Filter

2018

  • The Interaction between Semantic Representation and Episodic Memory
    Fang, J., Rüther, N., Bellebaum, C., Wiskott, L., & Cheng, S.
    Neural Computation, 30(2), 293–332
  • Drift Theory in Continuous Search Spaces: Expected Hitting Time of the (1+1)-ES with 1/5 Success Rule
    Akimoto, Y., Auger, A., & Glasmachers, T.
    In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) ACM
  • Anticipatory coarticulation in non-speeded arm movements can be motor-equivalent, carry-over coarticulation always is
    Hansen, E., Grimme, B., Reimann, H., & Schöner, G.
    Experimental Brain Research
  • Automatisierte Videoanalyse
    Horn, D., Ibisch, A., & Tschentscher, M.
    In C. Moritz & Corsten, M. (Eds.), Handbuch Qualitative Videoanalyse (pp. 445–456) Springer VS Verlag
  • Unsupervised Acquisition of Human Body Models
    Walther, T., & Würtz, R. P.
    Cognitive Systems Research, 47, 68–84
  • Doing without metarepresentation: Scenario construction explains the epistemic generativity and privileged status of episodic memory
    Werning, M., & Cheng, S.
    Behavioral and Brain Sciences, 41

2017

  • Unsupervised Acquisition of Human Body Models using Principles of Organic Computing
    Walther, T., & Würtz, R. P.
    ArXiv e-prints
  • A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating
    Knips, G., Zibner, S. K. U., Reimann, H., & Schöner, G.
    Frontiers in Neurorobotics, 11(March), 9:1–14
  • Gaussian-binary restricted Boltzmann machines for modeling natural image statistics
    Melchior, J., Wang, N., & Wiskott, L.
    PLOS ONE, 12(2), 1–24
  • Gedächtnisverbesserung: Möglichkeiten und kritische Betrachtung
    Cheng, S.
    In F. Hüttemann & Liggieri, K. (Eds.), Die Grenze . Diskurse des Transhumanismus. (p. invited contribution) Bielefeld: transcript Verlag
  • Consolidation of Episodic Memory: An Epiphenomenon of Semantic Learning
    Cheng, S.
    In N. Axmacher & Rasch, B. (Eds.), Cognitive Neuroscience of Memory Consolidation (pp. 57–72) Cham, Switzerland: Springer International Publishing
  • Experience-Dependency of Reliance on Local Visual and Idiothetic Cues for Spatial Representations Created in the Absence of Distal Information
    Draht, F., Zhang, S., Rayan, A., Schönfeld, F., Wiskott, L., & Manahan-Vaughan, D.
    Frontiers in Behavioral Neuroscience, 11(92)
  • Extensions of Hierarchical Slow Feature Analysis for Efficient Classification and Regression on High-Dimensional Data
    Escalante-B., A. N.
    Doctoral thesis, Ruhr University Bochum, Faculty of Electrical Engineering and Information Technology
  • A Fast Incremental BSP Tree Archive for Non-dominated Points
    Glasmachers, T.
    In Evolutionary Multi-Criterion Optimization (EMO) Springer
  • Limits of End-to-End Learning
    Glasmachers, T.
    In Proceedings of the 9th Asian Conference on Machine Learning (ACML)
  • Global Convergence of the (1+1) Evolution Strategy
    Glasmachers, T.
    arxiv.org
  • Cue Integration by Similarity Rank List Coding — Application to Invariant Object Recognition
    Grieben, R., & Würtz, R. P.
    In Proceedings of IEEE International Workshops on Foundations and Applications of Self* Systems (pp. 132–137)
  • Texture attribute synthesis and transfer using feed-forward CNNs
    Irmer, T., Glasmachers, T., & Maji, S.
    In Winter Conference on Applications of Computer Vision (WACV) IEEE
  • Catching the voltage gradient—asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald
    Jancke, D.
    Neurophoton., 4(3), 031206
  • Intrinsically Motivated Acquisition of Modular Slow Features for Humanoids in Continuous and Non-Stationary Environments
    Kompella, V. R., & Wiskott, L.
    arXiv preprint arXiv:1701.04663
  • Qualitative and Quantitative Assessment of Step Size Adaptation Rules
    Krause, O., Glasmachers, T., & Igel, C.
    In Conference on Foundations of Genetic Algorithms (FOGA) ACM
  • Mouse Tracking Shows Attraction to Alternative Targets While Grounding Spatial Relations
    Lins, J., & Schöner, G.
    In Proceedings of the 39th Annual Conference of the Cognitive Science Society (to appear) Austin, TX: Cognitive Science Society
  • A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity
    Lomp, O., Faubel, C., & Schöner, G.
    Frontiers in Neurorobotics, 11(April), 23
  • From grid cells to place cells with realistic field sizes
    Neher, T., Azizi, A. H., & Cheng, S.
    PLoS ONE, 12(7), e0181618
  • A multi-joint model of quiet , upright stance accounts for the “uncontrolled manifold”-structure of joint variance
    Reimann, H., & Schöner, G.
    Biological Cybernetics, in press
  • A neural dynamic model generates descriptions of object-oriented actions
    Richter, M., Lins, J., & Schöner, G.
    Topics in Cognitive Science, 9(1), 35–47
  • Reaching for objects : a neural process account in a developmental perspective
    Schöner, G., Tekülve, J., & Zibner, S.
    In D. Corbetta & Santello, M. (Eds.), The selection and production of goal-directed behaviors: Neural correlates, development, learning, and modeling of reach-to-grasp movements Taylor & Francis
  • Dynamic Neural Fields with Intrinsic Plasticity
    Strub, C., Schöner, G., Wörgötter, F., & Sandamirskaya, Y.
    Frontiers in Computational Neuroscience, 11(August), 74
  • A simulated car-park environment for the evaluation of video-based on-site parking guidance systems
    Tschentscher, M., Pruß, B., & Horn, D.
    In Proceedings of the IEEE Intelligent Vehicles Symposium (IV) (pp. 1571–1576)
  • Graph-based predictable feature analysis
    Weghenkel, B., Fischer, A., & Wiskott, L.
    Machine Learning, 1–22
  • Taxonomy and Unity of Memory
    Werning, M., & Cheng, S.
    In S. Bernecker & Michaelian, K. (Eds.), The Routledge Handbook of Philosophy of Memory (p. forthcoming) London: Routledge
  • No need for meta-representation: How scenario construction explains the epistemic generativity and privileged epistemic status of episodic memory
    Werning, M., & Cheng, S.
    Behavioral and Brain Sciences, in press

