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 A B S T R A C T

Spatial navigation is a vital cognitive process in nearly all animals, relying on complex neuronal mechanisms to 
extract, process, and act upon spatial representations. To advance the understanding of spatial navigation and 
its neural mechanisms, Parra-Barrero et al. (2023) have proposed a taxonomy of spatial navigation processes 
based on extensive behavioral and neural studies. These processes are hierarchically organized in two levels 
with navigation strategies at the top and behaviors at the bottom. Building upon this taxonomy, here, we 
review computational modeling studies on spatial navigation in mammals to provide an overview of the current 
state of the art and further analyze the navigation processes within the proposed taxonomy. We specifically 
focus on the representations required by navigation processes, how these representations are extracted, and 
the computations necessary to execute each strategy and behavior. We propose that the key to understanding 
what representations and computations are being used by agents lies in testing their ability to generalize to 
novel situations. We identify three types of generalization relevant for navigation and analyze to what extent 
current computational models are capable of achieving these types of generalization. Our review shows that 
while significant progress has been made in modeling navigation, substantial work remains to model and fully 
understand spatial navigation in mammals.
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1. Introduction

Navigating through space is a task that animals apparently solve 
quite intuitively in their day-to-day lives and is an essential skill for 
the success of most species. Systematic laboratory studies of spatial 
navigation began over a century ago. Early work by John B. Watson 
investigated how animals, specifically white rats, learn to navigate 
mazes (Watson, 1907). He emphasized the importance of kinesthetic 
(movement-related) and organic (internal) sensations in guiding behav-
ior. His work laid the groundwork for behaviorism, a dominant school 
of thought in psychology during the early 20th century. Although some 
of his conclusions are no longer considered valid, his methodology — 
using mazes to study spatial navigation — remains widely used. This 
approach was later refined by Edward C. Tolman in his revolution-
ary studies on spatial learning (Tolman and Honzik, 1930; Tolman, 
1948). In contrast to the widely held strictly behaviorist views at the 
time, Tolman demonstrated that navigation involves more than simple 
stimulus–response associations, and that the observed behaviors must 
require some underlying internal representations. These foundational 
studies paved the way for the search for these underlying representa-
tions in the brain, leading to the discovery of various spatially tuned 
neurons, including place cells (O’Keefe and Dostrovsky, 1971), grid 
cells (Hafting et al., 2005; Fyhn et al., 2007), boundary cells (Hartley 
et al., 2000), and head direction cells (Taube et al., 1990a,b).

Together, these and many other studies have revealed that spa-
tial navigation requires internal representations of the environment 
to guide behavior, enabling the determination and maintenance of 
a course or trajectory from one location to another (Tolman, 1948; 
O’Keefe and Nadel, 1978; Gallistel, 1990; Franz and Mallot, 2000; 
Parra-Barrero et al., 2023). On the other hand, the precise nature of 
the connection between neural representations and the computations 
and behaviors they support remains elusive, in part due to a discon-
nect between fields and the somewhat disproportionate focus on the 
detailed characterization of spatial representations at the expense of 
understanding what computations and behaviors they support.

Spatial navigation also involves a hierarchical interplay of high-
level computations and low-level motor commands. High-level pro-
cesses include tasks such as localization, path planning, and goal-
directed decision making, often relying on abstract representations of 
the environment. In contrast, low-level motor control translates these 
plans into precise actions, such as moving forward, adjusting speed, and 
turning. Thus, given that it engages both higher-level cognitive pro-
cesses and lower-level automatic mechanisms, along with the wealth 
of behavioral and neural data available, spatial navigation serves as a 
unique window into exploring fundamental principles of brain function.

Beyond advancing our understanding of the brain, studying spatial 
navigation has practical applications in robotics, urban design, and 
medicine. For example, insights into spatial navigation can inspire 
the development of autonomous robots (Milford et al., 2004), guide 
the design of easily navigable urban spaces (Meilinger and Knauff, 
2008; Silavi et al., 2017; Bibri and Krogstie, 2019), and can aid in the 
early diagnosis of diseases such as Alzheimer’s (Colmant et al., 2023; 
Bierbrauer et al., 2020) and Parkinson’s disease (Lin et al., 2014; Thurm 
et al., 2016).

Computational modeling has been instrumental in advancing our 
understanding of the cognitive processes and neural mechanisms that 
underlie spatial navigation (Bermudez-Contreras et al., 2020; Ghazi-
nouri et al., 2024). Models have to formalize the object under study, 
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make assumptions explicit, propose specific representations and com-
putations, simulate their interactions to see their outcomes, and make 
predictions. The results and predictions of the model can be analyzed 
and compared with experimental observations to draw conclusions 
about the validity of the features of the model used (Kriegeskorte 
and Douglas, 2018). Computational modeling can also inspire exper-
imentalists to design and perform novel experiments to test model 
predictions.

Interest in computational modeling of spatial navigation has in-
creased significantly over the last decade, resulting in an extensive 
body of literature. This is because, on the one hand, advances in 
computer science, both in software and hardware, have enabled so-
phisticated modeling and analysis of spatial navigation (Schwalger 
et al., 2017; Eliasmith and Trujillo, 2014; Diekmann et al., 2023). 
On the other hand, there has been progress in autonomous robotics 
and vehicles, where understanding spatial navigation is essential for 
developing intelligent systems (Milford and Schulz, 2014; Milford et al., 
2016).

In light of these advances, we consider it both appropriate and 
beneficial to review and synthesize what we have learned so far from 
computational modeling of spatial navigation. To this end, we adopt 
the taxonomy of spatial navigation introduced by Parra-Barrero et al. 
(2023). This hierarchical framework considers spatial navigation pro-
cesses on two levels: five navigation behaviors at the bottom level 
controlled by three navigation strategies at the top. In addition, two 
organization processes govern the selection and integration of the 
behaviors and strategies available to the agent. In this review article, 
we identify the representations necessary for each behavior and strat-
egy and the abstract-level computations required to support them. To 
ensure that agents are truly solving the task using the hypothesized 
navigation process rather than by some other means, e.g., based on 
stimulus–response associations, we argue that it is critical to investigate 
their capacity for generalization (Lee et al., 2020; Zeithamova and 
Bowman, 2020; Farebrother et al., 2020).

