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We develop a group-theoretical analysis of slow feature analysis for the
case where the input data are generated by applying a set of continuous
transformations to static templates. As an application of the theory, we
analytically derive nonlinear visual receptive fields and show that their
optimal stimuli, as well as the orientation and frequency tuning, are in
good agreement with previous simulations of complex cells in primary
visual cortex (Berkes and Wiskott, 2005). The theory suggests that side
and end stopping can be interpreted as a weak breaking of translation
invariance. Direction selectivity is also discussed.

1 Introduction

More than half a century has passed since the first characterization of the
response behavior of cells in primary visual cortex (V1). Despite exten-
sive research, both experimental and theoretical, the processes that shape
the structure of their receptive fields are still a matter of debate. Several
mechanisms have been proposed, ranging from optimal coding strategies
claiming that the receptive fields are matched to the statistics of natural
stimuli (Olshausen & Field, 1996), to genetically determined, “hard-wired”
(McLaughlin & O’Leary, 2005) or statistical connectivity patterns (Ringach,
2007). Although both approaches can explain aspects of V1 receptive fields,
both suffer from a basic dilemma. On the one hand, the idea that recep-
tive fields are learned from natural stimuli is seriously challenged by the
experimental finding that in some species, simple cell receptive fields are
largely developed before the animal first opens its eyes (Hubel & Wiesel,
1963). On the other hand, the notion that the early visual system is mostly
hard-wired is problematic, because it has been shown that it remains plastic
and can adapt to the statistics of artificial stimuli on a timescale of minutes
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(Yao & Dan, 2001). Thus, the receptive fields must at least be compatible
with natural stimuli because they would otherwise be unlearned quickly.
One possible way of establishing this compatibility is that the morphology
of the early visual system has adapted to natural stimuli on an evolutionary
timescale. A different possibility is that spontaneous retinal activity occur-
ring before eye opening is used for learning the receptive fields and that
there are intrinsic similarities between the statistics of retinal waves and
natural stimuli. But what is the nature of these similarities, and what type
of learning rule could exploit them?

Recently it has been shown that the unsupervised learning paradigm
of slowness can reproduce many aspects of complex cell receptive fields
(Berkes & Wiskott, 2005). For training, the authors used quasi-natural image
sequences that were generated from static natural images by applying trans-
formations such as translation, rotation, and zoom. The simulations yielded
a set of quadratic functions that generated slowly varying output signals un-
der the constraint of being uncorrelated. The resulting functions shared sev-
eral properties with complex cells in V1, including grating-shaped optimal
stimuli and different types of selectivity to orientation and frequency. What
makes this study interesting in the context of the debate above is that the
authors performed test simulations to evaluate which aspects of the train-
ing data were responsible for the structure of the resulting receptive fields.
They found that although higher-order image statistics were accessible to
the learning paradigm, they were immaterial and that the same receptive
fields could be learned with colored noise images. If the transformations
that were used to generate the image sequences were changed, however,
the properties of the receptive fields changed drastically. It is thus tempt-
ing to speculate that receptive fields of V1 complex cells are not adapted
to higher-order statistics of natural stimuli but rather to transformations
that typically occur in natural stimuli. Intriguingly, these transformations
could also be present in retinal waves, as one could interpret propagating or
rotating waves as an imitation of translation or rotation in natural stimuli.

Based on the observation that the structures of the receptive fields of
Berkes and Wiskott (2005) were dominated by the transformations in the
image sequences, we present a mathematical analysis of slow feature anal-
ysis for the case where the input data are generated by a set of continuous
transformations and develop a group-theoretical framework that cumu-
lates in an eigenvalue equation for the optimal functions. One of the main
results of the analysis is that under the assumption that the input statistics
are invariant under the transformations used to generate their time depen-
dence, the optimal functions are purely determined by the transformations
and are, counterintuitively, independent of all other aspects of the input
statistics.

We then apply this framework to the scenario simulated by Berkes
and Wiskott (2005) and show that several of the observed receptive field
properties can be derived analytically. The theory provides an intuitive
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understanding for the structure of the receptive fields found in the simula-
tions: (fast) translation is responsible for the optimal stimuli, and rotation
and zoom underlie the orientation and frequency dependence, respectively.
The tuning properties of the simulated cells can be understood as a way
of generating harmonic oscillations as output signals if the transforma-
tions are applied with constant velocity, in line with previous analytical
results (Wiskott, 2003). In addition, the analysis raises a link to previous
group-theoretical approaches that learn the dynamical structure of image
sequences in terms of the generators of the underlying transformations (Rao
& Ruderman, 1998; Miao & Rao, 2007).

In section 2 we introduce slow feature analysis, the learning paradigm
that Berkes and Wiskott (2005) used for their simulations. In section 3 we
develop the mathematical framework that leads to the eigenvalue equa-
tions for the optimal functions. In section 4 we apply this framework to
the simulations of Berkes and Wiskott (2005) and show that under certain
assumptions, a closed-form solution can be found and that it can account
for the optimal stimuli, as well as the orientation and frequency selectivity,
of the simulated cells.

2 Slow Feature Analysis

Slow feature analysis (SFA) aims at minimizing temporal variations in a set
of output signals yj (t) = g j (x(t)) generated from a given time-dependent,
vectorial input signal x(t). The optimization is performed on the functions
g j , which are constrained to lie within a given function space F . How
quickly an output signal y(t) varies in time is quantified by the �-value,
which is defined as the temporal average of the squared temporal deriva-
tive �(y) = 〈ẏ2〉t . To avoid the trivial constant solution and degeneracies
arising from possible additions of arbitrary constants, the output signals
are constrained to have zero mean and unit variance. The optimization is
performed sequentially with an asymmetric decorrelation constraint: the
function g1 is optimized first, yielding the slowest possible signal y1. Next,
the second function g2 is optimized under the constraint that its output
signal y2 is decorrelated from the first output signal y1. The third function
g3 is the one that generates the slowest possible output signal y3 under the
constraint of being decorrelated from y1 and y2, and so on. Iterating this
scheme yields a set of functions g j that are ordered by slowness (i.e., by
their �-value).

Mathematically, this problem can be formulated as a sequential opti-
mization problem:

Given a function spaceF and an N-dimensional input signal x(t) find a sequence
of J real-valued input-output functions g j (x) such that the output signal yj (t) :=
g j (x(t)) minimizes

�(yj ) = 〈ẏ2
j 〉t (2.1)
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under the constraints

〈yj 〉t = 0 (zero mean), (2.2)

〈y2
j 〉t = 1 (unit variance), (2.3)

∀i < j : 〈yi yj 〉t = 0 (decorrelation and order), (2.4)

with 〈·〉t and ẏ indicating temporal averaging and the derivative of y, re-
spectively.

The decorrelation constraint, equation 2.4, ensures that different func-
tions g j code for different aspects of the input. A more complete constraint
would be that the mutual information vanishes for different output sig-
nals. Unfortunately, the step from decorrelation to statistical independence
is nontrivial in terms of algorithmic implementation. Decorrelation is an
approximation of statistical independence up to second-order statistics.

It is important to note that although the objective is the slowness of the
output signal, the functions g j are instantaneous functions of the input, so
that slowness cannot be enforced by low-pass filtering. Slow output signals
can be obtained only if the input signal contains slowly varying features
that can be extracted by the functions g j .

Depending on the dimensionality of the function space F , the solution
of the optimization problem requires different techniques. If F is finite-
dimensional, the problem can be reduced to a (generalized) eigenvalue
problem (Wiskott & Sejnowski, 2002; Berkes & Wiskott, 2005). Here, we will
consider the case of an infinite-dimensional function space F that can be
solved using standard techniques of functional analysis.

3 Theory

In this section, we develop a theory of slow feature analysis for input data
that have the structure that Berkes and Wiskott (2005) used. We assume that
the input signals consist of a sequence of trials, each generated by applying
time-dependent continuous transformations to a static template xμ, which
is generally different for every trial.