2016

  • Topological Schemas of Cognitive Maps and Spatial Learning
    Babichev, A., Cheng, S., & Dabaghian, Y. A.
    Frontiers in Computational Neuroscience, 10, 18
  • What is episodic memory if it is a natural kind?
    Cheng, S., & Werning, M.
    Synthese, 193(5), 1345–1385
  • Dissociating memory traces and scenario construction in mental time travel
    Cheng, S., Werning, M., & Suddendorf, T.
    Neuroscience & Biobehavioral Reviews, 60, 82–89
  • Fast model selection by limiting SVM training times
    Demircioğlu, A., Horn, D., Glasmachers, T., Bischl, B., & Weihs, C.
    arxiv.org
  • A Unified View on Multi-class Support Vector Classification
    Doğan, Ü., Glasmachers, T., & Igel, C.
    Journal of Machine Learning Research, 17(45), 1–32
  • Theoretical analysis of the optimal free responses of graph-based SFA for the design of training graphs.
    Escalante-B., A. N., & Wiskott, L.
    Journal of Machine Learning Research, 17(157), 1–36
  • Improved graph-based SFA: Information preservation complements the slowness principle
    Escalante-B., A. N., & Wiskott, L.
    e-print arXiv:1601.03945
  • Phase based forgery detection of JPEG anti forensics
    Fahmy, G., & Wurtz, R.
    In Signal Processing and Information Technology (ISSPIT), 2016 IEEE International Symposium on (pp. 144–149) IEEE
  • Finite Sum Acceleration vs. Adaptive Learning Rates for the Training of Kernel Machines on a Budget
    Glasmachers, T.
    In NIPS workshop on Optimization for Machine Learning
  • Small Stochastic Average Gradient Steps
    Glasmachers, T.
    In NIPS workshop on Optimizing the Optimizers
  • Nonlinear dynamics in the perceptual grouping of connected surfaces
    Hock, H. S., & Schöner, G.
    Vision Research, 126, 80–96
  • A Comparative Study on Large Scale Kernelized Support Vector Machines
    Horn, D., Demirciğlu, A., Bischl, B., Glasmachers, T., & Weihs, C.
    Advances in Data Analysis and Classification (ADAC), 1–17
  • Unbounded Population MO-CMA-ES for the Bi-Objective BBOB Test Suite
    Krause, O., Glasmachers, T., Hansen, N., & Igel, C.
    In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)
  • Multi-objective Optimization with Unbounded Solution Sets
    Krause, O., Glasmachers, T., & Igel, C.
    In NIPS workshop on Bayesian Optimization
  • Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar
    Lomp, O., Richter, M., Zibner, S. K. U., & Schöner, G.
    Frontiers in Neurorobotics, 10(November), 14
  • Anytime Bi-Objective Optimization with a Hybrid Multi-Objective CMA-ES (HMO-CMA-ES)
    Loshchilov, I., & Glasmachers, T.
    In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)
  • How to Center Deep Boltzmann Machines
    Melchior, J., Fischer, A., & Wiskott, L.
    Journal of Machine Learning Research, 17(99), 1–61
  • Fast Change Detection for Camera-based Surveillance Systems
    Michael, M., Feist, C., Schuller, F., & Tschentscher, M.
    In Proceedings of the IEEE International Conference on Intelligent Transportation Systems (Vol. 19, pp. 1–8)
  • Coordination of muscle torques stabilizes upright standing posture: an UCM analysis
    Park, E., Reimann, H., & Schöner, G.
    Experimental Brain Research, 234(6), 1757–1767
  • Separating Timing, Movement Conditions and Individual Differences in the Analysis of Human Movement
    Raket, L. L., Grimme, B., Schöner, G., Igel, C., & Markussen, B.
    PLoS Computational Biology, 12(9), 1–27
  • Temporal asymmetry in dark-bright processing initiates propagating activity across primary visual cortex
    Rekauzke, S., Nortmann, N., Staadt, R., Hock, H. S., Schöner, G., & Jancke, D.
    J Neurosci, 36(6), 1902–1913
  • A neural dynamic model parses object-oriented actions
    Richter, M., Lins, J., & Schöner, G.
    In A. Papafragou, Grodner, D., Mirman, D., & Trueswell, J. C. (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society (pp. 1931–1936) Austin, TX: Cognitive Science Society
  • A computational model of spatial encoding in the hippocampus
    Schönfeld, F.
    Doctoral thesis, Ruhr-Universität Bochum
  • Melanopsin variants as intrinsic optogenetic On and Off switches for transient versus sustained activation of G protein pathways
    Spoida, K., Eickelbeck, D., Karapinar, R., Eckhardt, T., Mark, M. D., Jancke, D., et al.
    Curr Biol., 26(9), 1206–1212
  • A neural process model of learning to sequentially organize and activate pre-reaches
    Tekülve, J., Zibner, S. K. U., & Schöner, G.
    In Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2016 Joint IEEE International Conferences on
  • "Self-Improving System Integration" – Preface for the SISSY′16 Workshop
    Tomforde, S., Rudolph, S., Bellman, K., & Würtz, R. P.
    In Proc. ICAC (p. 275)
  • An Organic Computing Perspective on Self-Improving System Interweaving at Runtime
    Tomforde, S., Rudolph, S., Bellman, K., & Würtz, R. P.
    In Proc. ICAC (pp. 276–284)
  • Supervised Classification
    Weihs, C., & Glasmachers, T.
    In C. Weihs, Jannach, D., Vatolkin, I., & Rudolph, G. (Eds.), Music Data Analysis: Foundations and Applications