Since it would be virtually impossible to systematically cover all 
computational models of spatial navigation, we restrict ourselves to 
models of mammalian spatial navigation (or those closely resembling 
them) in this review article. In addition, we primarily focus on two 
classes of computational models. First, we consider models that are 
biologically plausible and based on neuroanatomy and/or account for 
neural activity patterns, including spiking neural networks and rate-
based models. Spiking neural networks simulate the precise timing 
of individual spikes in neuronal communication, capturing temporal 
dynamics critical for understanding real neural processes (Maass, 1997; 
Taherkhani et al., 2020). Rate-based models, on the other hand, use a 
more abstract, yet insightful, representation of neural activities as av-
erage firing rates over time (Brette, 2015). Second, we consider models 
based on reinforcement learning (RL) and models from the robotics do-
main when they offer insights for mammalian navigation. These models 
use network architectures and learning algorithms that are not subject 
to biological constraints. RL is a machine learning paradigm that has 
received significant attention from neuroscientists in recent years. In 
RL problems, an agent learns by interacting with its environment and 
optimizing behavior based on rewards or penalties. Unlike supervised 
learning, RL relies on exploration and self-directed learning, making 
it well-suited for modeling adaptive, goal-directed behaviors such as 
spatial navigation (Sutton and Barto, 1998). RL is a broad class of 
approaches, which can be model-free, where strategies are learned 
directly from experience, or model-based, where the agent builds an 



S. Vijayabaskaran et al. Neuroscience and Biobehavioral Reviews 176 (2025) 106282 
internal model of the environment to plan and predict outcomes (Sutton 
and Barto, 1998; Dayan and Berridge, 2014). Due to this vast body of 
literature, what follows is not a systematic review, but rather a critical 
examination of the literature on computational modeling of navigation 
through the lens of the taxonomy. As a first step, we searched the 
literature using keywords corresponding to the navigational processes 
defined in the taxonomy including related search terms that were 
used previously by other researchers in the field (e.g. beaconing for 
aiming, cognitive graph for topological navigation etc.). The full list of 
related terms corresponded to Table 1 in Parra-Barrero et al. (2023). 
In the second step, we selected a subset of the papers that are at least 
applicable to mammalian navigation. For most navigation processes, 
no other inclusion/exclusion criteria were necessary. For guidance and 
map navigation, a further refinement was necessary due to the vast 
over-representation of these two processes in the literature. We selected 
papers to ensure balanced coverage that encompasses a breadth of 
ideas. In addition to including models from both biologically plausible 
and RL-based approaches, we select examples that span a diverse range 
of representational formats and computations within each category.

This review article is structured as follows: In Section 2, we briefly 
review the taxonomy of spatial navigation processes by Parra-Barrero 
et al. (2023) and identify the defining representations and computa-
tions for each navigation process, as well as outline our notion of 
generalization in detail. In Section 3, we review computational models 
and what they reveal about navigational processes through the lens 
of the taxonomy. In Section 4 , we discuss the key insights from 
computational studies of spatial navigation and point out directions for 
future research. Finally, in Section 5 we conclude our work.

2. Computations and representations underlying spatial naviga-
tion processes

2.1. Generalization of navigation processes

In this review, we adopt the taxonomy of spatial navigation in-
troduced by Parra-Barrero et al. (2023) to organize and interpret 
the computational models discussed and develop it further. Based on 
decades of behavioral and neural evidence, the taxonomy introduced 
eight navigation processes and offers insights into how these processes 
may be organized and interact with one another. After briefly re-
capitulating the taxonomy in the following, we significantly expand 
the earlier work by identifying the representations and computations 
that define each navigation process and outline the process-specific 
requirements for generalization.

According to the taxonomy, navigation processes are hierarchically 
structured in two levels, with navigation strategies at the top and 
navigation behaviors at the bottom (Fig.  1). Navigation strategies take 
the final goal of navigation and break it down into a series of subgoals, 
which can be reached by using one or more of the navigation behaviors 
available at the bottom level. The navigation behaviors are elemen-
tary navigation processes that generate abstract movement instructions 
(move forward, turn right, etc.), not motor commands, that guide the 
agent towards a subgoal. In addition to the strategies and behaviors 
themselves, two additional processes organize strategies and behaviors 
by selecting or integrating strategies or behaviors available to the agent.

Each process is defined by the representations and the computations 
underlying it, and it is these representations and computations that 
distinguish one process from another (Tables  1 and 2). We emphasize 
that both components are important to fully characterize a process, 
since, for example, the same representations may be used in different 
computations resulting in different behaviors (Table  1). Thus, focus-
ing solely on representations is not enough to fully characterize the 
processes.

This means that in order to pinpoint what process an agent, be it 
artificial or biological, is using to solve a navigation task, the exper-
imenter or modeler must get at both the representations and compu-
tations being used by the agent. While it is evident that this can be 
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quite tricky to do experimentally, it may seem, at first glance, quite 
straightforward for computational models. This is indeed the case when 
the modeler explicitly builds in representations and computations in the 
model, i.e., in a more or less hard-coded model of a process. However, 
since most computational models are self-organized to some degree, 
and in some cases, such as deep neural network models, the inner 
workings of the model are black boxes unless explicitly probed, this 
issue is not trivial even for modeling.

We therefore propose that the key to pinpointing what process 
is at work lies in testing the agent’s ability to generalize to novel 
situations. Since generalization is a fairly broad term and an agent can 
generalize over different aspects of the task and the environment, here 
we clarify ‘‘generalization’’ and which aspects we believe are important 
to pinpoint the underlying processes. We identify three forms of gener-
alization that are relevant to navigation behaviors and strategies. The 
generalization principles do not apply to the organizational processes 
since these operate on the behaviors and strategies and do not make 
navigational decisions themselves.

The first type of generalization is sensory generalization, i.e., the 
ability to acquire a target under different sensory conditions or over 
different sensory modalities. For instance, take an agent that is able 
to navigate only to a very specific type of target, such as a red dot 
generated by a laser. While this restriction certainly makes the process 
highly specialized and in some situations less useful in the real world, 
it does not inherently change the representations and computations 
being used. Thus, we propose that, while practically useful, sensory 
generalization is not strictly required to qualify as a navigation process 
in our taxonomy.

