural Theory. In P. C. M. Molenaar, Lerner, R. M., & Newell, K. M. (Eds.), Handbook of Developmental Systems Theory and Methodology (pp. 188–219). New York, New York, USA: Guilford Publications.
Schöner, G., & Nowak, E. (2014). Coordination Dynamics. In D. Jaeger & Jung, R. (Eds.), Encyclopedia of Computational Neuroscience (pp. 1–3). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4614-7320-6_63-1
Sczesny-Kaiser, M., Bauknecht, A., Höffken, O., Tegenthoff, M., Dinse, H. R., Jancke, D., et al. (2014). Synergistic effects of noradrenergic modulation with atomoxetine and 10 Hz repetitive transcranial magnetic stimulation on motor learning in healthy humans. BMC neuroscience, 15(1), 46.
Sczesny-Kaiser, M., Bauknecht, A., Hoffken, O., Tegenthoff, M., Dinse, H. R., Jancke, D., et al. (2014). Synergistic effects of noradrenergic modulation with atomoxetine and 10 Hz repetitive transcranial magnetic stimulation on motor learning in healthy humans. BMC Neurosci, 15, 46.
Sigala, R., Haufe, S., Roy, D., Dinse, H. R., & Ritter, P. (2014). The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models. Front Comput Neurosci, 8, 36.
Sprekeler, H., Zito, T., & Wiskott, L.. (2014). An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation. Journal of Machine Learning Research, 15, 921–947. Retrieved from http://jmlr.org/papers/v15/sprekeler14a.html
Strub, C., Wörgötter, F., Ritter, H., & Sandamirskaya, Y.. (2014). Correcting Pose Estimates during Tactile Exploration of Object Shape: a Neuro-robotic Study. In Development and Learning and Epirobotics (ICDL-Epirob), IEEE International Conference on.
Strub, C., Wörgötter, F., Ritter, H., & Sandamirskaya, Y.. (2014). Using Haptics to Extract Object Shape from Rotational Manipulations. In Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on. IEEE.
Wang, N. (2014). Learning natural image statistics with variants of restricted Boltzmann machines. Doctoral thesis, International Graduate School of Neuroscience, Ruhr-Universität Bochum.
Wang, N., Jancke, D., & Wiskott, L.. (2014). Modeling correlations in spontaneous activity of visual cortex with Gaussian-binary deep Boltzmann machines. In Proc. Bernstein Conference for Computational Neuroscience, Sep 3–5,Göttingen, Germany (pp. 263–264). BFNT Göttingen.
Wang, N., Jancke, D., & Wiskott, L.. (2014). Modeling correlations in spontaneous activity of visual cortex with centered Gaussian-binary deep Boltzmann machines. In Proc. International Conference of Learning Representations (ICLR′14, workshop), Apr 14–16,Banff, Alberta, Canada.
Wang, N., Melchior, J., & Wiskott, L.. (2014). Gaussian-binary Restricted Boltzmann Machines on Modeling Natural Image statistics (Vol. 1401.5900). arXiv.org e-Print archive. Retrieved from http://arxiv.org/abs/1401.5900
Weghenkel, B., & Wiskott, L.. (2014). Learning predictive partitions for continuous feature spaces. In Proc. 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 23-25, Bruges, Belgium (pp. 577–582).
Werning, M., & Cheng, S.. (2014). Is Episodic Memory a Natural Kind?-A Defense of the Sequence Analysis. In P. Bello, Guarini, M., McShane, M., & Scassellati, B. (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society (Vol. 2, pp. 964–69). Austin, TX: Cognitive Science Society. Retrieved from https://mindmodeling.org/cogsci2014/papers/173/paper173.pdf http://www.ruhr-uni-bochum.de/mam/phil-lang/content/cogsci2014_episodic_memory.pdf
Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., & Schmidhuber, J. (2014). Natural Evolution Strategies. Journal of Machine Learning Research, 15, 949–980.
Wiskott, L., Würtz, R. P., & Westphal, G. (2014). Elastic Bunch Graph Matching. Scholarpedia, 9, 10587. http://doi.org/10.4249/scholarpedia.10587
Zhang, S., Schoenfeld, F., Wiskott, L., & Manahan-Vaughan, D. (2014). Spatial representations of place cells in darkness are supported by path integration and border information. Frontiers in Behavioral Neuroscience, 8(222). http://doi.org/10.3389/fnbeh.2014.00222
2013

Cheng, S., & Werning, M. (2013). Composition and replay of mnemonic sequences: The contributions of REM and slow-wave sleep to episodic memory. Behavioral and Brain Sciences, 36(06), 610–611. http://doi.org/10.1017/s0140525x13001234
Kattenstroth, J. C., Kalisch, T., Kowalewski, R., Tegenthoff, M., & Dinse, H. R.. (2013). Quantitative assessment of joint position sense recovery in subacute stroke patients: a pilot study. J Rehabil Med, 45(10), 1004–1009.
Hickmott, P., & Dinse, H.. (2013). Effects of aging on properties of the local circuit in rat primary somatosensory cortex (S1) in vitro. Cereb. Cortex, 23(10), 2500–2513.
