2020
2022
Exploration of Deep Double Descent through Ensemble Formation

We empirically decompose the generalization loss of deep neural networks into bias and variance components on an image classification task by constructing ensembles using geometric-mean averaging of the sub-net outputs and we isolate double descent at the variance component of the loss.
Our results show that small models afford ensembles that outperform single large models while requiring considerably fewer parameters and computational steps. We also find that deep double descent that depends on the existence of label noise can be mitigated by using ensembles of models subject to identical label noise almost as thoroughly as by ensembles of networks each trained subject to i.i.d. noise.

The Institut für Neuroinformatik (INI) is a research unit of the Faculty of Computer Science at the Ruhr-Universität Bochum. Its scientific goal is to understand the fundamental principles through which organisms generate behavior and cognition while linked to their environments through sensory and effector systems. Inspired by our insights into such natural cognitive systems, we seek new solutions to problems of information processing in artificial cognitive systems. We draw from a variety of disciplines that include experimental psychology and neurophysiology as well as machine learning, neural artificial intelligence, computer vision, and robotics.

Universitätsstr. 150, Building NB, Room 3/32
D-44801 Bochum, Germany

Tel: (+49) 234 32-28967
Fax: (+49) 234 32-14210