A second, more important type of generalization for navigation 
is what we term spatial generalization. This is the agent’s ability to 
generalize over three parameters (start location, goal location, and 
environmental features) and is essential to identify which navigation 
behavior is being used and to rule out alternative explanations for the 
observed behavior. These explanations include (i) not being a naviga-
tion behavior at all, e.g. having memorized a very specific sequence of 
steps from start to goal (ii) being a different navigation process than 
the one under consideration, e.g. having learned to navigate only to a 
single location in space (iii) using some features of the environment to 
navigate that were deemed irrelevant by the experimenter or modeler. 
An agent’s ability to generalize can be examined through probe trials or 
a test phase in which the agent has to navigate from different starting 
and/or to different goal positions or in which the environment has been 
altered to a reasonable degree. An ecologically relevant example of the 
latter is the ability to execute the same navigation process in spring 
and winter, where several properties of the environment may have 
changed. Similarly, in a laboratory or simulation setting, navigation 
should generalize over changes to any features of the environment that 
are not relevant to the task, such as background features and lighting 
— as long as these changes do not interfere with target acquisition.

A third type of generalization that we consider is the degree to 
which an agent can find an alternative route to a goal, i.e. planning 
generalization. This type of generalization only applies to the navigation 
strategies, since only these processes engage in planning to produce a 
sequence of subgoals. For instance, when navigating to a target along 
a previously planned trajectory, the agent comes upon an obstacle and, 
thus, has to plan an alternative trajectory. The alternative trajectory 
planned by the agent reveals something about the knowledge repre-
sentation, i.e. which strategy, that the agent uses. An agent that can 
plan more generally would be capable of solving more complex tasks 
due to its increased flexibility.

In the following, we discuss the navigation behaviors and their orga-
nization, followed by the navigation strategies and their organization. 
We outline the representations and computations underlying each of 
the processes (summarized in Tables  1 and 2) and briefly discuss what 
the types of generalization outlined above might look like for each 
process.
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Fig. 1. The organization of navigation processes. Navigation strategies take a final goal and produce a series of subgoals. Each subgoal is then passed on to the organization of 
behaviors, which chooses one or more navigation behaviors, which generate abstract movement instructions to reach the current subgoal. Each behavior has an extraction and an 
execution phase, and receives processed sensory input and spatial knowledge in addition to the current subgoal. A scene representation that contains relevant information about 
the current environment in working memory is also available to the navigation processes.
Source: Reproduced from Parra-Barrero et al. (2023) with permission.
2.2. Navigation behaviors and their organization

The taxonomy of Parra-Barrero et al. (2023) distinguishes five nav-
igation behaviors: aiming, direction field navigation, path following, 
vector movement, and guidance (Fig.  2). These navigation behaviors 
translate subgoals computed by the navigation strategies into an op-
erational objective and output movement instructions that allow the 
agent to reach the goal. These movement instructions are not conceived 
of as motor commands, but rather as high-level representations such as 
movement direction and speed. Each behavior is thought to be divided 
into two phases: an extraction phase in which the goal or movement 
direction is identified and an execution phase in which movement 
towards the goal occurs. These two phases may occur sequentially, 
overlap, or be interleaved (Fig.  2).

Aiming is one of the simplest navigation behaviors, where the goal 
location is defined by an object. It involves orienting to the target 
object and moving through space until it is reached (Fig.  2A). Also 
known as beaconing in other taxonomies (Gallistel, 1990; Toledo et al., 
2020), this behavior is most commonly known for visual landmarks, 
although it also works with other sensory cues, such as sound, that 
allow the agent to directly perceive the target object. Aiming requires 
maintaining a representation of the direction and approximate distance 
to the target (Table  1). This distance representation does not necessarily 
need to be explicit; for example, consider simple visual aiming which 
can be accomplished by keeping the object more or less centered in the 
field of vision and moving towards it. In this simple case, the distance to 
the goal can be inferred from, for example, semantic knowledge about 
the usual size of the object or from how fast the size of the goal changes 
in the visual field as the agent moves towards it. Computationally, 
aiming requires keeping a perceptible target within the range of the 
sensory systems while reducing the agent’s distance to the target. This 
distance estimation is useful in order to produce meaningful behavior, 
such as moving faster when the goal is further away and slowing 
down when the goal is closer (this feature might also be useful for 
pursuit). Crucially, the representations are constantly extracted from 
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the perception of the goal, which means that aiming immediately 
breaks down when the target object is not detected.

An agent might be able to aim for a variety of objects (sensory 
generalization), but, as discussed above, this is not strictly necessary 
and might not even be expected in certain cases — including in bio-
logical agents. For example, while animals may very quickly aim for 
food directly, they might be less inclined to do so for random targets, 
preferring to engage in guidance instead (Devenport and Devenport, 
1994). In artificial agents, failure to generalize to new targets only 
implies that the recognition model being used may not be sophisticated 
enough and does not imply a deficit in aiming per se. On the other 
hand, identifying whether aiming is actually being used, even if only 
to a single target, requires checking for spatial generalization. The 
ability to generalize to novel start and goal locations indicates that 
the agent is able to extract direction and approximate distance to the 
target object and rules out navigating to a specific spatial location or 
memorizing a specific movement sequence. In a similar vein, the ability 
to generalize over changes to the surrounding environment demon-
strates that the agent indeed extracts direction and distance to the 
target object itself and not from sensory properties of the surrounding 
environment. Similar arguments regarding generalization apply to the 
other navigation behaviors as well; thus, we only discuss concrete 
examples and process-specific nuances for the behaviors that follow.

In Direction field navigation, the agent uses a local directional 
signal that extends over the environment to compute and execute a 
local movement to reach the goal (Fig.  2B). Common examples of di-
rection fields that could be used for navigation include gradient signals, 
such as odor or altitude and compass direction inferred from the earth’s 
magnetic field. In direction field navigation, the agent requires the 
representation of the local signal throughout the navigation to move 
at a certain angle relative to the signal or the gradient of the signal 
until the goal is reached (Table  1). The directional signal is local in 
the sense that it is valid only at a particular location and may be quite 
different at nearby locations. For successful navigation, this directional 
signal must be available over an extended area that covers the start and 
goal locations and some extended region connecting the two. Spatial 
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Table 1
Representations and computations of the navigation behaviors: The typical representations are defined as follows: 𝑑 — the approximate distance to the goal 
from the agent’s current location, 𝜃goal — the approximate direction to the goal, 𝜃local — the local movement direction, 𝐱self — the representation of the agent’s 
location, and 𝐱goal — the representation of the goal location. 
 Behavior Extraction Typical 

representation
Execution  

 Aiming Direct sensory perception of goal 𝜃goal, 𝑑 • Rotate to minimize 𝜃goal
• Move in direction that reduces 𝑑

