Computational Neuroscience

Nature and function of episodic memory

There is still great uncertainty as to what episodic memory is and what function it might serve. Within the research unit FOR 2812, we are working on an interdisciplinary framework for episodic memory.

Sequence memory in the hippocampus

The CRISP theory suggests that episodic memories are best represented by neuronal sequences and specific mechanisms by which sequences are stored and retrieved from the hippocampal circuit. Using neural network models, we investigate under which conditions the hippocampal circuit can perform the hypothesized functions reliably and robustly.

Dynamics of extinction learning in behavior and neural activity

How does learning unfold over time? This question can be studied in experimental data and with computational modeling. We analyze behavioral and neural activity data that was collected by collaborating labs. In our theoretical work, we employ simple associative models as well as deep reinforcement learning, which allows us to study the emerging representations and to correlate them to experimental data.

Emergent behavior and neural representations in spatial learning

Spatial navigation might appear to be a simple behavior, but closer inspection reveals that it is the complex result of many interacting sub-processes. We use deep reinforcement learning to understand how goal-directed behavior emerges in an artificial agent, how the deep neural network represents spatial information, and how the model's representations are related to neural codes for space in the hippocampus.

Neural mechanisms underlying spatial navigation

A large number of cell types in the mammalian brain code for various types of spatial information, e.g., head direction cells, place cells, and grid cells. We study how networks of these cell types could support spatial navigation by combining computational modeling and data analysis.

Neural Plasticity Lab

Sensory stimulation glove

Selective electrical stimulation protocols can stimulate learning processes associated with improved tactile performance. To ease up the sensory stimulation to the subject, specific stimulation gloves were developed. These allow specific stimulation of all five fingers of one hand. This study will investigate whether the known influence of stimulation protocols can be observed on the tactile performance of the finger by stimulation gloves.

Optical Imaging Group

Cortical Plasticity

We apply voltage-sensitive dye imaging to capture modifications of cortical maps during non-invasive interventions using transcranial magnetic stimulation (TMS). The study has practical implications for perceptual learning and rehabilitation in traumatic or neurodegenerative impairment of the brain. Funding: Project A2, DFG - Collaborative Research Center, SFB-874

Visual Perception and Cortical Encoding

Starting in January 2012, the project is funded for five years by the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) with around € 1.55 million. It is financed within the funding program "German-Israeli Project Cooperation" ("Deutsch-Israelische Projektkooperation", DIP) that fosters interdisciplinary cutting-edge research in both countries. ------------------------------------------------------ For complete list of publications see: http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/pub_peer.html

Resolving and Manipulating Neuronal Networks

Sensation and motor action is influenced through emotional factors like motivation, anger, fear, or attention. Using voltage-sensitive dye imaging in combination with optogenetics we study how serotonergic action affects quantities of sensory-motor integration as anticipation, adaptation, and learning. Funding: DFG - German Priority Programme - SPP 1665

Real-Time Computer Vision

Parking Space Detection

The search for a parking space in urban areas is often time-consuming and nerve-racking. Efficient car park guidance systems could support drivers in their search for an available parking space. Video-based systems are a reasonably priced alternative to systems employing other sensor types and their camera input can be used for various tasks within the system.

Emotion. Eskalation. Gewalt. Entwicklung eines video-basierten Verfahrens zur Früherkennung von Emotionsprozessen bei Großveranstaltungen.

Wenn Menschen in großer Zahl in der Öffentlichkeit zusammenkommen, sei es bei Fußballspielen, Rockkonzerten oder Demonstrationen, entstehen oft Gruppenemotionen (angenehme wie konfliktäre). Die zentrale grundlagentheoretische Fragestellung des Projekts lautet: Lassen sich emotionale Prozesse (i.e. emotionale Eskalationsprozesse) auch automatisch mittels einer beobachtenden Kamera erkennen und in einem entsprechenden bildgebenden Verfahren, mit dem Zweck einer möglichst frühzeitigen Erkennung eskalierender Emotionsprozesse in Großveranstaltungen, darstellen?

Computer-aided Sports Analysis

Die Rolle von statistischer Sportanalyse gewinnt stetig an Bedeutung. Der Nutzen sportwissenschaftlicher Daten, etwa zur Unterstützung professioneller Trainingsmethoden, wird allgemein anerkannt. Interessante Kenngrößen zu Fußballspielen (beispielsweise Laufwege, Passspiel und Zweikämpfe) lassen sich jedoch entweder nur subjektiv abschätzen oder manuell sehr aufwändig bzw. deutlich zeitversetzt bestimmen.

Theory of Embodied Cognition

Higher Cognition

Understanding the neural basis of higher cognitive processes such as relational reasoning, through both theoretical models and experimental work

Movement planning

Experimental work and theoretical analysis of sequential arm movements, using the concept of uncontrolled manifold.

Perception and Memory

Dynamic Neural Field models of visual working memory, spatial transformations, change detection, and visual scene representation.

Theory of Machine Learning

Theory of Neural Systems

Measuring the Data Efficiency of Deep Learning Methods

We propose a new experimental protocol and use it to benchmark the data efficiency — performance as a function of training set size — of two deep learning algorithms, convolutional neural networks (CNNs) and hierarchical information-preserving graph-based slow feature analysis (HiGSFA), for tasks in classification and transfer learning scenarios.

The Institut für Neuroinformatik (INI) is a central research unit of the Ruhr-Universität Bochum. We aim to understand the fundamental principles through which organisms generate behavior and cognition while linked to their environments through sensory systems and while acting in those environments through effector systems. Inspired by our insights into such natural cognitive systems, we seek new solutions to problems of information processing in artificial cognitive systems. We draw from a variety of disciplines that include experimental approaches from psychology and neurophysiology as well as theoretical approaches from physics, mathematics, electrical engineering and applied computer science, in particular machine learning, artificial intelligence, and computer vision.

Universitätsstr. 150, Building NB, Room 3/32
D-44801 Bochum, Germany

Tel: (+49) 234 32-28967
Fax: (+49) 234 32-14210