Optical Imaging Group

The Brain's Neural Code

Our research focuses on visual information processing in primary visual cortical areas. We investigate how manifold parameters given in a visual scene are represented in real-time across neuronal populations using voltage-sensitive dye imaging (VSDI). VSDI, a new optical recording method, marks a significant step forward in the continuing scientific effort to decipher the brain’s neural code and computational strategies – the mapping of the functions of the various nerve cells in the brain and the interactions between them.

vis_br

Plasticity - Learning - Vision

Given the tremendous density of intra-cortical connections neural interactions play a major role in computing behavioural relevant information. We like to identify the streams of bottom-up and top-down information processing leading to plastic cortical changes after learning and its perceptual correlates.

Cortical Plasticity

We apply voltage-sensitive dye imaging to capture modifications of cortical maps during non-invasive interventions using transcranial magnetic stimulation (TMS). The study has practical implications for perceptual learning and rehabilitation in traumatic or neurodegenerative impairment of the brain. Funding: Project A2, DFG - Collaborative Research Center, SFB-874

Resolving and Manipulating Neuronal Networks

Sensation and motor action is influenced through emotional factors like motivation, anger, fear, or attention. Using voltage-sensitive dye imaging in combination with optogenetics we study how serotonergic action affects quantities of sensory-motor integration as anticipation, adaptation, and learning. Funding: DFG - German Priority Programme - SPP 1665

Visual Perception and Cortical Encoding

Starting in January 2012, the project is funded for five years by the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) with around € 1.55 million. It is financed within the funding program "German-Israeli Project Cooperation" ("Deutsch-Israelische Projektkooperation", DIP) that fosters interdisciplinary cutting-edge research in both countries. ------------------------------------------------------ For complete list of publications see: http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/pub_peer.html