• Adjust velocity and stop based on 𝑑

 

 Direction Field 
Navigation

Infer gradient from sampling intensity at 
different locations or infer gradient 
directly (like slope or magnetic field)

𝜃local • Move in direction dictated by 𝜃local
• Stop when no direction information available

 

 Path Following Sensory perception of path and initial 
orientation to follow path

𝜃local, lateral 
deviation from path

• Move forward in approximate direction of path 
given by 𝜃local
• Limit lateral path error while maintaining 
orientation

• Stop if path ends or goal is reached

 

 Vector Movement From path integration on outbound 
path, existing/externally given spatial 
knowledge or extraction phase of other 
behaviors

𝜃goal, 𝑑 • Move in direction of 𝜃goal
• Update 𝜃goal and 𝑑 using path integration

• Adjust velocity and stop based on 𝑑

 

 Guidance Configural cues 𝐱self , 𝐱goal in term of 
configural cues

• Move in order to make 𝐱self align with 𝐱goal  
Fig. 2. Navigation behaviors and required representations. Each panel illustrates a navigation behavior and its required representations. Variables are the same as in Table  1.
A: Aiming, movement is directed towards a perceptible goal. B: Direction field navigation, the agent moves based on a local signal towards the goal, an odor source in this case.
C: Path following, the agent follows a path leading to the goal. D: Vector movement, the agent uses a vector pointing towards the goal for navigation. The vector could have been 
computed, for example, through path integration on the outbound travel. E: Guidance, the agent navigates to an unmarked goal defined by the configuration of several landmarks.
Source: Adapted from Parra-Barrero et al. (2023) with permission.
5 
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generalization in direction field navigation implies the ability to start 
navigation from any location in the direction field, and also the ability 
to navigate even if source of the field were moved, as long as the local 
directional signal remains available. In the example of an odor gradient 
field emanating from a source, this means that the agent can navigate 
to the source from any point in the gradient field as well as navigate 
successfully even if the source itself is moved as long as it can still sense 
the local gradient.

Path following, as the name implies, involves moving along a 
particular path at which the goal is located until it is finally reached 
(Fig.  2C). Aside from knowing which path to choose, such as a par-
ticular river, the agent must also know in which direction the path 
must be followed, for instance, do I follow the river upstream or 
downstream? Computationally, path following involves identifying the 
path that leads to the goal and constantly adjusting the agent’s position 
in order to stay on the path, e.g. movement of a train on the tracks, 
or to stay close to the path and maintain a distance from it, e.g. 
moving along the meanders of a river (Table  1). Thus, path following 
involves maintaining a representation of the lateral deviation from the 
path in addition to the local direction in which to follow the path. To 
test for spatial generalization in path following, the agent should be 
tested on various path configurations, for example, a path in different 
directions and shapes (straight vs. curved), as well as novel start and 
goal locations.

Vector movement involves using the representation of a goal vec-
tor that indicates the direction and distance to the goal to navigate. 
Computationally, this involves continuously updating this vector by 
path integration to keep track of progress towards the goal (Fig.  2D 
and Table  1). While the initial source of the goal vector could be path 
integration from a previous traversal, such as in homing, it could also 
come from other sources such as a metric map of the environment or 
from sensory cues in the environment that allow the computation of 
such a vector. Similarly, path integration could also be supported by 
self-motion cues from different sensory sources: optic flow, vestibular 
or proprioceptive inputs. Thus, for vector movement, sensory general-
ization can occur in two ways — in the acquisition of the initial vector 
(this is exemplified well by humans, who can even acquire the initial 
vector from verbal instructions) and in the sensory systems supporting 
path integration. Testing for spatial generalization involves assessing 
whether the agent can navigate from arbitrary start to arbitrary goal 
locations once the goal vector is available. Note that this constitutes a 
simple form of shortcut-taking, where an agent can move towards the 
goal along a direct path indicated by the goal vector (see e.g. Ekstrom 
et al., 2014). However, this is limited to locations for which the goal 
vector is available, such as the home location in homing.

Guidance is the most complex of the navigation behaviors (Fig.  2E). 
It is defined as navigating to a target location by using information 
about its spatial relationship to landmark(s) and distal orienting cue(s). 
For guidance, the agent maintains a representation of the goal location 
and its self-location with respect to some configural cues (Table  1). 
There are multiple possible ways of execution, but the general criterion 
is that the computation should guide the agent such that the represen-
tations of the goal location and self-location become more similar with 
each step. In addition to testing for spatial generalization with novel 
start and goal locations in relation to a stationary cue configuration, 
the entire cue configuration may be rotated and/or translated to ensure 
that the representations of goal and self are computed with those cues. 
Note that the ability to perform guidance with different configurations 
of cues, i.e., when the cues are arranged differently with respect to each 
other, is a form of sensory generalization and is not strictly required to 
qualify as guidance.

Organization of behaviors: Real-world navigation is complex, and 
agents may often find themselves in situations where multiple behav-
iors can be used to navigate to the subgoal, or conversely, where no 
single behavior alone is sufficient to successfully navigate to the sub-
goal. These conditions can change dynamically, and the agent must be 
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able to adapt its behavior accordingly. For example, when navigating in 
a city, one might initially navigate by following a particular road (path 
following), but upon encountering a road closure, one might need to 
use knowledge about the goal’s location in relation to landmarks, such 
as tall buildings, to navigate (guidance). The taxonomy outlines two 
ways for making use of multiple navigation behaviors, namely selection
and integration. In the former, the agent must select one of available 
behaviors and only one is active at any given time. Selection can occur 
in one of two ways: relay switching, in which the agent hands over 
control from one behavior to another at a natural termination point 
of the first behavior, and dynamic switching, where the behaviors are 
computed in parallel and compete for control of the agent’s navigation. 
We hypothesize that vector movement may play a special role in 
dynamic switching, acting as a fallback process for the other behaviors 
when external sensory information is unavailable or unreliable.

Integration, the second possibility for organization, involves multi-
ple behaviors running in parallel, but with shared control over nav-
igation. Integration can take place in different ways, either in the 
extraction or the execution phase. In the extraction phase, integration 
involves combining multiple behaviors to successfully extract the rep-
resentations required for navigation. For example, guidance could be 
used to constrain the region of visual search for locating the target 
for aiming. In the execution phase, one possible implementation of 
integration is when different behaviors output movement proposals in 
a common format, e.g. movement distance and direction, and these 
proposals are then combined in a weighted manner to produce a final 
movement instruction.