2015

  • Phase based detection of JPEG counter forensics
    Fahmy, G., Alqallaf, A., & Wurtz, R.
    In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 37–40)
  • Memory Storage Fidelity in the Hippocampal Circuit: The Role of Subregions and Input Statistics
    Neher, T., Cheng, S., & Wiskott, L.
    PLOS Computational Biology, 11(5), 1–25
  • Self-organization of synchronous activity propagation in neuronal networks driven by local excitation
    Bayati, M., Valizadeh, A., Abbassian, A., & Cheng, S.
    Frontiers in Computational Neuroscience, 9, 69
  • A smartphone-controlled autonomous robot
    Bodenstein, C., Tremer, M., Overhoff, J., & Würtz, R. P.
    In Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery, Zhangjiajie, China, Aug. 15-17 (pp. 2360–2367)
  • Evoking plasticity through sensory stimulation: Implications for learning and rehabilitation
    Dinse, H. R., & Tegenthoff, M.
    e-Neuroforum, 1(1),
  • Theoretical Analysis of the Optimal Free Responses of Graph-Based SFA for the Design of Training Graphs
    Escalante-B., A. N., & Wiskott, L.
    e-print arXiv:1509.08329 (Accepted in Journal of Machine Learning Research)
  • Reconstruction of Images from Gabor Graphs with Applications in Facial Image Processing
    Günther, M., Böhringer, S., Wieczorek, D., & Würtz, R. P.
    International Journal of Wavelets, Multiresolution and Information Processing, 13(4), 1550019-1–25
  • Resting BOLD fluctuations in the primary somatosensory cortex correlate with tactile acuity
    Haag, L. M., Heba, S., Lenz, M., Glaubitz, B., Höffken, O., Kalisch, T., et al.
    Cortex, 64, 20–28
  • Carry-over coarticulation in joint angles
    Hansen, E., Grimme, B., Reimann, H., & Schöner, G.
    Experimental Brain Research, 233(9), 2555–2569
  • Video-based Parking Space Detection: Localisation of Vehicles and Development of an Infrastructure for a Routeing System
    Horn, D., & Brüggenthies, M.
    In Proceedings of the Forum Bauinformatik (pp. 175–182)
  • Park marking-based vehicle self-localization with a fisheye topview system
    Houben, S., Neuhausen, M., Michael, M., Kesten, R., Mickler, F., & Schuller, F.
    Journal of Real-Time Image Processing, 1–16
  • Arbitrary object localization and tracking via multiple-camera surveillance system embedded in a parking garage
    Ibisch, A., Houben, S., Michael, M., Kesten, R., & Schuller, F.
    In SPIE/IS&T Electronic Imaging International Society for Optics and Photonics
  • Continual curiosity-driven skill acquisition from high-dimensional video inputs for humanoid robots
    Kompella, V. R., Stollenga, M., Luciw, M., & Schmidhuber, J.
    Artificial Intelligence
  • Automatic face classification in Cushing′s syndrome and acromegaly: Review, current results and future perspectives
    Kosilek, R. P., Frohner, R., Würtz, R. P., Berr, C. M., Schopohl, J., Reincke, M., & Schneider, H. J.
    European Journal of Endocrinology, 173(4), M39–M44
  • A CMA-ES with Multiplicative Covariance Matrix Updates
    Krause, O., & Glasmachers, T.
    In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)
  • Parsing of action sequences: A neural dynamics approach
    Lobato, D., Sandamirskaya, Y., Richter, M., & Schöner, G.
    Paladyn, Journal of Behavioral Robotics, 6(1), 119–135
  • Learning the condition of satisfaction of an elementary behavior in dynamic field theory