Rekauzke, S., Nortmann, N., Staadt, R., Hock, H. S., Schöner, G., & Jancke, D. (2016). Temporal asymmetry in dark-bright processing initiates propagating activity across primary visual cortex. J Neurosci, 36(6), 1902–1913.
Spoida, K., Eickelbeck, D., Karapinar, R., Eckhardt, T., Mark, M. D., Jancke, D., et al. (2016). Melanopsin variants as intrinsic optogenetic On and Off switches for transient versus sustained activation of G protein pathways. Curr Biol., 26(9), 1206–1212.
Nortmann, N., Rekauzke, S., Azimi, Z., Onat, S., König, P., & Jancke, D. (2015). Visual homeostatic processing in V1: When probability meets dynamics . Frontiers in Systems Neuroscience , 9.
Nortmann, N., Rekauzke, S., Onat, S., König, P., & Jancke, D. (2015). Primary Visual Cortex Represents the Difference Between Past and Present. Cerebral Cortex, 25(6), 1427–1440.
Chavane, F., Sharon, D., Jancke, D., Marre, O., Fregnac, Y., & Grinvald, A. (2014). Optogenetic Assessment of Horizontal Interactions in Primary Visual Cortex (pg 4976, 2014). J Neurosci, 34(26), 8930–8930.
Kozyrev, V., Eysel, U. T., & Jancke, D. (2014). Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proceedings of the National Academy of Sciences, 111(37), 13553–13558.
Sczesny-Kaiser, M., Bauknecht, A., Höffken, O., Tegenthoff, M., Dinse, H. R., Jancke, D., et al. (2014). Synergistic effects of noradrenergic modulation with atomoxetine and 10 Hz repetitive transcranial magnetic stimulation on motor learning in healthy humans. BMC neuroscience, 15(1), 46.
Onat, S., Jancke, D., & König, P. (2013). Cortical long-range interactions embed statistical knowledge of natural sensory input: a voltage-sensitive dye imaging study. F1000Research, 2.
Wang, N., Jancke, D., & Wiskott, L. (2013). Modeling correlations in spontaneous activity of visual cortex with centered Gaussian-binary deep Boltzmann machines. arXiv preprint arXiv:1312.6108.
Grabska-Barwińska, A., Ng, B. S. W., & Jancke, D. (2012). Orientation selective or not?–Measuring significance of tuning to a circular parameter. Journal of neuroscience methods, 203(1), 1–9.
Chavane, F., Sharon, D., Jancke, D., Marre, O., Frégnac, Y., & Grinvald, A. (2011). Lateral spread of orientation selectivity in V1 is controlled by intracortical cooperativity. Frontiers in Systems Neuroscience, 5.
Onat, S., König, P., & Jancke, D. (2011). Natural scene evoked population dynamics across cat primary visual cortex captured with voltage-sensitive dye imaging. Cerebral cortex, 21(11), 2542–2554.
Onat, S., Nortmann, N., Rekauzke, S., König, P., & Jancke, D. (2011). Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. Neuroimage, 55(4), 1763–1770.
Rothermel, M., Ng, B. S. W., Grabska-Barwińska, A., Hatt, H., & Jancke, D. (2011). Nasal chemosensory-stimulation evoked activity patterns in the rat trigeminal ganglion visualized by in vivo voltage-sensitive dye imaging. PloS one, 6(10), e26158.
Jancke, D., Chavane, F., & Grinvald, A. (2010). Stimulus Localization by Neuronal Populations in Early Visual Cortex: Linking Functional Architecture to Perception. In Dynamics of Visual Motion Processing (pp. 95–116). Springer.
Jancke, D., & Erlhagen, W. (2010). Bridging the Gap: A Model of Common Neural Mechanisms Underlying the Fröhlich Effect, the Flash-Lag Effect, and the Representational Momentum Effect. In Space and Time in Perception and Action (pp. 422–440). Cambridge: Cambridge University Press. http://doi.org/10.1017/CBO9780511750540.025
Markounikau, V., Igel, C., Grinvald, A., & Jancke, D. (2010). A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging. PLoS computational biology, 6(9), e1000919.
Ng, B. S. W., Grabska-Barwińska, A., Güntürkün, O., & Jancke, D. (2010). Dominant vertical orientation processing without clustered maps: early visual brain dynamics imaged with voltage-sensitive dye in the pigeon visual Wulst. J Neurosci, 30(19), 6713–6725.
Grabska-Barwińska, A., Distler, C., Hoffmann, K. -P., & Jancke, D. (2009). Contrast independence of cardinal preference: stable oblique effect in orientation maps of ferret visual cortex. European Journal of Neuroscience, 29(6), 1258–1270.
Markounikau, V., Igel, C., & Jancke, D. (2009). A Mesoscopic Model of VSD Dynamics Observed in Visual Cortex Induced by Flashed and Moving Stimuli. In Frontiers in Computational Neuroscience (p. 64). Frontiers.
Palagina, G., Eysel, U. T., & Jancke, D. (2009). Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo. Proceedings of the National Academy of Sciences, 106(21), 8743–8747.
Rothermel, M., Ng, B., Hatt, H., & Jancke, D. (2009). Voltage-Sensitive Dye Imaging of Odor Evoked Activity Patterns in the Trigeminal Ganglion in vivo. In CHEMICAL SENSES (Vol. 34, pp. A30–A31). OXFORD UNIV PRESS GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND.
Sharon, D., Jancke, D., Chavane, F., Na′aman, S., & Grinvald, A. (2007). Cortical response field dynamics in cat visual cortex. Cerebral Cortex, 17(12), 2866–2877.
Erlhagen, W., & Jancke, D. (2004). The role of action plans and other cognitive factors in motion extrapolation: A modelling study. Visual Cognition, 11(2-3), 315–340.
Jancke, D., Chavane, F., Naaman, S., & Grinvald, A. (2004). Imaging cortical correlates of illusion in early visual cortex. Nature, 428(6981), 423–426.
Jancke, D., Erlhagen, W., Schöner, G., & Dinse, H. R. (2004). Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. The Journal of Physiology, 556(3), 971–982.
Igel, C., von Seelen, W., Erlhagen, W., & Jancke, D. (2002). Evolving field models for inhibition effects in early vision. Neurocomputing, 44, 467–472.
Dinse, H. R., & Jancke, D. (2001). Chapter 10: Comparative population analysis of cortical representations in parametric spaces of visual field and skin : a unifying role for nonlinear interactions as a basis for active information processing across modalities. In M. A. L. Nicolelis (Ed.), Advances in neural population coding (pp. 155–173). Elsevier.
Dinse, H. R., & Jancke, D. (2001). Comparative population analysis of cortical representations in parametric spaces of visual field and skin: A unifying role for nonlinear interactions as a basis for active information processing across modalities. Progress in brain research, 130, 155–173.
Dinse, H. R., & Jancke, D. (2001). Time-variant processing in V1: From microscopic (single cell) to mesoscopic (population) levels. Trends in neurosciences, 24(4), 203–205.
Igel, C., Erlhagen, W., & Jancke, D. (2001). Optimization of dynamic neural fields. Neurocomputing, 36(1), 225–233.
Jancke, D. (2000). Orientation formed by a spot’s trajectory: A two-dimensional population approach in primary visual cortex. J Neurosci, 20(14), U13–U18.
Erlhagen, W., Bastian, A., Jancke, D., Riehle, A., & Schöner, G. (1999). The distribution of neuronal population activation (DPA) as a tool to study interaction and integration in cortical representations. Journal of Neuroscience Methods, 94(1), 53–66.
Jancke, D., Erlhagen, W., Dinse, H. R., Akhavan, A. C., Giese, M., Steinhage, A., & Schöner, G. (1999). Parametric population representation of retinal location: Neuronal interaction dynamics in cat primary visual cortex. J Neurosci, 19(20), 9016–9028.