2.3. Navigation strategies and their organization

Navigation strategies are complex processes that take the final goal 
and structure navigation into a sequence of subgoals. Depending on the 
available representations, each subgoal can be reached successively by 
one of the navigation behaviors or a combination of them. The taxon-
omy outlines three navigation strategies: route navigation, topological 
navigation, and metric navigation (Fig.  3).

Like in the case of the behaviors, testing for generalization can serve 
as a diagnostic tool for determining whether a particular navigation 
strategy is being used. However, unlike for the behaviors, where spatial 
generalization was key, planning generalization takes center stage for 
delineating strategies. While for the behaviors, the experimenter or 
modeler would ask — do we observe spatial generalization corresponding 
to this behavior? — for the strategies, the question becomes more 
nuanced, asking to what extent planning done by the agent generalizes. 
The degree of generalization, i.e. how flexibly an agent can plan, is 
then a signature of which strategy is being used and depends both 
on the spatial knowledge structure (route/graph/metric map) and the 
specific planning algorithm that operates on that structure. These two 
aspects, i.e. the spatial knowledge structure and the planning algorithm 
are closely related because the spatial knowledge structure being used 
greatly limits the kinds of planning algorithms that can be operated 
on it. In the following, we describe the three navigation strategies and 
touch upon these two aspects for each of them.

Route navigation is the simplest navigation strategy where navi-
gation to the next subgoal in a sequence is triggered by reaching the 
current subgoal (Fig.  3B). The determination of the specific behavior(s) 
used to navigate to the next subgoal is governed by the organization 
of behaviors rather than determined by the strategy. While repeated 
experience can bias agents towards using specific behaviors to reach 
each subgoal in the sequence, route navigation still allows for flexibility 
in the choice of behaviors. This flexibility enables agents to adapt to 
obstacles or changes in the environment that do not interfere with 
identifying subgoals as needed. However, while using route navigation, 
agents cannot recover easily from missed cues that define the next 
subgoal and must either backtrack to a known location along the route 
or make use of alternative strategies, if available. The spatial knowledge 
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Fig. 3. Illustration of navigation strategies. A: The layout of a city. The agent needs to navigate from home to the university campus. B: In route navigation, the agent uses 
a fixed sequence of subgoals to navigate to the final goal. In the example above, the agent uses path following along the road until the traffic light, then across the pedestrian 
crossing, then aims towards the church steeple and so on. C: In topological navigation, the agent plans the route based on its topological graph representation of the city. The 
agent is able to generate other routes, e.g. via the bus stop, based on its graph. D: In metric navigation, a metric map indicates the relationships between all elements in the city, 
which allows the agent to discover a direct shortcut through the forest using vector movement, even if the agent has never traveled through the forest before.
Source: Reproduced from Parra-Barrero et al. (2023) with permission.
structure comprises representations for a sequence of subgoals as well 
as the current subgoal (Table  2). Planning in route navigation is quite 
limited and in the simplest case only involves picking a route from 
different known routes at the start of navigation. A more sophisticated 
version also allows for concatenating routes in order to reach the 
final goal along a new route stitched together from the individual 
segments. As additional routes with overlapping subgoals are learned 
and stitched together, the spatial knowledge structure gradually evolves 
into a topological map, marking a transition from one structure to 
another. Interestingly, route navigation shares some similarities with 
serial recall tasks employed in episodic memory research. Building 
up route knowledge has parallels to ordinal strategies used in these 
tasks (Addis and Kahana, 2004; Kahana, 2020), and the Temporal Con-
text Model (Howard and Kahana, 2002), a well-known computational 
model of list learning, has been extended to spatial domains (Howard 
et al., 2005). In addition, some experimental evidence suggests that 
verbal list learning effects may generalize to a route navigation set-
ting (Meilinger et al., 2016; Hilton et al., 2021). These similarities are 
indicative of a broader, but not complete, overlap between navigation 
and memory (Ekstrom and Hill, 2023).

Topological navigation is based on a topological graph represen-
tation of the environment (Fig.  3C). This graph can be thought of as 
a simplified representation of the environment, much like a subway 
map, which focuses on connectivity rather than precise geometric 
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relationships and consists of nodes that correspond to known locations 
in the environment. The nodes are connected by edges where there 
is the possibility of navigating using one of the behaviors (Table  2). 
Although this map lacks metric information, edges can, but do not have 
to, be associated with some measure of cost (time of travel, distance, or 
other quantities) that may influence the choice of path. Similarly, nodes 
on the graph could be associated with position coordinates or angles, 
which could then guide navigation. There is indeed experimental ev-
idence for such labeling in graphs used for navigation (Warren et al., 
2017; Warren, 2019; Chrastil and Warren, 2014, also see Parra-Barrero 
et al., 2023 for a comprehensive discussion).

The agent needs to localize itself on the graph, so that it knows 
which node it is at or between which nodes it is located. Paths can 
be planned on this graph between any two nodes that are connected 
by a sequence of edges (Table  2), making this strategy quite flexible. 
For instance, if the preferred path is blocked, the agent is able to plan 
another path consistent with the graph. However, in a pure, unlabeled 
topological graph, direct navigation between two unconnected nodes is 
not possible outside vista space, thus excluding the use of shortcuts that 
are not connected by edges of the graph. This limitation may, however, 
be overcome in labeled graphs. Depending on the type and extent of 
labels, direct navigation between any two nodes may be possible, even 
if they are unconnected by edges (Warren, 2019).
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Table 2
Representations and computations of navigation strategies.
 Strategy Spatial knowledge Planning  
 Route Navigation Series of subgoals leading to the final 

goal
Pick route at the beginning of navigation if 
multiple routes are known

 

 Topological Navigation (Possibly weighted) Topological 
graph consisting of nodes, 
representing potential subgoals, 
connected by edges

Localize oneself on graph and plan over 
graph to optimize path length or other cost

 

 Metric Navigation Metric map with position, distance, 
and angle relationships

Localize oneself on map and plan path 
based on distance, time, or other criteria 
while taking into account obstacles or 
available shortcuts

 