3.1 Assumptions and Notation

3.1.1 Input Data Generation: Transformation Group. We make two assump-
tions for the transformations that are used to generate the input data: (1) they
should be invertible (i.e., for every transformation there is an inverse trans-
formation, which is also allowed in the paradigm used), and (2) the transfor-
mations should be continuous. The latter assumption arises naturally, be-
cause SFA requires temporally continuous input data. Mathematically, these
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assumptions imply that the transformations form a Lie group, that is, a con-
tinuous group.

The generation of one trial of the training data can be written as

x(t) = Tx(t)xμ , (3.1)

where Tx(t) is an operator that maps the input signal at time t = 0 (i.e. the
template) to the input signal at time t. The set of all possible operators Tx

forms a representation of the transformation group on the vector space that
contains the input data.

A different representation of the transformation group can be con-
structed by defining operators Tg that act on the functions in F such that

(Tgg)(x) := g(Txx) (3.2)

is fulfilled for all functions g ∈ F and all input signals x. Note that this
definition immediately implies that the operators T are linear operators on
the function space F , since

(
Tg(g1 + g2)

)
(x)

(6)= (g1 + g2)(Txx) = g1(Txx) + g2(Txx)

= (
Tgg1

)
(x) + (

Tgg2
)

(x). (3.3)

Intuitively, the representation change, equation 3.2, corresponds to a
change of the coordinate system. Think of the function g as a measurement
device that extracts certain aspects of the input signal. Then instead of
changing the input signal that the function g acts on (this is the effect
of Tx), one may also change the function in the “opposite direction” (this
is the effect of Tg). In the following, we skip the subscript g, because all
transformation operators T will act functions, not input signals.

3.1.2 The Hilbert Space of Functions. The function space F forms a vector
space. It is convenient to turn it into a Hilbert space by defining the scalar
product

( f, g) = 〈
f (x(t))g(x(t))

〉
, (3.4)

where the average 〈·〉 is taken over the training data (i.e., over all trials and
times within the trials). For simplicity of notation, we omit the average over
trials in the following and act as if there was only one trial. All our con-
siderations are valid for an ensemble of trials as well, but many quantities
would need additional indices that would only clutter the equations. For
the same reason, we often skip the argument of the functions g.
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Note that if the functions g j have zero mean on the training data, this
scalar product measures the covariance between the output of the functions
f and g. Consequently, the unit variance and decorrelation constraints
(see equations 2.3 and 2.4) take the compact form of an orthonormality
constraint:

(gi , g j ) = δi j , (3.5)

where δi j denotes the Kronecker symbol.
For all the derivations that follow, it is assumed that the scalar product

exists (i.e., that it is finite) for all functions f and g it acts on. This excludes,
for example, functions with infinite variance and thus inflicts constraints
on the function space F . Notice that these constraints also depend on the
statistics of the training data.

3.1.3 Invariance of the Training Data. In the following, we assume
that the statistics of the input data are invariant with respect to the
transformations applied. The main argument for this assumption is that
the training data are generated by applying these transformations. If we as-
sume, for example, that the temporal derivative of the transformations Tg(t)
is independent of the content x(t) (and therefore the current transformation
Tg(t)), there is no reason that a transformed version of the image should be
less likely than the original one.1 Of course, this assumption is not fulfilled
for all sets of transformation-based training data, so its validity needs to
be checked for the application at hand. For example, for the application to
receptive fields later in the article, we can argue that natural image statistics
are largely translation and rotation invariant (but see Ruderman & Bialek,
1994) and show some degree of scale invariance (Ruderman & Bialek, 1994;
Dong & Atick, 1995; Dong, 2001).

The invariance of the input statistics means that if the whole ensemble of
input signals used for training is subjected to any of the transformations, the
resulting ensemble of input signals has the same statistics. Thus, averages of
arbitrary functions remain unchanged by the transformation. In particular,
this implies that the scalar product, equation 3.4, is invariant with respect
to all operators T in the transformation group:

(T f, Tg) = ( f, g). (3.6)

1In this case, the dynamics of the transformation T(t) is a pure diffusion process, so
that the probability density of the operators T on the transformation manifold converges
to a uniform distribution. If all transformations are equally likely, all transformed input
data are of course also equally likely—the input statistics are invariant under the trans-
formations. This argument is valid only if the duration of the trial is much longer that the
mixing time of the stochastic process T(t) and if the transformation manifold is bounded.
Otherwise additional assumptions on the statistics of the templates xμ have to be made.
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In other words, the transformation operators T are orthogonal with respect
to the scalar product, equation 3.4, that is, they preserve distances (i.e.,
the standard deviation of differences of output signals) and angles (which
are related to the correlation of output signals) in the function space F as
derived from the scalar product, equation 3.4.

3.1.4 Generators of the Transformations. The transformation operators T
form a manifold, embedded in the space of all linear operators on the
function space F . Often this manifold is of relatively low dimensionality.
For example, if we apply translation, rotation, and zoom to images, the
associated operators can be characterized by the translation vector (two
degrees of freedom), the rotation angle, and the zoom factor. The operator
manifold would thus be four-dimensional. Despite its low dimensionality,
the manifold can in principle have a very complicated structure, so that
its low dimensionality is not necessarily helpful. Here, we show that the
low dimensionality of the manifold, in combination with the invariance
assumption introduced above, has important implications for the temporal
derivative of time-dependent transformations.

Let us start with a simple example, in which the input signal x is one-
dimensional and the transformation is the addition of a constant a to x:
x → x + a . The associated transformation on the function space F is a
translation of the functions g: g(x) → g(x + a ). Applying a time-dependent
transformation T(t) to a function g amounts to a time-dependent translation
by a (t): [T(t)g](x) = g(x + a (t)). SFA focuses on the temporal derivative of
the output signal y(t) = g(x + a (t)), which can readily be calculated using
the chain rule:

d
dt

y(t) = d
dt

[T(t)g](x) = d
dt

g(x + a (t)) (3.7)

=
[

ẋ(t)
d

dx
g
]

(x + a (t)) (3.8)

=
[

T(t)
(

ẋ(t)
d

dx

)
g
]

(x) (3.9)

=: [T(t)Q(t)g](x). (3.10)

This shows that the time derivative of the output signal can be calculated
by applying an operator Q(t) to the function g before applying the trans-
formation T(t). Q(t) := ẋ(t) d

dx is a linear operator that consists of a time-
dependent scalar ẋ and an operator d

dx that does not depend on the current
translation T(t). In the language of Lie group theory, the differential opera-
tor d

dx takes the role of the generator of translations. The associated scalar
ẋ is simply the velocity of the translation. As shown in the following, this
scheme can be generalized to the case of arbitrary transformation groups.



310 H. Sprekeler and L. Wiskott

Each transformation type has its own generator, which is independent of
the transformation itself and associated with a generalized velocity of the
transformation.

To show that this generalization holds, let us now consider the general
case. In the transformation operator notation, the output signal within one
trial is generated by

y(t) = (T(t)g)(xμ). (3.11)

Taking the derivative yields

d
dt

y(t) =
(

d
dt

T(t)g
)

(xμ) (3.12)

=: [T(t)Q(t)g] (xμ), (3.13)

with Q(t) := T−1(t)[ d
dt T(t)].

Our goal is to write the operators Q(t) as a sum of products of generators
Gα (one for each transformation α) and time-dependent velocities vα(t):

Q(t) =
∑

α

vα(t)Gα. (3.14)

As in the example, the generators Gα should be independent of the transfor-
mation. Therefore, equation 3.14 implies that the operator Q(t) is an element
of a vector space that is spanned by the generators Gα . The following theo-
rem shows that this vector space is the tangent space of the transformation
group at the identity element:

Theorem 1. Let T(t) be a differentiable trajectory of transformations with T(t) el-
ement of a Lie transformation group for all t. Then for all t, Q(t) := T−1(t)[ d

dt T(t)]
is an element of the tangent space of the transformation group at the identity element
E.