    Luciw, M., Kazerounian, S., Lahkman, K., Richter, M., & Sandamirskaya, Y.
    Paladyn, Journal of Behavioral Robotics, 6(1), 180–190
  • Task-specific stability of abundant systems: Structure of variance and motor equivalence
    Mattos, D., Schöner, G., Zatsiorsky, V. M., & Latash, M. L.
    Neuroscience, 310, 600–615
  • Motor equivalence during multi-finger accurate force production
    Mattos, D., Schöner, G., Zatsiorsky, V. M., & Latash, M. L.
    Experimental Brain Research, 233, 487–502
  • Extending Traffic Light Recognition: Efficient Classification of Phase and Pictogram
    Michael, M., & Schlipsing, M.
    In Proceedings of the IEEE International Joint Conference on Neural Networks
  • Memory Storage Fidelity in the Hippocampal Circuit: The Role of Subregions and Input Statistics
    Neher, T., Cheng, S., & Wiskott, L.
    PLoS Computational Biology, 11(5), e1004250
  • Memory Storage Fidelity in the Hippocampal Circuit: The Role of Subregions and Input Statistics
    Neher, T., Cheng, S., & Wiskott, L.
    PLoS Comput Biol, 11, e1004250
  • Visual homeostatic processing in V1: When probability meets dynamics
    Nortmann, N., Rekauzke, S., Azimi, Z., Onat, S., König, P., & Jancke, D.
    Frontiers in Systems Neuroscience , 9
  • Primary Visual Cortex Represents the Difference Between Past and Present
    Nortmann, N., Rekauzke, S., Onat, S., König, P., & Jancke, D.
    Cerebral Cortex, 25(6), 1427–1440
  • The Dynamics of Neural Activation Variables
    Reimann, H., Lins, J., & Schöner, G.
    Paladyn, Journal of Behavioral Robotics, 6(1), 57–70
  • Predictable Feature Analysis.
    Richthofer, S., & Wiskott, L.
    In Workshop New Challenges in Neural Computation 2015 (NC2) (pp. 68–75)
  • Predictable Feature Analysis.
    Richthofer, S., & Wiskott, L.
    In 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) (pp. 190–196)
  • State-dependencies of learning across brain scales
    Ritter, P., Born, J., Brecht, M., Dinse, H. R., Heinemann, U., Pleger, B., et al.
    Frontiers in Computational Neuroscience, 9
  • Artificial Neural Networks — Methods and Applications in Bio-/Neuroinformatics
    Sandamirskaya, Y., & Storck, T.
    In P. Koprinkova-Hristova, Mladenov, V., & Kasabov, N. K. (Eds.) (Vol. 4) Springer
  • Modeling place field activity with hierarchical slow feature analysis
    Schoenfeld, F., & Wiskott, L.
    Frontiers in Computational Neuroscience, 9(51)
  • Modeling place field activity with hierarchical slow feature analysis
    Schönfeld, F., & Wiskott, L.
    frontiers in Computational Neuroscience, 9(51)
  • Scalable real-time parking lot classification: An evaluation of image features and supervised learning algorithms
    Tschentscher, M., Koch, C., König, M., Salmen, J., & Schlipsing, M.
    In Proceedings of the IEEE International Joint Conference on Neural Networks
  • The Neural Dynamics of Goal-Directed Arm Movements: A Developmental Perspective
    Zibner, S. K. U., Tekülve, J., & Schöner, G.
    In Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2015 Joint IEEE International Conferences on (pp. 154–161)
  • The Sequential Organization of Movement is Critical to the Development of Reaching: A Neural Dynamics Account
    Zibner, S. K. U., Tekülve, J., & Schöner, G.
    In Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2015 Joint IEEE International Conferences on (pp. 39–46)

