Filter

in press

  • Scene memory and spatial inhibition in visual search - A neural dynamic process model and new experimental evidence
    Grieben, R., Tekülve, J., Zibner, S. K. U., Lins, J., Schneegans, S., & Schöner, G.
    Attention, Perception, & Psychophysics, accepted

2019

  • Hippocampal Reactivation Extends for Several Hours Following Novel Experience
    Giri, B., Miyawaki, H., Mizuseki, K., Cheng, S., & Diba, K.
    The Journal of Neuroscience, 39(5), 866–875
  • Computer mouse tracking reveals motor signatures in a cognitive task of spatial language grounding
    Lins, J., & Schöner, G.
    Attention, Perception, & Psychophysics
  • Moment Vector Encoding of Protein Sequences for Supervised Classification
    Altartouri, H., & Glasmachers, T.
    In Practical Applications of Computational Biology and Bioinformatics, 13th International Conference (pp. 25–35) Springer International Publishing
  • CaMello-XR enables visualization and optogenetic control of Gq/11 signals and receptor trafficking in GPCR-specific domains
    Eickelbeck, D., Karapinar, R., Jack, A., Suess, S. T., Barzan, R., Azimi, Z., et al.
    Communications Biology, 2(1)
  • Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia)
    Azizi, A. H., Pusch, R., Koenen, C., Klatt, S., Bröcker, F., Thiele, S., et al.
    Behavioural Brain Research, 356, 423–434
  • 6DoF Vehicle Pose Estimation Using Segmentation-Based Part Correspondences
    Barowski, T., Szczot, M., & Houben, S.
    In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 573–580)
  • A parallel RatSlam C++ library implementation.
    de Souza Munoz, M. E., Chaves Menezes, M., Pignaton de Freitas, E., Cheng, S., de Almeida Neto, A., Muniz de Oliveira, A. C., & de Almeida Ribeiro, P. R.
    Communications in Computer and Information Science, accepted
  • Challenges of Convex Quadratic Bi-objective Benchmark Problems
    Glasmachers, T.
    In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (pp. 559–567) ACM
  • Global Convergence of the (1+1) Evolution Strategy
    Glasmachers, T.
    Evolutionary Computation Journal (ECJ)
  • Boosting Reinforcement Learning with Unsupervised Feature Extraction
    Hakenes, S., & Glasmachers, T.
    In Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (pp. 555–566) Springer International Publishing
  • How do memory modules differentially contribute to familiarity and recollection?
    Hakobyan, O., & Cheng, S.
    Behavioural and Brain Sciences, accepted
  • Measuring the Data Efficiency of Deep Learning Methods
    Hlynsson, H., Escalante-B., A., & Wiskott, L.
    In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods SCITEPRESS - Science and Technology Publications
  • Learning Gradient-Based ICA by Neurally Estimating Mutual Information
    Hlynsson, H. D. ′ið, & Wiskott, L.
    In C. Benzmüller & Stuckenschmidt, H. (Eds.), KI 2019: Advances in Artificial Intelligence (pp. 182–187) Cham: Springer International Publishing
  • Park marking-based vehicle self-localization with a fisheye topview system
    Houben, S., Neuhausen, M., Michael, M., Kesten, R., Mickler, F., & Schuller, F.
    Journal of Real-Time Image Processing, 16(2), 289–304
  • A process account of the UnControlled Manifold uncontrolled manifold structure of joint space variance in pointing movements
    Martin, V., Reimann, H., & Schöner, G.
    Biological Cybernetics
  • Fusing Shape-from-Silhouette and the Sparsity Driven Detector for Camera-Based 3D Multi-Object Localization with Occlusions
    Michael, M., Horn, D., & Houben, S.
    In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 1417–1424)
  • Vehicle Shape and Color Classification Using Convolutional NeuralNetwork
    Nafzi, M., Brauckmann, M., & Glasmachers, T.
    arxiv.org
  • Dual SVM Training on a Budget
    Qaadan, S., Schüler, M., & Glasmachers, T.
    In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods SCITEPRESS - Science and Technology Publications
  • Modeling Macroscopic Material Behavior With Machine Learning Algorithms Trained by Micromechanical Simulations
    Reimann, D., Nidadavolu, K., ul Hassan, H., Vajragupta, N., Glasmachers, T., Junker, P., & Hartmaier, A.
    Frontiers in Materials, 6, 181
  • SpikeDeeptector: A deep-learning based method for detection of neural spiking activity
    Saif-ur-Rehman, M., Lienkämper, R., Parpaley, Y., Wellmer, J., Liu, C., Lee, B., et al.
    Journal of Neural Engineering
  • The Dynamics of Neural Populations Capture the Laws of the Mind
    Schöner, G.
    Topics in Cognitive Science, 1–15
  • Generation of Natural Traffic Sign Images Using Domain Translation with Cycle-Consistent Generative Adversarial Networks
    Spata, D., Horn, D., & Houben, S.
    In Proceedings of the IEEE Intelligent Vehicles Symposium (IV) (pp. 622–628)
  • Autonomous Sequence Generation for a Neural Dynamic Robot: Scene Perception, Serial Order, and Object-Oriented Movement
    Tekülve, J., Fois, A., Sandamirskaya, Y., & Schöner, G.
    Frontiers in Neurorobotics, 13, 95
  • Neural dynamic concepts for intentional systems
    Tekülve, J., & Schöner, G.
    In 41th Annual Conference of the Cognitive Science Society (CogSci 2019)
  • Autonomously learning beliefs is facilitated by a neural dynamic network driving an intentional agent
    Tekülve, J., & Schöner, G.
    In Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 2019 Joint IEEE International Conference on (pp. 143–150) IEEE
  • Gradient-based Training of Slow Feature Analysis by Differentiable Approximate Whitening
    Schüler, M., Hlynsson, H. D., & Wiskott, L.
    In Proceedings of The 11th Asian Conference on Machine Learning (Vol. 101, p. To appear) PMLR