Proof. It is sufficient to show that for all times t, there is a trajectory T̃(s) of
transformation operators such that T̃(s)|s=t = E and d

ds T̃(s)|s=t = Q(t). It is
easy to see that T̃(s) := T−1(t)T(s) fulfills these conditions.

This theorem implies that the expansion 3.14 of the operator Q in terms
of the generators is correct if we use a set of generators that spans the
tangent space of the group at the unit element. Because the tangent space
of the group has the same dimensionality as the group itself, it also implies
that we need as many generators as the dimensionality of the group, that
is, one generator per transformation.
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As seen above, the invariance of the training data under the transforma-
tion implies that the transformation operators are orthogonal with respect
to the scalar product, equation 3.4. A consequence that we will make use of
in the following is that the generators Gα are anti-self-adjoint:

Theorem 2. The generators Gα are anti-self-adjoint with respect to the scalar
product, equation 3.4, that is,

( f, Gαg) = −(Gα f, g) (3.15)

for all f, g ∈ F .

Proof. Gα is an element of the tangent space of the transformation group at
the identity element. Thus, there is a trajectory T(s) of transformation oper-

ators such that
[

d
ds T(s)

]
s=0

= Gα and T(0) = E . Because T(s) is orthogonal

for all values of s, (T(s) f, T(s)g) = ( f, g) is independent of s for arbitrary
f, g. Thus

0 =
[

d
ds

(T(s) f, T(s)g)
]

s=0
(3.16)

=
[(

d
ds

T(s) f, T(s)g
)

+
(

T(s) f,
d
ds

T(s)g
)]

s=0
(3.17)

= (Gα f, g) + ( f, Gαg), (3.18)

which proves the assertion.

3.2 Reformulation of the Slowness Objective. The conventions intro-
duced in the last section allow us to rewrite the slowness objective 2.1:

�(g)
(2.1)
:= 〈ẏ(t)2〉 (3.19)

(3.13)= 〈([T(t)Q(t)g] (xμ))2〉 (3.20)

(3.14)=
〈([∑

α

vα(t)T(t)Gαg

]
(xμ)

)2〉
(3.21)

=
∑
α,β

〈
vα(t) [T(t)Gαg] (xμ)vβ (t)

[
T(t)Gβ g

]
(xμ)

〉
. (3.22)

Assuming that the velocities vα are statistically independent of the trans-
formation, we can split the average and express the �-value in the form of
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a scalar product:

�(g)
(3.22)=

∑
α,β

〈
vα(t)vβ (t)

〉 〈
[T(t)Gαg] (xμ)

[
T(t)Gβ g

]
(xμ)

〉
(3.23)

(3.2,3.1)=
∑
α,β

〈vα(t)vβ (t)〉〈[Gαg] (x(t))
[
Gβ g

]
(x(t))〉 (3.24)

(3.4)=
∑
α,β

〈
vα(t)vβ (t)

〉
(Gαg, Gβ g) (3.25)

(3.15)=
(

g,
[

−
∑
α,β

〈
vαvβ

〉
GαGβ

]
︸ ︷︷ ︸

=:D

g
)

(3.26)

= (g,Dg). (3.27)

Because the operator D is a bilinear combination of the anti-self-adjoint
generators Gα , it is self-adjoint:

( f,Dg) = (D f, g) ∀ f, g ∈ F . (3.28)

3.3 An Eigenvalue Equation for the Optimal Solutions. The main ad-
vantage of this reformulation of the objective function is that the optimiza-
tion problem that underlies SFA takes a form that is common in other
contexts and for which a well-developed theory exists. Most important, it
is known that the functions that minimize equation 3.27 are the eigenfunc-
tions of the operator D, while the fact that D is self-adjoint ensures that
the eigenfunctions are orthonormal so that the constraints 3.5 are fulfilled
(for the relevant mathematical background (see, e.g., Landau & Lifshitz,
1977, or Courant & Hilbert, 1989)). The eigenvalues � j are the �-values of
the eigenfunctions. We can thus solve the optimization problem of SFA by
finding the J solutions of the eigenvalue equation

Dg j = � j g j , (3.29)

with the smallest eigenvalues � j .
The first important result of this section is that this equation is inde-

pendent of the templates xμ underlying the training data. Instead, it de-
pends purely on the nature of the transformations that produce the image
sequences (as reflected by the generators Gα) and the second-order mo-
ments

〈
vαvβ

〉
of the associated velocities vα . This explains the finding by

Berkes and Wiskott (2005) that the simulated receptive fields for training
sequences that were generated from colored noise images and those for
sequences generated from natural images were essentially the same. On
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the other hand, a change in the transformations used to generate the image
sequences changes the structure of the operator D and thus the resulting re-
ceptive fields. This is also in agreement with the simulations. It is important
to bear in mind that although equation 3.29 appears to be independent of
the image statistics, it is valid only if they are invariant with respect to the
transformations. If this invariance condition is not fulfilled, higher-order
statistics may play a role.

Solving the eigenvalue equation 3.29 requires that we know D, which
according to equation 3.26 corresponds to knowing the generators Gα of
the transformations and the matrix of the second moments

〈
vαvβ

〉
of the

associated velocities vα . For finite-dimensional function spaces, the genera-
tors have matrix form. In section 4, we present an application of the theory
to continuous images. In this case, the input data, and therefore also the
function space, are infinite-dimensional and the generators take the form of
differential operators. Consequently, the eigenvalue equation 3.29 becomes
a partial differential eigenvalue equation.

4 An Application to Complex Cell Receptive Fields

In this section, we derive and discuss an explicit solution of the eigenvalue
problem 3.29 for the special case studied by Berkes and Wiskott (2005). The
input data are image sequences generated by applying translation, rotation,
and zoom to static template images.

4.1 Assumptions

4.1.1 Function Space: Quadratic Forms. We assume that the input data are
continuous gray-scale images, with x(r) denoting the gray value at pixel
position r. This implies that the input data are infinite-dimensional, so the
input-output functions g j for SFA are functionals that map images to real
numbers.

Berkes and Wiskott (2005) have used quadratic functions: sums of mono-
mials of first and second order in the pixel values. We neglect the linear
component mainly for the reason that we later focus on functions that are
translation invariant. The only linear function that is translation invariant
is the mean pixel intensity, which is not very informative about the image.
Moreover, Berkes and Wiskott found that in their simulations, the linear
contribution to almost all optimal functions was negligible compared to the
quadratic contribution. Therefore, we restrict the function space F to the
space of quadratic functions of the images:

g[x(r)] =
∫

R2

∫
R2

g(r, r′)x(r)x(r′) d2r d2r ′, (4.1)
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where g(r, r′) = g(r′, r) is a symmetric function. For mathematical conve-
nience, we assume that the images are infinitely large, so the integrals
extend over R

2. Note that g(r, r′) can be understood as coefficients of the
representation of the function g[x(r)] in terms of the basis functions x(r)x(r′).

The analysis presented does not crucially rely on the particular choice of
the function space. In particular, a generalization to polynomial mappings
of arbitrary order is straightforward.

