Autonomous Robotics: Action, Perception, and Cognition
This course will be combine presence and online features ("hybrid"). The lectures and exercises will take place in the classroom, but can also be followed in real time through a Zoom channel.
In the exercise sessions, solutions of the corrected exercises will be discussed. The exercise session can also be used to ask general questions.
The course uses e-learning features provided through the present webpages. This course is NOT managed through moodle! To take the course, you must registerm, therefore, through this webpage: Go to "e-learning", select this course, and follow the instructions there. You will need an email address of the Ruhr-University or the Technical University Dortmund for registration. If you are an exchange student without such an email address or come from another university within the Ruhr-Alliance, contact us by email as instructed there. When registering, please fill in your degree program (for example, "MSC Angewandte Informatik", not just "Master of Science"). This is important information for us to manage exams and credit points.
Autonomous robotics is an interdisciplinary research field in which embodied systems equipped with their own sensors and with actuators generate behavior that is not completely pre-programmed. Autonomous robotics thus entails perception, movement generation, as well as core elements of cognition such as making decisions, planning, and integrating multiple constraints. The main focus of the course are solutions to autonomous movement generation that are inspired by analogies with how nervous systems generate movement.
This course touches on various approaches to this interdisciplinary problem. In the first half of the course focusses on movement generation for autonomous vehicles. The main emphasis will dynamical systems methods (attractor dynamics) for that problem, reviewing related approaches as well. The second half of the course will study motion in robot arms, including motion planning, timing, and control. Analogies with human movement will be exploited to illustrate ideas and problems, including the degree of freedom problem, coordination, and relex control of muscles.
Lecturers
![]() Prof. Dr. Gregor SchönerLecturer |
(+49) 234-32-27965 gregor.schoener@ini.rub.de NB 3/31 |
Details
- Course type
- Lectures
- Credits
- 6 CP
- Term
- Summer Term 2025
- E-Learning
- e-learning course available
Dates
- Lecture
-
Takes place
every week on Thursday from 14:15 to 16:00 in room NB 3/57.
First appointment is on 10.04.2025
Last appointment is on 17.07.2025 - Exercise
-
Takes place
every week on Thursday from 16:15 to 17:00 in room NB 3/57.
First appointment is on 10.04.2025
Last appointment is on 17.07.2025
Requirements
The emphasis of the course is on learning concepts, practicing interdisciplinary scholarship including reading and writing at a scientific and technical level. Mathematical concepts are used throughout, so understanding these concepts is important. Mathematical skills are not critical to mastering the material, but helpful. The mathematics is mostly from the qualitative theory of dynamical systems, attractors and their instabilities. Short tutorials on some of these concepts will be provided.
Further reading
Readings will be posted on this web page. Also have a look at the web page of the Dynamic Field Theory community that is interested in related problems and solutions. There you find more exercises, reading material, slides and lecture videos that have some overlap with the lecture.
The Institut für Neuroinformatik (INI) is a interdisciplinary research unit of the Ruhr-Universität Bochum. We aim to understand fundamental principles that characterize how organisms generate behavior and cognition while linked to their environments through sensory and effector systems. Inspired by insights into natural cognitive systems, we seek new solutions to problems of information processing in artificial cognitive systems. We draw from a variety of disciplines that include experimental approaches from psychology and neurophysiology, theoretical approaches from physics, mathematics, and computer science, including, in particular, machine learning, artificial intelligence, autonomous robotics, and computer vision.
Universitätsstr. 150, Building NB, Room 3/32
D-44801 Bochum, Germany
Tel: (+49) 234 32-28967
Fax: (+49) 234 32-14210