Hickmott, P., & Dinse, H.. (2013). Effects of aging on properties of the local circuit in rat primary somatosensory cortex (S1) in vitro. Cereb. Cortex, 23(10), 2500–2513.
Beste, C., & Dinse, H. R.. (2013). Learning without training. Curr. Biol., 23(11), R489–499.
Gatica Tossi, M. A., Lillemeier, A. S., & Dinse, H. R.. (2013). Influence of stimulation intensity on paired-pulse suppression of human median nerve somatosensory evoked potentials. Neuroreport, 24(9), 451–456.
Hoffken, O., Lenz, M., Sczesny-Kaiser, M., Dinse, H. R., & Tegenthoff, M. (2013). Phosphene thresholds correlate with paired-pulse suppression of visually evoked potentials. Brain Stimul, 6(2), 118–121.
Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. J. Neurosci., 33(7), 2900–2907.
Azizi, A. H., Wiskott, L., & Cheng, S.. (2013). A computational model for preplay in the hippocampus. Frontiers in Computational Neuroscience, 7, 161. http://doi.org/10.3389/fncom.2013.00161
Azizi, A. H., Wiskott, L., & Cheng, S.. (2013). A computational model for preplay in the hippocampus. Frontiers in Computational Neuroscience, 7(161), 1–15. http://doi.org/10.3389/fncom.2013.00161
Caup, L., Salmen, J., Muharemovic, I., & Houben, S.. (2013). Video-Based Trailer Articulation Estimation. In Proceedings of the IEEE Intelligent Vehicles Symposium (pp. 1179–1184).
Cheng, S. (2013). The CRISP theory of hippocampal function in episodic memory. Frontiers in Neural Circuits, 7, 88. http://doi.org/10.3389/fncir.2013.00088
Escalante-B., A. -N., & Wiskott, L.. (2013). How to Solve Classification and Regression Problems on High-Dimensional Data with a Supervised Extension of Slow Feature Analysis. Cognitive Sciences EPrint Archive (CogPrints). Retrieved from http://cogprints.org/8966/
Escalante-B., A. N., & Wiskott, L.. (2013). How to Solve Classification and Regression Problems on High-Dimensional Data with a Supervised Extension of Slow Feature Analysis. Journal of Machine Learning Research, 14, 3683–3719. Retrieved from http://jmlr.org/papers/v14/escalante13a.html
Frohner, R., Würtz, R. P., Kosilek, R. P., & Schneider, H. J.. (2013). Optimierung der Gesichtsklassifikation bei der Erkennung von Akromegalie. Austrian Journal of Clinical Endocrinology and Metabolism, 6(3), 20–24.
Glasmachers, T. (2013). A Natural Evolution Strategy with Asynchronous Strategy Updates. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).
Glasmachers, T. (2013). The Planning-ahead SMO Algorithm (No. arxiv:1305.0423v1). arxiv.org.
Glasmachers, T., & Doğan, Ü. (2013). Accelerated Coordinate Descent with Adaptive Coordinate Frequencies. In Proceedings of the fifth Asian Conference on Machine Learning (ACML).
Helduser, S., Cheng, S., & Güntürkün, O. (2013). Identification of two forebrain structures that mediate execution of memorized sequences in the pigeon. Journal of Neurophysiology, 109(4), 958–968. http://doi.org/10.1152/jn.00763.2012
Houben, S., Komar, M., A. Hohm,, Lüke, S., Neuhausen, M., & Schlipsing, M.. (2013). On-Vehicle Video-Based Parking Lot Recognition with Fisheye Optics. In Proceedings of the IEEE Annual Conference on Intelligent Transportation Systems (pp. 7–12).
Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., & Igel, C. (2013). Detection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark. In Proceedings of the International Joint Conference on Neural Networks.
Ibisch, A., Stümper, S., Altinger, H., Neuhausen, M., Tschentscher, M., Schlipsing, M., et al. (2013). Autonomous Driving in a Parking Garage: Vehicle Localization and Tracking Using Environment-embedded LIDAR Sensors. In Proceedings of the IEEE Intelligent Vehicles Symposium (pp. 829–934).
Kattenstroth, J. C., Kalisch, T., Holt, S., Tegenthoff, M., & Dinse, H. R.. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front Aging Neurosci, 5, 5.
Kazerounian, S., Luciw, M., Richter, M., & Sandamirskaya, Y.. (2013). Autonomous Reinforcement of Behavioral Sequences in Neural Dynamics. In International Joint Conference on Neural Networks (IJCNN).
Kosilek, R. P., Schopohl, J., Grünke, M., Dimopoulou, C., Stalla, G. K., Lammert, A., et al. (2013). Automatic face classification of Cushing’s syndrome in women - A novel screening approach. Experimental and Clinical Endocrinology and Diabetes. http://doi.org/10.1055/s-0033-1349124
Krause, O., Fischer, A., Glasmachers, T., & Igel, C. (2013). Approximation properties of DBNs with binary hidden units and real-valued visible units. In Proceedings of the International Conference on Machine Learning (ICML).