Metric navigation is the third and most flexible navigation strat-
egy. It involves maintaining an approximately Euclidean map represen-
tation of the environment and using it to plan paths between locations 
on it (Fig.  3D). The extent of the map is influenced by both sensory 
access to the environment, referred to as the vista space — for example, 
standing atop a hill provides a broader view of the surroundings — 
and familiarity with the environment, such as having a well-defined 
metric map of the interior of our homes. Navigation using a metric 
map implies being able to localize oneself within the map and then 
planning a path to the goal via different subgoals, also represented on 
the map (Table  2). An optimization strategy based on minimizing a 
cost (e.g., the distance, time, metabolic cost, or a combination thereof) 
would be used to plan the path. The key advantage of a metric map 
is that it allows planning shortcuts through novel terrain to optimize 
navigation and detours through novel areas when known paths are 
blocked. Direct paths between any two arbitrary points can be planned, 
as long as they are within the extent of the map. However, direct 
experimental evidence for this type of navigation is still lacking, as 
we outline in Parra-Barrero et al. (2023). Additionally, the flexibility 
offered by a metric map comes at a cost; the construction, storage and 
use of such a map is computationally expensive, making it less efficient 
than the two strategies above, especially over larger scales.

Organization of strategies: Like the navigation behaviors, the nav-
igation strategies are also orchestrated by an organization process with 
the two possibilities, selection and integration. Selection implies that 
agents choose from available strategies, and only one strategy is active 
at any given moment. The transition between strategies can occur 
dynamically. For instance, an agent may switch to metric navigation in 
vista space from one of the other navigation strategies upon encounter-
ing a blocked path. The preferred strategy may also switch as the agent 
gathers more experience. This transition may occur in both directions 
— either starting with metric navigation in completely novel terrain 
and transitioning to less computationally intensive route navigation 
with repeated experience, or when a route is initially available, build-
ing it up gradually into graphs and maps as more spatial knowledge 
is acquired. Integration of strategies could occur at different levels: at 
the information level (adding metric information from a metric map 
to the edges of a topological graph), at the subgoal level (different 
strategies vote for different subgoals, which are then integrated), and 
at the process level (constraining the search on a topological map based 
on heuristics from the metric map, like in A* (Hart et al., 1968)).

3. Insights into navigation processes from computational model-
ing

3.1. Computational models of navigation behaviors

3.1.1. Aiming
Aiming involves moving towards a directly perceptible target at the 

goal along a relatively straight path.
A well-known model that produces aiming-like behavior is the 

Braitenberg vehicle (Braitenberg, 1986). One of the simplest versions is 
a vehicle with a wheel and sensor on the two sides, where the sensors 
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measure the intensity of the target stimulus, such as a bright light or an 
intense odor. In this simple version, the left and right sensors have an 
excitatory connection to the opposite wheel. This cross-wiring allows 
the vehicle to represent the direction towards the goal and, thus, to 
move towards the stimulus source by continuously adjusting its heading 
direction. Whenever one sensor detects a stronger signal than the other, 
the contra-lateral wheel speeds up, causing the vehicle to turn in the 
direction of the target and approach the goal. Although the Braitenberg 
vehicle’s behavior may resemble aiming, an alternative interpretation is 
that the simplest version of this model, is more accurately characterized 
as direction field navigation (discussed in Section 3.1.2), since the 
model does not represent the distance to the goal.

This limitation can be easily overcome, and models based on the 
Braitenberg vehicle are a powerful tool for modeling behaviors in 
neuroscience (Shaikh and Rañó, 2020). For instance, Milde et al. (2017) 
implemented aiming similar to a Braitenberg vehicle on a neuromor-
phic device, i.e. an implementation of biologically inspired neural 
networks on a chip, which can be used for real-time neural processing 
on robots. Their robot is equipped with a camera providing visual 
input to the network and is tasked with aiming towards a blinking 
LED light. The visual field is split in two halves, with the right half 
projecting to one population and the left half projecting to the other 
population. The entire spiking neuromorphic network has attractor 
dynamics where the decision about the movement (left or right) is 
implemented by a winner-take-all mechanism. Importantly, the speed 
is adjusted based on the size of the object in the visual field, with the 
robot slowing down as its distance to the target decreases. Thus, this 
model has a representation of both direction and approximate distance. 
The agent is tested on different starting and goal locations, with moving 
goals, and in different environmental conditions such as poor lighting 
and demonstrates the capacity for spatial generalization. However, it 
lacks a sophisticated object detection module, which restricts it to a 
very specific target, i.e., a blinking LED. Despite this lack of sensory 
generalization, this implementation qualifies as aiming, as we noted in 
Section 2.

A weakness of Braitenberg vehicle-like implementations is that the 
aiming behavior is hard-wired and not learned, which can result in 
low flexibility. To overcome this limitation, Chavarriaga et al. (2005) 
and a follow-up study by Dollé et al. (2010) implement aiming using 
neural networks with brain-inspired coding features. Unlike in Brait-
enberg vehicles, there is no particular constraint in the connections 
from sensors (sensory input neurons) to the movement units (action 
neurons). Instead, the network forms a preference to target cues in 
the connections via temporal difference learning when the agent finds 
the goal or is guided to it after a given amount of time. The model 
uses a population of landmark cells, which encode the angle between 
the target and the cell’s preferred direction in an egocentric reference 
frame. Additionally, as the agent moves closer to the target, the width 
of a Gaussian centered on the landmark direction increases, indicating 
that the target takes up a larger portion of the visual field, thus 
providing the agent with a distance estimate. Since the model consists 
of multiple behaviors that interact, among which aiming is only one, 
it is difficult to evaluate the degree of generalization exhibited by the 
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aiming module alone. However, results from their simulations suggest 
that under conditions where a landmark indicating the goal moves 
frequently, the aiming module is favored and can navigate to new goal 
locations based on the position of the landmark, indicating at least 
some degree of spatial generalization.

The models of aiming described thus far represent the direction 
and distance to the goal by the activity of the sensory units, with the 
aiming behavior being driven by the weights between the sensory and 
motor units, which can either be hard-wired or learned. While this 
simplicity makes it relatively easy to analyze the model’s behavior and 
computations, it also has some limitations. For instance, the distance 
and direction to the goal are given directly to the module in some 
cases (Chavarriaga et al., 2005; Dollé et al., 2010), which effectively 
sidesteps the modeling of the extraction phase of the behavior. Addi-
tionally, while sensory generalization is not strictly necessary to qualify 
as a certain navigation behavior, it is still practically useful, but it is 
unclear how the extraction phase could be added to these models.