4.1.2 Transformations. Just like Berkes and Wiskott (2005), we restrict
the transformations to translation, rotation, and zoom. One argument for
choosing these particular transformations is that they are part of a system-
atic expansion of the image dynamics. To see this, we assume that image
dynamics can be described in terms of a flow field v(r) that denotes the
velocity at which the pixel at position r is moving, so that

d
dt

x(r, t) = v(r, t) · ∇rx(r, t). (4.2)

Assuming that the flow field is smooth, we can get a first-order approxima-
tion by a Taylor expansion in r:

v(r, t) = v0(t) + A(t)r. (4.3)

The spatially constant component v0 of this expansion corresponds to uni-
form translation of the image. To get an intuition for the linear component,
we split the matrix A into four components: (1) a multiple of the unit matrix,
corresponding to zoom, (2) an antisymmetric component, corresponding to
rotation, and (3) two components that correspond to area-preserving com-
binations of compression or expansion:

A= ż
(

1 0
0 1

)
︸ ︷︷ ︸

zoom

+ω

(
0 1

−1 0

)
︸ ︷︷ ︸

rotation

+ c1

(
1 0
0 −1

)
+ c2

(
0 1
1 0

)
︸ ︷︷ ︸

area-preserving compression/expansion

.

(4.4)

Restricting the transformations to translation, rotation, and zoom therefore
corresponds to a first-order Taylor expansion of the flow field, where the
components that correspond to area-preserving combinations of compres-
sion and expansion are neglected.

Note that the description of the image dynamics in terms of a flow field
is not complete, because objects in natural images can occlude each other,
which cannot be fully captured using flow fields.
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Table 1: Generators of the Transformations Used to Generate the Image Se-
quences.

Transformation Generator Velocity

Translation ∇r + ∇r′ v0
Rotation r1∂r2 − r2∂r1 + r ′

1∂r ′
2
− r ′

2∂r ′
1

ω

Zoom ∇r · r + ∇r′ · r′ = r · ∇r + r′ · ∇r′ + 4 ζ = ż/z

Notes: ∂r1 denotes the derivative with respect to the first component of r. ∇r denotes the
vector-valued operator (∂r1 , ∂r2 )T .

4.1.3 Generators. To apply the theory developed in section 3 to the specific
problem at hand, we need to know the representation of the generators for
the transformations on the function space of quadratic forms. For reasons
of compactness, we defer the derivation of the generators to the appendix.
Suffice to say that we represent Gα such that they act on the kernel g(r, r′) of
the quadratic functionals, equation 4.1. In this representation they become
the differential operators listed in Table 1. The associated velocities are
the translation velocity v0, the angular velocity ω for rotation, and a zoom
velocity ζ for zoom. We define the zoom velocity as the factor by which the
size of the image increases per time unit. Let z denote the factor by which
an image has been zoomed relative to its original size. Then constant zoom
velocity implies that the zoom factor z grows exponentially in time, so that
not ż is constant but rather ż

z =: ζ .
With these generators the eigenvalue equation becomes a partial differ-

ential eigenvalue equation for g(r, r′). Finding a closed-form general solu-
tion is difficult, mainly because the resulting image depends on the order in
which translation and rotation or zoom are applied. A mathematical impli-
cation is that the generators for translation and those for rotation and zoom
do not commute, so they do not possess a common set of eigenfunctions
(which would simplify the analysis significantly). However, in the special
case of translation-invariant functions, it is possible to find a closed-form
solution that explains the orientation and frequency dependence of the sim-
ulated receptive fields in Berkes and Wiskott (2005), as well as aspects of
their optimal stimuli.

4.2 Translation-Invariant Solutions. But why translation invariance?
There are two reasons. First, the control experiments performed in Berkes
and Wiskott (2005) suggest that translation is a necessary and sufficient con-
dition for the optimal functions to resemble complex cells. In simulations
where translation was present in the training data, the functions became
phase invariant and had optimal stimuli that resemble Gabor wavelets.
The invariance of the units to spatial phase corresponds to a certain de-
gree of translation invariance. Second, for the case of translation-invariant
functions, the eigenvalue equation 3.29, can be solved analytically.
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Mathematically, translation invariance implies that the functions g(r, r′)
depend on the difference r − r′ only: g(r, r′) = g̃(r − r′). In this case, the
output signal depends on the power spectrum of the image only, because

g[x(r)] =
∫

g̃(r − r′)x(r)x(r′) d2r d2r ′ (4.5)

=
∫

g̃(k)|x(k)|2 d2k. (4.6)

Here x(k) := 1
2π

∫
x(r)eik·r d2r and g̃(k) denote the Fourier transforms of the

image and the function g̃(r), respectively. The value |x(k)|2 of the power
spectrum of an image x is calculated by summing the squares of the sin-
Fourier transform and the cos-Fourier transform. Therefore, equation 4.6
implies that the function g is a weighted sum of quadrature filter pairs
with filters that are plane waves. Note that quadrature filter pairs are the
key element of the standard “energy” model of complex cells (Adelsen &
Bergen, 1985).

Another implication of the translation invariance of g is that it is an
eigenfunction of the generator of translations with the eigenvalue 0:

(∇r + ∇r′ )g(r, r′) = (∇r + ∇r′ )g̃(r − r′) = 0. (4.7)

We can thus neglect the contribution of the translation generator in the
eigenvalue equation 3.29.

In the simulations, the transformation velocities (i.e., the differences in
position, angle, and zoom factor between successive frames) were chosen
independently and from gaussian distributions centered at zero. The matrix〈
vαvβ

〉
is then diagonal and contains the mean squares of the velocities on

the diagonal. If we neglect terms arising from translation, the eigenvalue
equation 3.29 then takes the form

− [〈ω2〉(Grot)2 + 〈ζ 2〉(Gzoom)2]g j = � j g j . (4.8)

Because the behavior of the functions g is easier to discuss in the Fourier
representation, equation 4.6, it is convenient to solve the eigenvalue equa-
tion for the Fourier transform g̃ j (k) directly. Transferring the eigenvalue
equation into Fourier space requires a long, but not very illustrative, deriva-
tion. Essentially we have to insert the generators stated in Table 1 and the
definition of the Fourier transform of g̃ into equation 4.8 and use the prop-
erty of the Fourier transform that multiplications with r̃ correspond to
derivatives with respect to k in Fourier space and that derivatives with
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respect to r̃ become multiplications with k. For brevity, we skip the details
and simply state the resulting eigenvalue equation:

− [〈ω2〉(k1∂k2 − k2∂k1 )2 + 〈ζ 2〉(k · ∇k − 2)2]g̃ j (k) = � j g̃ j (k). (4.9)

It is easier to solve this equation in polar coordinates (k, φ) ∈ R
+ × [0, 2π],

because then the operators for translation and rotation separate:

− [〈
ω2〉 ∂2

φ + 〈
ζ 2〉 (k∂k − 2)2] g̃ j (k, φ) = � j g̃ j (k, φ). (4.10)

The eigenfunctions to this equation are given by

g̃q ,m(k, φ) = Aq ,mk2 Qq (k)Mm(φ) (4.11)

with Qq (k) =
{

cos(q ln k) for q ≥ 0
sin(q ln k) for q < 0 (4.12)

and Mm(φ) =
{

cos(mφ) for m even
sin((m + 1)φ) for m odd , (4.13)

and with the associated eigenvalues

�q ,m = 〈
ζ 2〉 q 2 +

{
〈ω2〉m2 for m even

〈ω2〉(m + 1)2 for m odd
. (4.14)

Aq ,m denotes a normalization constant that ensures that the unit variance
constraint is fulfilled for the training data at hand and q ∈ R and m ∈ N

0

are indices that label the solution. Notice that the oscillation in the angular
direction contains only even frequencies (m for m even and m + 1 for m
odd), because g̃(r̃) is real valued and symmetric, so its Fourier transform
has to be symmetric: g̃(k, φ) = g̃(k, φ + π ). For each �-value, there are four
solutions, corresponding to all possible combinations of sine and cosine in k
and φ. Moreover, at least for large m, an increase of the rotation-dependent
contribution to the �-value (increasing m) can be compensated by a decrease
of the frequency-dependent contribution (decreasing q ), which leads to
additional degeneracies.