Krüger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., et al. (2013). Deep Hierarchies in the Primate Visual Cortex: What Can We Learn For Computer Vision? IEEE Trans. on Pattern Analysis and Machine Intelligence, 35(8), 1847–1871. http://doi.org/10.1109/TPAMI.2012.272
Lissek, S., Vallana, G. S., Gunturkun, O., Dinse, H., & Tegenthoff, M. (2013). Brain activation in motor sequence learning is related to the level of native cortical excitability. PLoS ONE, 8(4), e61863.
Lomp, O., Zibner, S. K. U., Richter, M., Ranó, I., & Schöner, G.. (2013). A software framework for cognition, embodiment, dynamics, and autonomy in robotics: cedar. In Artificial Neural Networks and Machine Learning–ICANN 2013 (pp. 475–482). Springer.
Luciw, M., Kazerounian, S., Lakhmann, K., Richter, M., & Sandamirskaya, Y.. (2013). Learning the Perceptual Conditions of Satisfaction of Elementary Behaviors. In Robotics: Science and Systems (RSS), Workshop "Active Learning in Robotics: Exploration, Curiosity, and Interaction".
Luciw*, M., Kompella*, V., Kazerounian, S., & Schmidhuber, J. (2013). An intrinsic value system for developing multiple invariant representations with incremental slowness learning. Frontiers in neurorobotics, 7, *Joint first authors.
Melchior, J., Fischer, A., Wang, N., & Wiskott, L.. (2013). How to Center Binary Restricted Boltzmann Machines (Vol. 1311.1354). arXiv.org e-Print archive. Retrieved from http://arxiv.org/pdf/1311.1354.pdf
Michael, M., Salmen, J., Stallkamp, J., & Schlipsing, M.. (2013). Real-Time Stereo Vision: Optimizing Semi-Global Matching. In Proceedings of the IEEE Intelligent Vehicles Symposium (pp. 1197–1202).
Müller, M. K., Tremer, M., Bodenstein, C., & Würtz, R. P.. (2013). Learning invariant face recognition from examples. Neural Networks, 41, 137–146. http://doi.org/10.1016/j.neunet.2012.07.006
Neher, T., Cheng, S., & Wiskott, L.. (2013). Are memories really stored in the hippocampal CA3 region? BoNeuroMed.
Neher, T., Cheng, S., & Wiskott, L.. (2013). Are memories really stored in the hippocampal CA3 region? In Proc. 10th Göttinger Meeting of the German Neuroscience Society, Mar 13-16, Göttingen, Germany (p. 104).
Onat, S., Jancke, D., & König, P. (2013). Cortical long-range interactions embed statistical knowledge of natural sensory input: a voltage-sensitive dye imaging study. F1000Research, 2.
Richthofer, S., & Wiskott, L.. (2013). Predictable Feature Analysis. arXiv.org e-Print archive. Retrieved from http://arxiv.org/abs/1311.2503
Salmen, J. (2013). Eine Systemarchitektur für effiziente videobasierte Fahrerassistenzsysteme. Doctoral thesis, Ruhr-Universität Bochum.
Sandamirskaya, Y. (2013). Dynamic Neural Fields as a Step Towards Cognitive Neuromorphic Architectures. Frontiers in Neuroscience, 7, 276.
Sandamirskaya, Y., & Conradt, J. (2013). Increasing Autonomy of Learning SensorimotorTransformations with Dynamic Neural Fields. In International Conference on Robotics and Automation (ICRA), Workshop "Autonomous Learning".
Sandamirskaya, Y., & Conradt, J. (2013). Learning Sensorimotor Transformations with Dynamic Neural Fields. In International Conference on Artificial Neural Networks (ICANN).
Sandamirskaya, Y., Zibner, S. K. U., Schneegans, S., & Schöner, G.. (2013). Using Dynamic Field Theory to Extend the Embodiment Stance toward Higher Cognition. New Ideas in Psychology, 31(3), 322–339.
Schlipsing, M., Salmen, J., & Igel, C. (2013). Echtzeit-Videoanalyse im Fußball. KI - Künstliche Intelligenz, 27(3), 235–240.
Schoenfeld, F., & Wiskott, L.. (2013). RatLab: An easy to use tool for place code simulations. Frontiers in Computational Neuroscience, 7(104). http://doi.org/10.3389/fncom.2013.00104
Tossi, G., Stude, P., Schwenkreis, P., Tegenthoff, M., & Dinse, H. R.. (2013). Behavioural and neurophysiological markers reveal differential sensitivity to homeostatic interactions between centrally and peripherally applied passive stimulation. European Journal of Neuroscience, 38(6), 2893–2901.
Tschentscher, M., Neuhausen, M., Koch, C., König, M., Salmen, J., & Schlipsing, M.. (2013). Comparing Image Features and Machine Learning Algorithms for Real-time Parking-space Classifiaction. In Proceedings of the ASCE International Workshop on Computing in Civil Engineering (pp. 363–370).
Wang, N., Jancke, D., & Wiskott, L.. (2013). Modeling correlations in spontaneous activity of visual cortex with centered Gaussian-binary deep Boltzmann machines. arXiv preprint arXiv:1312.6108.