Deep RL models could potentially overcome some of these short-
comings, but they also bring their own set of challenges and limitations, 
as we discuss next. Generally speaking, most state-of-the-art deep RL 
algorithms are generally capable of learning aiming using visual in-
put (Beattie et al., 2016; Chaplot, 2016; Jaderberg et al., 2016; Kempka 
et al., 2016; Zhu et al., 2016; Mirowski et al., 2017; Kulhanek et al., 
2019). However, even though the behavior of these RL agents might 
appear to be performing aiming, the agents may not be doing so in 
the way we envision it in our taxonomy. For instance, an agent could 
theoretically memorize a very specific sequence of actions that lead to 
a visual goal or use other features of the environment to guide it to the 
goal. Nevertheless, in general it seems that these models can generalize 
quite well to new goal and start locations. For instance, Chaplot (2016) 
compare the performance of several model-free deep RL agents in a 3D 
game environment to show that most demonstrate at least some degree 
of generalization. Importantly, since the underlying representations 
that guide aiming in these agents are rarely examined, it becomes hard 
to evaluate what exactly these agents have learned.

One study that examines the representations that underlie aiming 
in a deep RL agent finds that egocentric vector representations, i.e. 
a representation of direction and distance to the goal, emerge in the 
network when aiming (Vijayabaskaran and Cheng, 2022). They also 
show that the agent can learn aiming-like behavior in non-intuitive 
ways, for example, by relying on other features of the environment such 
as distal cues and lighting. In line with our suggestions, they find that 
testing for spatial generalization using novel start and goal locations 
and removing environmental features irrelevant to aiming can help 
identify genuine aiming behavior. However, much like the biologically 
plausible models we identify above, this model is also unlikely to ex-
hibit sensory generalization, since it is only capable of navigating to the 
specific sensory target (a red cylinder in the simulation environment) 
that the agent was trained on.

Like the findings of Vijayabaskaran and Cheng (2022), the studies 
by Chavarriaga et al. (2005) and Dollé et al. (2010) also suggest 
that aiming is likely carried out in an egocentric reference frame. An 
interesting possibility that we suggest should be studied in the future 
with a more detailed analysis of the deep RL agent’s behavior and 
network connectivity is that Braitenberg vehicle-like dynamics that in-
clude distance estimates might emerge to support aiming even in these 
complex agents. This may emerge, for instance, as a cross-connectivity 
pattern of the weights to the action units.

Finally, a model that comes closest to exhibiting sensory general-
ization in addition to spatial generalization is that of Zhu et al. (2016). 
The agent is trained to navigate in indoor scenes and can approach an 
object, which is shown to the agent at the start of navigation. It can 
thus generalize to novel objects and even to novel scenes. However, 
the addition of the components necessary for sensory generalization 
render this model far more complex than those that demonstrate a 
lesser degree of generalization. One potential solution is to use a pre-
trained object detection module that could potentially be shared with 
other navigation behaviors and aid sensory generalization in multiple 
processes.
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3.1.2. Direction field navigation
In direction field navigation, the objective is to move at a specific 

angle relative to a local directional signal, such as a gradient, until the 
target is reached.

The extraction of a local directional signal from direction field can 
be done in two ways (Table  1). The first involves using the intensity 
and/or time of arrival of a signal in order to infer a gradient. This can 
be done by sampling and comparing the signal intensity at different 
locations (Brokaw et al., 2021) or by estimating the relative position 
of the source based on differences in arrival time or intensity when 
sampling simultaneously with two sensors (Carlini et al., 2024). An 
agent can then navigate by following the gradient of the signal, either 
moving towards increasing intensity (gradient ascent) or decreasing 
intensity (gradient descent) until the goal is reached. In robotics, ol-
factory navigation is largely inspired by how animals with two nostrils 
use their sense of smell to find food, detect hazards, and navigate 
their environment (Catania, 2013; Villarreal et al., 2016; Wang et al., 
2023a). A key application of this in technology is finding the origin of 
gas leaks or other chemical emissions (Martinez et al., 2006; Soegiarto 
et al., 2022). Martinez et al. (2006) designed an experimental setup 
where a robot has to move in the direction in which the odor intensity 
increases. When the odor intensity reaches the maximum value, i.e. the 
robot cannot find a direction where the odor intensity increases, the 
robot stops. That point is considered the source of the leakage. Similar 
to most of the olfactory navigation models, the robot has two sensors, 
i.e. E-Noses, each containing an array of metal-oxide sensors, which 
were integrated with a spiking neural network for odor recognition. 
This model requires two sensors, consistent with findings from a study 
by Porter et al. (2007) which highlights that two nostrils in humans are 
more effective than one. The robot navigates towards the source using 
either binary or analog navigation methods. The binary navigation 
method makes a simple left-or-right decision based on which side 
detects a higher odor concentration, without considering the exact 
difference in concentration. In contrast, the analog navigation method 
relies on the precise difference in odor concentration between the two 
sides, enabling more gradual and fine-tuned turns. While the analog 
method performs well in stable environments with a smooth odor con-
centration gradient, leading to more controlled trajectories, the binary 
method proves more efficient in highly turbulent conditions, where the 
odor plume is fragmented and fluctuates rapidly. In such environments, 
the binary method allows for quicker and more robust decisions based 
on simple concentration comparisons. Switching between these two 
methods allows the agent to cope with different types of environments.

Following a similar concept, Huang et al. (1999) introduced a 
mobile robot that can navigate towards increasing sound intensity. 
The sound source following is based on the precedence effect model 
of the human auditory system (Carlini et al., 2024), allowing the 
robot to cope with echoes and reverberations. The system uses three 
microphones arranged in a triangular configuration and calculates 
inter-aural time differences to find the direction of the received sound. 
The results show that the robot can find the sounding objects in a 
reverberant environment and approach the objects without collisions, 
even when the objects were behind obstacles with background noise. 
The microphones basically function like the ears of humans and other 
animals. The major reasons that the model has three ears are the need 
to enhance directional accuracy, eliminate front–back confusion, and 
increase robustness to background noise.