Notice that in addition to those given in equation 4.11, there are also
solutions that have negative eigenvalues. These solutions have a frequency
dependence that follows g̃ ≈ k2eq ln(k) = k2+q with q ∈ R. They are qualita-
tively different from the solutions with positive eigenvalue. If an image is
zoomed at constant velocity, the output signals of these functions show an
exponential divergence. The output signals of the solutions with positive
eigenvalues show harmonic oscillations (cf. section 5), and they remain
bounded. Therefore, we exclude solutions with negative eigenvalues.
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4.3 Optimal Stimuli. We define the optimal excitatory stimulus of a
function g[x(r)] as the image S+(r) that maximizes g[x(r)] under the con-
straint of fixed total image power∫

S+(r)2 d2r =
∫

|S+(k)|2 d2k = const. (4.15)

Similarly, the optimal inhibitory stimulus S−(r) is the image that minimizes
g[x(r)] with fixed power. According to equation 4.6, translation-invariant
quadratic functionals are linear functionals of the power spectrum |x(k)|2, so
it is intuitively clear that the optimal excitatory/inhibitory stimulus concen-
trates all its power to those frequencies where g̃q ,m(k) is maximal/minimal.
This has several implications:

Plane wave optimal stimuli. The optimal excitatory and inhibitory
stimuli are (possibly linear combinations of) plane waves
S±(r) = cos(k · r + phase shift) with wave vectors k for which
g̃q ,m(k) is maximal or minimal. In practice, k is restricted to a finite
domain, in particular because the finite resolution introduces
a frequency cutoff. g̃q ,m has at least one maximum within this
domain. For large m, g̃q ,m has many maxima of equal value, but
in practice, one of these maxima is usually slightly higher, so that
the optimal stimulus is a single plane wave. This agrees with the
observations by Berkes and Wiskott (2005).

Phase invariance. The phase of the plane waves is arbitrary because the
functions g depend on only the power spectrum of the images, not
on its phase structure. This is in line with the notion of complex
cells as being invariant with respect to the phase of their optimal
stimulus and is also consistent with the results of Berkes and
Wiskott (2005).

Frequency dependence. Since all functions g̃q ,m(k) rise quadratically with
the frequency k = |k|, high spatial frequencies are favored. This
may appear counterintuitive for a paradigm that is based on
slowness, but due to the quadrature filter pair property of the
receptive field, high spatial frequencies do not result in quickly
varying output signals, because translation invariance is ensured.
In experiments with real data, there is, of course, a frequency
cutoff due to the finite resolution of the images, so that the optimal
stimuli cannot have arbitrarily high frequencies. Berkes and
Wiskott (2005) used principal component analysis (PCA) to reduce
the input dimensionality from two pictures with 16 × 16 pixels
each to a total of 100 dimensions (approximately 50 dimensions
per image). It is known that PCA on natural images concentrates
on low spatial frequencies while neglecting high frequencies. The
highest spatial frequency that is possible after this preprocessing
is then on the order of

√
50/2 ≈ 3.5 cycles per side length of the
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Figure 1: Optimal stimuli. (a) The theoretically predicted optimal stimuli are
delocalized plane waves. (b) Typical optimal stimulus for the simulated SFA
units in Berkes and Wiskott (2005). As theoretically predicted, the unit responds
most strongly to a grating with a specific orientation. The observed decay of the
simulated optimal stimulus toward the boundary of the image patch, however,
is not captured by the theory.

image patch. This is a rather accurate estimate of the frequency of
the optimal stimuli found by Berkes and Wiskott (2005).

Localization. Unlike in physiological findings, the optimal stimuli are
not localized. Intuitively, this can be understood as follows. In
the case of image sequences that are generated by continuous
transformations (i.e., where image content stays within the vicinity
of its original position for a certain time), spatial integration effec-
tively acts as a low-pass filter, with spatial integration over larger
areas corresponding to low-pass filtering with longer timescales.
Because low-pass filtering with longer timescales generally leads
to slower signals, optimal functions for SFA always try to integrate
over the largest area possible—the full image. This is reflected by
the delocalized optimal stimuli. Notice that SFA does not allow
low-pass filtering, but requires the functions to process the input
instantaneously. The low-pass filtering discussed here is purely
spatial in nature but has the same effect as a temporal low-pass
filter due to the spatiotemporal correlation structure of the input
signals. Note also that the apparent localization of the simulated
optimal stimuli (see Figure 1B) is not a real localization as found,
for example, by Olshausen and Field (1996). The optimal functions
decay toward the boundary of the image patch in order to reduce
the abrupt influence of new image structure that enters the image
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patch. The optimal stimuli should thus vanish on the boundary as
well. The optimal stimuli found by Berkes and Wiskott (2005) are
as delocalized as this constraint allows them to be.

4.4 Orientation and Frequency Tuning. The typical approach for test-
ing the orientation and the frequency tuning of a cortical cell is to plot its
response to a grating as a function of the orientation and the frequency of
the grating (see, e.g., De Valois, Yund, & Hepler, 1982). We represent the
grating by a plane wave with frequency k0 and orientation φ0. As the power
spectrum of this function is δ-shaped, the output of the function gq ,m[x(r)]
for a plane wave is given by g̃q ,m(k0, φ0).

Figure 2 shows a comparison of the orientation and frequency tuning of
the analytical solutions and the simulations. They are in good agreement
apart from a frequency cutoff in the simulations that arises from the finite
resolution of the images and the preprocessing (see the discussion in
section 4.3). The fact that the analytical solutions agree with the simulations
indicates that the orientation and frequency tuning as observed in the
simulations are an effect of the transformations used to generate the image
sequences.

4.5 An Intuition for the Orientation and Frequency Tuning. The key
to getting an intuitive understanding for why the optimal functions show
the observed orientation and frequency tuning is the earlier result by
Wiskott (2003) that the optimal output signals for SFA are harmonic os-
cillations. It is obvious that the output signal of the functions g̃q ,m when
applied to an image that rotates with constant velocity is sinusoidal. Sim-
ilarly, the frequency dependence is such that the output signal is sinu-
soidal if the image is subjected to zoom with constant velocity. Remember
that constant zoom velocity ζ implies that the zoom factor z(t) = exp(ζ t)
increases exponentially. As the image is zoomed by a factor z, the fre-
quency decreases as 1/z, so with an exponentially increasing zoom factor,
the frequencies also decrease exponentially. In combination with the log-
arithmic dependence of Qq (k) on the frequency k, this yields a harmonic
oscillation.

The reason for the quadratic rise of the oscillation amplitude of g̃q ,m as
a function of the frequency k is more subtle. When the image is zoomed by
a factor z (i.e., x(r) → x(r/z)), the total image power P increases by a factor
z2. This can be seen by means of a coordinate transformation r′ = r/z:

power zoomed =
∫

|x(r/z)|2 d2r =
∫

|x(r′)|2z2 d2r ′

= z2 × power unzoomed. (4.16)
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The additional factor k2 counterbalances the increase in the output signal
that would normally result from the increase in power, so that the amplitude
of the harmonic oscillation remains constant.

4.6 Toward Side and End Inhibition. Some of the functions that Berkes
and Wiskott (2005) learned showed higher-order properties of complex
cells like side and end inhibition. Those units show a strong response to a
grating presented to a subregion of the receptive field, which is gradually
suppressed as the grating is shifted either along the bars of the grating (end
inhibition) or perpendicular to the bars (side inhibition). Because these
properties are inherently not translation invariant, they cannot be repro-
duced by the optimal functions we derived above. It is possible, however,
to interpret them as the result of a weakly broken translation invariance.

To this end, let us first consider the classical quadrature filter pair model
of a complex cell:

g(r, r′) = cos(k · r) cos(k · r′) + sin(k · r) sin(k · r′) (4.17)

= cos(k(r − r′)). (4.18)

Translation invariance is ensured by using the same vector k in both the
dependence on r and r′. One way of breaking the invariance is to use two
different vectors k and k′:

gk,k′ (r, r′) = cos(k · r) cos(k′ · r′) + sin(k · r) sin(k′ · r′) + . . . (4.19)

= cos(k · r − k′ · r′) + . . . , (4.20)

where the ellipses stand for similar terms, just with r and r′ swapped, to
ensure that gk,k′ is symmetric in r and r′.

