2023
2025
Object-centric Denoising Diffusion Models for Physical Reasoning
Dr. Andrew Melnik
Raphael C. Engelhardt, M.Sc.
Prof. Dr. Wolfgang Konen
Funding:

This research was supported by the research training group “Dataninja” (Trustworthy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust Data Analysis) funded by the German federal state of North Rhine-Westphalia.


Publication abstract:

Reasoning about the trajectories of multiple, interacting objects is integral to physical reasoning tasks in machine learning. This involves conditions imposed on the objects at different time steps, for instance initial states or desired goal states. Existing approaches in physical reasoning generally rely on autoregressive modeling, which can only be conditioned on initial states, but not on later states. In fields such as planning for reinforcement learning, similar challenges are being addressed with denoising diffusion models. In this work, we propose an object-centric denoising diffusion model architecture for physical reasoning that is translation equivariant over time, permutation equivariant over objects, and can be conditioned on arbitrary time steps for arbitrary objects. We demonstrate how this model can solve tasks with multiple conditions and examine its performance when changing object numbers and trajectory lengths during inference.


Publications

    2025

  • Object-centric Denoising Diffusion Models for Physical Reasoning
    Lange, M., Engelhardt, R. C., Konen, W., Melnik, A., & Wiskott, L.
    arXiv preprint arXiv:2507.04920

The Institut für Neuroinformatik (INI) is a research unit of the Faculty of Computer Science at the Ruhr-Universität Bochum. Its scientific goal is to understand the fundamental principles through which organisms generate behavior and cognition while linked to their environments through sensory and effector systems. Inspired by our insights into such natural cognitive systems, we seek new solutions to problems of information processing in artificial cognitive systems. We draw from a variety of disciplines that include experimental psychology and neurophysiology as well as machine learning, neural artificial intelligence, computer vision, and robotics.

Universitätsstr. 150, Building NB, Room 3/32
D-44801 Bochum, Germany

Tel: (+49) 234 32-28967
Fax: (+49) 234 32-14210