2018

  • A Neuro-Inspired Approach to Solve a Simultaneous Location and Mapping Task Using Shared Information in Multiple Robots Systems
    Menezes, M. C., de Freitas, E. P., Cheng, S., de Oliveira, A. C. M., & de Almeida Ribeiro, P. R.
    In 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV) IEEE
  • Autonomous Exploration Guided by Optimisation Metaheuristic
    Santos, R. G., de Freitas, E. P., Cheng, S., de Almeida Ribeiro, P. R., & de Oliveira, A. C. M.
    In 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV) IEEE
  • Subtraction and division of visual cortical population responses by the serotonergic system
    Azimi, Z., Spoida, K., Barzan, R., Wollenweber, P., Mark, M. D., Herlitze, S., & Jancke, D.
    Preprint at bioRxiv
  • Storage fidelity for sequence memory in the hippocampal circuit
    Bayati, M., Neher, T., Melchior, J., Diba, K., Wiskott, L., & Cheng, S.
    PLOS ONE, 13(10), e0204685
  • Utilizing Slow Feature Analysis for Lipreading
    Freiwald, J., Karbasi, M., Zeiler, S., Melchior, J., Kompella, V., Wiskott, L., & Kolossa, D.
    In Speech Communication; 13th ITG-Symposium (pp. 191–195) VDE Verlag GmbH
  • A neural dynamic model for the perceptual grounding of spatial and movement relations
    Richter, M.
    Doctoral thesis, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum
  • The reduction of adult neurogenesis in depression impairs the retrieval of new as well as remote episodic memory
    Fang, J., Demic, S., & Cheng, S.
    PLOS ONE, 13(6), e0198406
  • TMS-induced neuronal plasticity enables targeted remodeling of visual cortical maps
    Kozyrev, V., Staadt, R., Eysel, U. T., & Jancke, D.
    Proceedings of the National Academy of Sciences, 115(25), 6476–6481
  • The Interaction between Semantic Representation and Episodic Memory
    Fang, J., Rüther, N., Bellebaum, C., Wiskott, L., & Cheng, S.
    Neural Computation, 30(2), 293–332
  • Drift Theory in Continuous Search Spaces: Expected Hitting Time of the (1+1)-ES with 1/5 Success Rule
    Akimoto, Y., Auger, A., & Glasmachers, T.
    In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) ACM
  • Fine-Grained Vehicle Representations for Autonomous Driving
    Barowski, T., Szczot, M., & Houben, S.
    In IEEE International Conference on Intelligent Transportation Systems (ITSC) (pp. 3797–3804)
  • Self-improving System Integration – Status and Challenges After Five Years of SISSY
    Bellman, K., Botev, J., Diaconescu, A., Esterle, L., Gruhl, C., Landauer, C., et al.
    In Proceedings of IEEE International Workshops on Foundations and Applications of Self* Systems (pp. 160–167)
  • Speeding Up Budgeted Dual SVM Training with Precomputed GSS
    Glasmachers, T., & Qaadan, S.
    (M. M. -y-G. Ruben Vera-Rodriguez Sergio Velastin & Morales, A., Eds.), The 23rd Iberoamerican Congress on Pattern Recognition
  • Speeding Up Budgeted Stochastic Gradient Descent SVM Training with Precomputed Golden Section Search
    Glasmachers, T., & Qaadan, S.
    In G. Nicosia, Pardalos, P., Giuffrida, G., Umeton, R., & Sciacca, V. (Eds.), The 4th International Conference on machine Learning, Optimization and Data science - LOD 2018
  • Sequences of discrete attentional shifts emerge from a neural dynamic architecture for conjunctive visual search that operates in continuous time
    Grieben, R., Tekülve, J., Zibner, S. K. U., Schneegans, S., & Schöner, G.
    In T. T. Rogers, Rau, M., Zhu, X., & Kalish, C. W. (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (pp. 429–434)
  • Anticipatory coarticulation in non-speeded arm movements can be motor-equivalent, carry-over coarticulation always is
    Hansen, E., Grimme, B., Reimann, H., & Schöner, G.
    Experimental Brain Research
  • Evaluation of Synthetic Video Data in Machine Learning Approaches for Parking Space Classification
    Horn, D., & Houben, S.
    In Proceedings of the IEEE Intelligent Vehicles Symposium (IV) (pp. 2157–2162)
  • Erste Ansätze zur automatischen Erkennung von Gruppenverhalten mithilfe des Computersehens
    Horn, D., Houben, S., & Schöner, G.
    In J. Reichertz & Keysers, V. (Eds.), Emotion. Eskalation. Gewalt. (pp. 130–147) Beltz Juventa
  • Automatisierte Videoanalyse
    Horn, D., Ibisch, A., & Tschentscher, M.
    In C. Moritz & Corsten, M. (Eds.), Handbuch Qualitative Videoanalyse (pp. 445–456) Springer VS Verlag
  • A Neural Dynamic Architecture That Autonomously Builds Mental Models
    Kounatidou, P., Richter, M., & Schöner, G.
    In T. T. Rogers, Rau, M., Zhu, X., & Kalish, C. W. (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (pp. 643–648)
  • Large Scale Black-box Optimization by Limited-Memory Matrix Adaptation
    Loshchilov, I., Glasmachers, T., & Beyer, H. -G.
    IEEE Transactions on Evolutionary Computation, 99