If we ignore rotation and zoom and concentrate on (isotropic) translation,
the operator D in the eigenvalue equation 3.29 is essentially the squared
generator of translation. A brief calculation shows that the function gk,k′ is
then an eigenfunction of D, with an eigenvalue that is determined by the
difference of k and k′:

Dgk,k′ (r, r′) = −〈v2〉(∇r + ∇r′ )2gk,k′ (r, r′) (4.21)

= 〈v2〉||k − k′||2gk,k′ (r, r′) (4.22)

= �k,k′ gk,k′ (r, r′). (4.23)

Therefore, the functions gk,k′ are optimal functions for SFA in the case
of pure translation. Translation-invariant functions arise as a special case
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with k = k′. The �-value increases with the mismatch between k and k′.
Therefore, the slow functions found by SFA are those with k ≈ k′.

To see that the functions gk,k′ can have properties similar to side and
end inhibition, let us consider their output signal in response to an image
x(r + R) as a function of the position R of the image:

gk,k′ [x(r + R)] =
∫∫

gk,k′ (r, r′)x(r + R)x(r′ + R) d2r d2r ′ (4.24)

= [x(k)x(k′) + x(k)x(k′)] cos((k − k′) · R), (4.25)

where x(k) again denotes the Fourier transform of the image (for R = 0)
and x(k) denotes its complex conjugate.

For small differences k − k′, the function gk,k′ basically extracts the
power of the image at the spatial frequency k ≈ k′ and multiplies it with
a slow sinusoidal dependence on the position R. Note that this position
dependence can again be understood as a way of generating harmonic os-
cillations under translations with constant speed. To generate a large output
signal (again under an energy constraint for the image), we have to present
an image that (1) contains most of its power at the spatial frequency k (and
k′ ≈ k) and is (2) located at the right position, so that cos((k − k′) · R) = 1.
The important point in the context of side and end inhibition is that a shift
of such an image by �R = π k−k′

|k−k′ |2 leads to a large negative output signal,
that is, an “inhibition.”

We can now distinguish two special cases:

� Side inhibition. k and k′ are parallel, with slightly different length.
For a strong response, the image should contain a lot of power at
k; it should resemble a plane wave with wave vector k. If this im-
age is shifted in the direction k − k′, we get inhibition. Because
k − k′ is parallel to the wave vector k, this corresponds to shifting
the bars of the grating “sideways,” so the effect resembles a side
inhibition.

� End inhibition. k and k′ have the same length but slightly differ-
ent directions. In this case, k − k′ is orthogonal to k, so that shifts
of the grating “along” the bars lead to inhibition, just as for end
inhibition.

4.7 Toward Direction Selectivity. Some of the units in Berkes and
Wiskott (2005) also show a selectivity to the direction of motion of the
image. Because velocities cannot be calculated from the image alone, the
authors used input signals that consisted of images at different moments
in time: x(r, t) and x(r, t + τ ), where τ is a small time difference. The most
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general quadratic form in these two images can be written as

g[x(r, t), x(r, t + τ )] = g1[x(r, t)] + g2[x(r, t + τ )]

+ g3[x(r, t), x(r, t + τ )] (4.26)

=
∫∫

g1(r, r′)x(r, t)x(r′, t) d2r d2r ′

+
∫∫

g2(r, r′)x(r, t + τ )x(r′, t + τ ) d2r d2r ′

+
∫∫

g3(r, r′)x(r, t)x(r′, t + τ ) d2r d2r ′. (4.27)

The only term from which direction selectivity can arise is the third term
g3, because it compares the images at different moments in time. Let us for
simplicity neglect the other terms. The term of interest is again a quadratic
form in the images, so we expect that the generators for the transformations
are essentially the same.2 Thus, if we again concentrate on translation-
invariant functions g3(r, r′) = g̃(r − r′), we get the same expressions 4.11
for the frequency and orientation dependence of the optimal functions g̃3.
There is a subtle yet important difference to our previous calculations,
though: because the arguments for the function g3 are the images at two
different moments in time, the kernel g3(r − r′) need not be symmetric
in r − r′, as was the case for the instantaneous functions. Consequently,
additional solutions become available, which are antisymmetric in r − r′.
These are the odd values for the oscillation frequency m in the orientation
dependence,

Mm(φ) =
{

i cos(mφ) for m odd
i sin((m + 1)φ) for m even , (4.28)

where the imaginary factor i ensures that g̃(r − r′) is real valued.
To show that these solutions are direction selective, let us assume that

the image moves at velocity v, so that the image at time t + τ is given by
the image at time t, shifted by vτ : x(r, t + τ ) = x(r + vτ, t). If τ is small, the

2A detailed analysis reveals that the generators contain correction terms that contain
the accelerations of the transformations. This reflects the fact that direction selectivity in
the presence of time-dependent translation velocity contributes to the speed of variation
of the functions—the �-value. In a strict sense, our arguments are therefore true only for
uniform transformation speed.
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function g3 can be approximated by a Taylor expansion:

g3[x(r, t), x(r, t + τ )] =
∫∫

g̃3(r − r′)x(r, t)x(r′ + vτ, t) d2r d2r ′ (4.29)

=
∫∫

g̃3(r − r′ + vτ )x(r, t)x(r′, t) d2r d2r ′

≈
∫∫ (

g̃3(r − r′) + τv · ∇ g̃3(r − r′)
)

×x(r, t)x(r′, t) d2r d2r ′

=
∫∫

g̃3(r − r′)x(r, t)x(r′, t) d2r d2r ′ (4.30)

+ τv ·
∫∫

∇ g̃3(r−r′)x(r, t)x(r′, t) d2r d2r ′ .(4.31)

The output signal can therefore be split into two terms, equations 4.30 and
4.31, the second of which depends linearly on velocity v and is therefore di-
rection selective. Depending on the symmetry of g̃3, we can now distinguish
two cases. If g̃3 is symmetric, the first term, equation 4.30, is nonzero, while
the second term vanishes for symmetry reasons (∇ g̃3 is antisymmetric in
r − r′, while x(r)x(r′) is symmetric). Symmetric functions g̃3 therefore show
no direction selectivity. If g̃3 is antisymmetric, the first term vanishes for
symmetry reasons, while the second term is nonzero, because the deriva-
tive ∇ g̃3 is symmetric in r − r′. Therefore, antisymmetric functions g̃3 are
direction selective: they change their sign when the image moves in the
opposite direction.

This analysis also reveals an interaction between the orientation tun-
ing and the direction selectivity of the cell: the number m that specifies
the frequency of the orientation dependence also specifies the orientation
dependence of the gradient and therefore the direction selectivity of the
unit.

Finally, the spatiotemporal optimal stimuli for direction-selective units
can be calculated analytically. To this end, we use a Lagrange multiplier
approach to maximize g3[x1(r), x2(r)] under an energy constraint for its two
arguments x1/2(r). The Lagrange function is given by

L= g3[x1(r), x2(r)] −
∑

i

λi

∫
xi (r)2 d2r (4.32)

=
∫

g̃3(k)x1(k)x2(k) d2k −
∑

i

λi

∫
|xi (k)|2 d2k, (4.33)
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where we changed to the Fourier representation for convenience. Taking
the variational derivative with respect to x1 and x2 yields two necessary
conditions for the images:

g̃3(k)x2(k) = λ1x1(k) (4.34)

g̃3(k)x1(k) = λ2x2(k), (4.35)

which can be combined to:

|g̃3(k)|2xi (k) = λ1λ2xi (k). (4.36)

These equations can be fulfilled only if the optimal stimuli xi (r) are super-
positions of plane waves with spatial frequencies that fulfill |g̃3(k)|2 = λ1λ2.
Moreover, since g̃3(r) is antisymmetric for direction-selective units, g̃3(k) is
purely imaginary. A multiplication with an imaginary number in Fourier
space corresponds to a phase shift of π/2 in real space. Equation 4.34
therefore shows that x1 and x2 are plane waves with the same frequency
and a phase shift of π/2. This is exactly what Berkes and Wiskott (2005)
observed.