2014

  • Modeling the Dynamics of Disease States in Depression
    Demic, S., & Cheng, S.
    PLOS ONE, 9(10), 1–14
  • Touch improvement at the hand transfers to the face
    Muret, D., Dinse, H. R., Macchione, S., Urquizar, C., Farne, A., & Reilly, K. T.
    Curr. Biol., 24(16), R736–737
  • The transformation from grid cells to place cells is robust to noise in the grid pattern
    Azizi, A. H., Schieferstein, N., & Cheng, S.
    Hippocampus, 24(8), 912–919
  • Classification and visualization based on derived image features: application to genetic syndromes
    Balliu, B., Würtz, R. P., Horsthemke, B., Wieczorek, D., & Böhringer, S.
    PLOS One, 9(11), e109033
  • Learning to Look: a Dynamic Neural Fields Architecture for Gaze Shift Generation
    Bell, C., Storck, T., & Sandamirskaya, Y.
    In International Conference for Artificial Neural Networks, ICANN Hamburg, Germany
  • "Self-Improving System Integration" – Preface for the SISSY14 Workshop
    Bellman, K., Tomforde, S., & Würtz, R. P.
    In Proc. SASO, London (p. 122) IEEE
  • Interwoven Systems: Self-improving Systems Integration
    Bellman, K., Tomforde, S., & Würtz, R. P.
    In Proc. SASO, London (pp. 123–127) IEEE
  • Tactile Acuity Charts: A Reliable Measure of Spatial Acuity
    Bruns, P., Camargo, C. J., Campanella, H., Esteve, J., Dinse, H. R., & Röder, B.
    PloS one, 9(2), e87384
  • Optogenetic Assessment of Horizontal Interactions in Primary Visual Cortex (pg 4976, 2014)
    Chavane, F., Sharon, D., Jancke, D., Marre, O., Fregnac, Y., & Grinvald, A.
    J Neurosci, 34(26), 8930–8930
  • Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells.
    Dähne, S., Wilbert, N., & Wiskott, L.
    PLoS Comput Biol, 10(5), e1003564
  • Testing Hypotheses by Regularized Maximum Mean Discrepancy
    Danafar, S., Rancoita, P. M. V., Glasmachers, T., Whittingstall, K., & Schmidhuber, J.
    International Journal of Computer and Information Technology (IJCIT), 3(2)
  • Handling Sharp Ridges with Local Supremum Transformations
    Glasmachers, T.
    In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)
  • Optimized Approximation Sets for Low-dimensional Benchmark Pareto Fronts
    Glasmachers, T.
    In Parallel Problem Solving from Nature (PPSN) Springer