Inverting Transformer-based Vision Models
Understanding the mechanisms underlying deep neural networks in computer vision remains a fundamental challenge. While many previous approaches have focused on visualizing intermediate representations within deep neural networks, particularly convolutional neural networks, these techniques have yet to be thoroughly explored in transformer-based vision models. In this study, we apply a modular approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer and a Vision Transformer, showing that this approach is efficient and feasible.