5 Discussion

We have presented a mathematical framework for SFA for the case that the
input data are generated by applying a set of continuous transformations to
a set of static templates. The theory is based on a group-theoretical approach
and culminates in an eigenvalue problem for an operator that contains the
generators of the transformation group.

Applying the framework to the simulation setup in Berkes and Wiskott
(2005), we have shown that the eigenvalue equation becomes a partial diff-
erential equation that can be solved analytically for the special case of trans-
lation invariant receptive fields. The assumption of translation invariance
implies that the optimal functions are invariant to phase shifts, similar to
the simulated receptive fields in Berkes and Wiskott (2005). The orientation
and frequency tuning of the analytical solutions are in good agreement
with the simulation results. Moreover, the optimal stimuli of the analytical
solutions are plane waves, similar to the gratings that were found in the
simulations and are also common in physiological studies of cells in V1.

Under the assumption that the statistics of the input data are invariant
with respect to the transformations used for their generation, the equations
that determine the optimal functions are independent of the input statistics.
Instead, they depend solely on the transformations as reflected by their
group-theoretical generators. This purely mathematical statement agrees
with control experiments performed by Berkes and Wiskott (2005), which
showed that the simulation results were qualitatively the same when using
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colored noise instead of natural images. Which transformations were used,
however, had a drastic influence on the structure of the receptive fields.
For example, a lack of translation abolished the grating structure of the
optimal stimuli. This is in agreement with the theory, because the optimal
stimuli were plane waves only because the functions were assumed to be
translation invariant. The assumption of translation invariance, however,
is valid only when translation is the dominant transformation in the image
sequences, so that any dependence on position would yield quickly varying
output signals and would thus be unfavorable for the slowness objective.

5.1 The Harmonic Oscillation Argument. The theory shows that each
of the properties of the optimal functions can be understood as an effect
of one particular transformation: Translation leads to optimal stimuli that
are plane waves, rotation causes a sinusoidal dependence of the output
on the orientation, and zoom is responsible for the frequency tuning of
the cells. Intuitively, both the orientation and the frequency tuning can be
understood as a way of generating harmonically oscillating output signals
when the associated transformation is applied with constant velocity. This
interpretation is in line with earlier results indicating that the optimal output
signals for SFA are harmonic oscillations (Wiskott, 2003).

Moreover, the “harmonic oscillation argument” suggests that for the
given stimulus paradigm, the orientation and frequency tuning of the
learned functions are not only optimal in the space of quadratic functions,
but rather optimal in general. Therefore, we expect that an increase in the
complexity of the function space will not lead to changes in orientation and
frequency tuning. However, more complex function spaces may contain a
degenerate set of translation-invariant functions with the same orientation
and frequency tuning. These functions will generate output signals with
the same �-value on the given training data. In that case, the optimal
function set is no longer uniquely determined by the transformations in the
training data, because an arbitrary mixture of these degenerate solutions is
also valid. The resulting additional degrees of freedom can be used either to
encode the identity of the templates xμ (depending on the application, this
is either dangerously close to overfitting or useful for object recognition)
or learn additional transformations in the images. This insight may be
particularly relevant for hierarchical SFA networks (Franzius, Sprekeler,
& Wiskott, 2007). If the complexity of the input statistics is not sufficiently
high, higher layers in the hierarchy will essentially reproduce the output
signals on the lower layers, which have already achieved the optimal
harmonic oscillation response.

5.2 Localized Receptive Fields. One property of complex cells in vi-
sual cortex is not captured by the simulations or the theory: receptive fields
of cells in primary visual cortex are localized. According to the discus-
sion in section 4.3, however, this cannot be expected from the slowness
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principle alone, because—at least in the presence of large-scale transforma-
tions like global translation—larger receptive fields allow slower responses,
so that localization is not favorable from the perspective of the slowness
principle.

In this context, the question arises if localized receptive fields are learned
by SFA if the image dynamics are dominated by local transformations. The
following argument shows that this is not necessarily the case, at least if the
image statistics are translation invariant. Consider two regions in a natural
image sequence, located at a sufficiently large distance from another so that
we can treat the associated image patches as statistically independent. The
image sequences in each of these regions contain a set of slow features with
associated �-values. The assumption of translation invariance implies that
the slow features and their �-values should be the same for both regions.
Consequently, the solutions for SFA are not unique: arbitrary (orthogonal)
linear combinations of slow features with the same �-value are also valid
solutions for SFA. We therefore expect that SFA learns arbitrary linear com-
binations of local features at different locations, which will not necessarily
be localized. Unfortunately, this shows that for SFA, purely local image
statistics are not a guarantee for local receptive fields. The underlying rea-
son is that decorrelation is a rather crude approximation of statistical inde-
pendence. Localized receptive fields probably require a stronger constraint
like statistical independence or additional objectives like sparseness. An
(efficiently solvable) extension of SFA in this direction would be desirable,
in particular because statistical independence and sparseness have been
proposed as principles for the unsupervised learning of localized receptive
fields of simple cells in V1 (Bell & Sejnowski, 1995; Olshausen & Field, 1996,
1997).

The optimal stimuli found in the simulation seem to possess at least
some kind of localization, since they decay toward the borders of the im-
ages patch. A similar decay of the optimal functions toward the boundaries
was also observed in an earlier one-dimensional model of visual processing
(Wiskott & Sejnowski, 2002). These results suggest that for the case where
the input images are not infinitely large, the differential equation for the
optimal functions has to be complemented by a boundary condition that
requires the kernel of the optimal functionals to vanish on the boundary.
Such a boundary condition would weaken the effect of a new image struc-
ture that enters the receptive field at its border and thus ensures a smoothly
varying output signal. Unfortunately, so far we have not managed to find
a mathematical proof for this boundary condition.

5.3 Future Work. A future direction would be to study the properties of
the optimal solutions in other function spaces. An extension of the calcula-
tions to polynomials of arbitrary order is straightforward and might allow
predictions for more complicated response properties of cells in (possibly
higher-order) visual cortices. As already discussed, we expect that richer
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function spaces require a richer set of image transformations to resolve
possible degeneracies.

A question that cannot be answered within the mathematical framework
presented here is what happens if the statistics of the input is not invariant
with respect to the transformations at hand. Would the optimal functions
for SFA show a different orientation tuning if the orientation dependence of
natural image statistics were taken into account, for example, by using nat-
ural videos as training data? Slowness-based learning of complex cells from
natural videos has been done (Körding, Kayser, Einhäuser, & König, 2004)
but to our knowledge not been systematically analyzed from this perspec-
tive. Experimentally it has been shown for cats that an extreme dependence
of image statistics on orientation during rearing has a strong impact on the
orientation tuning properties of cells in V1 (Hirsch & Spinelli, 1971). More
research is necessary to assess if these influences can be explained in terms
of slowness learning.

From the theoretical perspective, it would be interesting if there is a
“unified theory” for SFA that captures both the finite-dimensional case
with an unrestricted function space (Franzius et al., 2007; Sprekeler, Zito,
& Wiskott, 2010) and the case considered here. Such a theory could de-
scribe the effects of input statistics that are not invariant with respect
to the transformations but still capture the restrictions on the function
space.

In the light of the introductory discussion, one could argue that any
learning rule that aims at explaining the response properties of cells in V1
should, given the maturity of these properties shortly after birth, be able to
establish the same receptive field structure from natural images and retinal
waves. In this line, it was recently shown that sparse coding and indepen-
dent component analysis on a model of retinal waves lead to Gabor-shaped
simple cell receptive fields (Albert, Schnabel, & Field, 2008). Since propa-
gating waves could be interpreted as a “prenatal imitation” of translation
in visual scenes, it is likely that slowness learning on these patterns can
lead to translation-invariant units with similar response properties as com-
plex cells. Preliminary results indicate that this is indeed the case (Dähne,
Wilbert, & Wiskott, 2009).

5.4 Experimental Predictions. According to the theory, the orientation
and frequency tuning of visual neurons should depend on the relative ve-
locities of rotation and zoom in the visual stimuli. This leads to the following
experimental prediction. Assume that an animal is confronted with rotat-
ing and zooming Gabor wavelets at two different retinal locations. At one
retinal location, rotation is faster than zoom, and at the other one, zoom
dominates over rotation. It should be straightforward to design the stimuli
such that the ensembles of images at the two locations are identical and dif-
fer only in their dynamics. If visual neurons adjust to the stimuli to generate
more slowly varying output signals, one should observe differential
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alterations in the degree of orientation and frequency tuning of V1 neu-
rons at the two retinal locations—sharper orientation and wider frequency
tuning for slow rotation and fast zoom and vice versa.

An open question, to which we have no clear prediction is, at what age
should this experiment be done? Do we interpret slowness in learning as a
developmental principle that acts prenatally or during critical periods or as
a principle that is also valid in adults? The proposition that complex cells
could be established on the basis of retinal waves is based on the former
assumption, while the experiment decribed above could be conducted in
both young animals (e.g., during critical periods) and in adulthood.

Currently experimental evidence if, in which areas, and at which devel-
opmental stages slowness is an appropriate principle for describing sensory
learning is still scarce. Findings in higher visual areas of adult monkeys sug-
gest that position-invariant object representations are subject to a dynamic
learning process in agreement with the slowness principle and ongoing in
adulthood (Miyashita, 1988; Li & DiCarlo, 2008). The proposed experiment
could reveal if this finding generalizes to earlier visual areas.

Appendix A: Derivation of the Generators

A.1 Translation. We use the convention that the effect of a translation
Tx of an image x(r) by a vector R is the replacement of the pixel value at
position r by the pixel value of the original image at the position r − R:

[Txx] (r) = x(r − R). (A.1)

What is the corresponding representation of translation on the quadratic
functions, equation 4.1? This can be seen immediately by means of a variable
substitution:

[
Tgg

]
[x(r)]

(3.2)
:=

∫
g̃(r, r′) [Txx] (r) [Txx] (r′) d2r d2r ′ (A.2)

(A.1)=
∫

g̃(r, r′)x(r − R)x(r′ − R) d2r d2r ′ (A.3)

=
∫

g̃(r + R, r′ + R)x(r)x(r′) d2r d2r ′. (A.4)

Thus, the effect of the translation operator on the functional g is the replace-
ment of the kernel g̃(r, r′) by g̃(r + R, r′ + R):

[
Tgg̃

]
(r, r′) = g̃(r + R, r′ + R). (A.5)

Remember that we represent the functionals in terms of the basis functions
x(r)x(r′). In this basis, the functional g is represented by the “coefficient
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function” g̃(r, r′). Equation A.5 is the representation of the translation oper-
ator in this basis.

We can now calculate the associated generator by applying a time-
dependent translation Tg(t) by a vector R(t) and calculating the temporal
derivative:

d
dt

[
Tg(t)g̃

]
(r, r′)

(A.5)= d
dt

g̃(r + R(t), r′ + R(t)) (A.6)

=
[

d
dt

R(t) · [∇r + ∇r′ ] g̃
]

(r + R(t), r′ + R(t)) (A.7)

= [
Tg(t) Qtrans(t)g̃

]
(r, r′) (A.8)

with

Qtrans(t) := d
dt

R(t) · [∇r + ∇r′ ]. (A.9)

Clearly, the translation velocity v := dR/ dt plays the role of the velocity in
equation 3.14, while the sum of the gradients is the generator of translations
as stated in Table 1.

A.2 Rotation. A rotation of an image x(r) by an angle φ corresponds to
the application of an orthogonal matrix O−1 = OT to the pixel positions:

[Txx] (r) = x(OT r), (A.10)

where

O =
(

cos(φ) sin(φ)
sin(−φ) cos(φ)

)
. (A.11)

The effect of the related rotation operator Tg on the integral kernel g(r, r′)
can again be derived by a variable substitution:

[
Tgg

]
[x(r)]

(3.2)
:=

∫
g̃(r, r′) [Txx] (r) [Txx] (r′) d2r d2r ′ (A.12)

(A.10)=
∫

g̃(r, r′)x(OT r)x(OT r′) d2r d2r ′ (A.13)

=
∫

g̃(Or, Or′)x(r)x(r′) d2r d2r ′. (A.14)
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Thus, in the basis x(r)x(r)′, rotations are represented by

[Tgg̃](r, r′) = g̃(Or, Or′). (A.15)

Again, we can calculate the generator by taking the temporal derivative of
a time-dependent rotation Tg(t) by a matrix O(t). To keep the notation short,
we omit the time dependence of the rotation matrix O and use the short

notation Ȯ := dO
dt for its temporal derivative:

d
dt

[
Tg(t)g̃

]
(r, r′)

(A.13)= d
dt

g̃(Or, Or′) (A.16)

= [
((Ȯr) · ∇r + (Ȯr′) · ∇r′ )g̃

]
(Or, Or′) (A.17)

=
[
Tg(t) ((ȮOT r) · ∇r+(ȮOT r′) · ∇r′ )︸ ︷︷ ︸

=:Qrot(t)

g̃
]
(r, r′) (A.18)

= [
Tg(t) Qrot(t)g̃

]
(r, r′). (A.19)

The matrix ȮOT is antisymmetric, because

0 = d
dt

I = d
dt

(OOT ) = ȮOT + OȮT = ȮOT + (ȮOT )T . (A.20)

Here, I denotes the unit matrix. Because of the antisymmetry, ȮOT can be
written as

ȮOT =
(

0 −ω(t)
ω(t) 0

)
. (A.21)

It can be shown that ω(t) = dφ(t)
dt is the angular velocity of the rotation. In

this notation, Qrot(t) becomes

Qrot(t) = ω(t)
[
r1∂r2 − r2∂r1 + r ′

1∂r ′
2
− r ′

2∂r ′
1

]
, (A.22)

which leaves us with the generator and the associated velocity ω given in
Table 1.

A.3 Zoom. Zooming an image by a zoom factor z around the origin
corresponds to replacing the pixel value at position r by the pixel value of
the original image at position r/z. Using similar considerations as above,
this leads to the following representation of the zoom operator:

[
Tgg̃

]
(r, r′) = z4 g̃(zr, zr′). (A.23)
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The factor z4 is the Jacobian determinant that arises from the coordinate
changes r → r/z and r′ → r′/z in the integration for g[x(r)].

The generator can again be calculated by introducing a time-dependent
zoom factor z(t) and taking the temporal derivative:

d
dt

[
Tg(t)g̃

]
(r, r′) = d

dt
z4 g̃(zr, zr′) (A.24)

= [(
z4 [

żr · ∇r + żr′ · ∇r′
] + 4z3 ż

)
g̃
]

(zr, zr′) (A.25)

= z4 ż
z

[(
(zr) · ∇r + (zr′) · ∇r′ + 4

)
g̃
]

(zr, zr′) (A.26)

= [
Tg(t) Qzoom(t)g̃

]
(r, r′), (A.27)

with an operator Qzoom(t) that contains the generator and the velocity ζ := ż
z

for zoom as given in Table 1:

Qzoom(t) = ż
z

[r · ∇r + r′ · ∇r′ + 4]. (A.28)
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