The robotics models discussed above are engineered to be able 
to navigate to novel goal locations from novel start locations and 
adapt to reasonable environmental changes. That is, they exhibit a 
high degree of spatial generalization. Looking to these models in order 
to understand how mammals may achieve such generalization and 
identifying where any differences lie could provide insights for com-
putational modelers interested in the neural mechanisms of direction 
field navigation. This is a promising avenue that could be pursued in 
the future.
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The second method of extracting the directional signal involves 
directly inferring the gradient from environmental properties, such as 
altitude or magnetic field. Some animals, such as birds (Wiltschko 
and Wiltschko, 2023), fish (Lohmann et al., 2022), turtles (Lohmann 
et al., 2022), and mammals like rodents (Burda et al., 1990), bats (Hol-
land et al., 2006), or controversially, humans (Baker, 1987) use the 
earth’s magnetic field for navigation. They possess a sense known as
magnetoreception (Lohmann et al., 2022). While we found no models 
of spatial navigation in mammals specifically based on magnetore-
ception, a few biologically inspired models of spatial navigation have 
been proposed for birds and fish that rely on the earth’s magnetic 
field. For example, Zein et al. (2021) introduced multiple models of 
navigation using the magnetic field of the earth. They compare the 
simulation trajectories with GPS (Global Positioning system) data of 
the greater white-fronted geese migrating from their Russian Arctic 
breeding grounds to their European wintering sites. The models in-
clude geomagnetic taxis, where birds are guided by moving towards 
or away from a specific geomagnetic property, such as intensity or 
inclination. Another model is constant heading navigation (compass 
navigation), in which birds maintain a fixed direction relative to the 
earth’s magnetic field, much like using a compass. The results indicate 
that simulations based on underlying gradients that minimize geomag-
netic values (taxis), especially during autumn migration, were more 
likely to produce migratory trajectories closely resembling the actual 
observed geese migratory paths than other models.

Note that there is a difference in terminology that might cause 
confusion. In several direction field navigation models, the authors use 
the terms localization and following. The first is used to describe the 
process of finding a goal, such as the source of an odor or smell. In 
contrast, in this review paper, we define localization as the process 
by which the agent identifies the target’s location from a distance (see 
Section 3.1.1) or the agent’s own location (see Sections 3.1.5 and 3.1.6). 
The term ‘‘following’’ is used by others to mean moving in the direction 
where the gradient of that signal points. We use it differently in the 
context of path following (see Section 3.1.3).

3.1.3. Path following
Path following involves identifying the path leading to the goal 

and constantly adjusting the agent’s position in order to stay on or 
near the path. The agent might move directly on the path, such as 
on a trail or street or keep a certain distance from it, such as when 
following a river. Path following is a fundamental behavior from both 
biological and computational perspectives. Biologically, a variety of 
species, including non-mammalian ones, such as snails, exhibit the 
ability to follow trails (Goss et al., 1990; Roessingh, 1989; Ng et al., 
2013), and paths or trails form naturally in open spaces as a result of 
repeated use by people (Helbing et al., 1997) or animals (Croft, 2019).

Computationally, fairly basic algorithms enable robots to
autonomously follow paths. Hung et al. (2023) review several of these 
algorithms and propose that in principle they all fall into one of two 
categories — those that minimize path following error either in the 
agent’s reference frame and those that do so with respect to a reference 
frame attached to a point moving along the path. A notable example 
of the latter is the pure pursuit algorithm (Amidi and Thorpe, 1991; 
Coulter, 1992), where the agent constantly pursues a look-ahead point 
at a set distance ahead on the path. However, these solutions are highly 
technical, and their implementation details are challenging to relate 
directly to mammalian navigation. Whether the dichotomy put forth 
by Hung et al. (2023) also applies to mammalian navigation is an 
open question that can be addressed by future experimental research 
and computational modeling. Such a difference may be observable at 
the behavioral level. An algorithm like pure pursuit, which is able 
to detect curves and other variations in the path ahead and adjusts 
its course in advance, might map onto how animals use visual or 
other look-ahead information to stay on a path. On the other hand, 
detecting and correcting errors in a strictly body-based reference frame 
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would mean that a deviation from the path is only corrected upon 
first encountering it, which may be analogous to thigmotaxis used 
by rodents in burrows and in the Morris Water Maze. The difference 
between these two computations may be subtle and less apparent while 
following relatively straight or smooth paths, but are likely to become 
more evident in paths that have sharp and sudden changes.

Perhaps due to the perceived simplicity of this behavior, in con-
trast to the relative abundance of path following models found in the 
robotics literature (Hung et al., 2023), there is a dearth of models that 
explain how biological agents other than simple organisms (Edelstein-
Keshet, 1994; Sharpe and Webb, 1998) might achieve this behavior. 
This absence of modeling studies also limits our ability to assess gener-
alization. However, the evidence from the robotics literature suggests 
that achieving spatial generalization in models may not be particularly 
challenging. We note that this is an important gap that can be addressed 
by future research.

3.1.4. Vector movement
Vector movement requires representing and updating a goal vector, 

i.e. the distance and direction to the goal from the agent.
Vijayabaskaran and Cheng (2024) study how the goal vector signal 

by a deep RL agent is used to navigate. At each time step, the agent 
receives a pre-computed goal vector and also a visual input. They 
find that using the goal vector to navigate is necessary for robust 
navigation in complete darkness or when vision is temporarily lost. 
This is consistent with our suggestion that vector movement acts as a 
fallback process that is continually active (Parra-Barrero et al., 2023). 
However, they show that this robustness comes at the expense of 
accurate navigation in cases where the goal vector is moderately noisy 
(for example, due to accumulating path integration errors). In addition, 
they find that both the goal vector signal and vision are responsible for 
place cells emerging in the model. The authors do not explicitly test for 
generalization in this model, however, given previous results that show 
generalization in a similar task (Vijayabaskaran and Cheng, 2022) and 
the fact that the model receives pre-computed goal vectors, it is likely 
that the model would exhibit generalization at least to novel start and 
goal locations.

While the model above uses pre-computed vectors, other models 
address the issue of how the brain might compute this goal vector. 
The prevailing view is that grid cells underlie this computation. For 
example, Banino et al. (2018) train a deep RL agent on goal-directed 
navigation tasks, including homing. They find that in order to suc-
cessfully navigate to the goal, the agent must receive a ‘‘goal grid 
code’’, which is the activity of grid units in the network when the 
agent reaches the goal as additional input. The agent’s performance 
suffers significantly in the absence of this extra input. This model thus 
provides indirect evidence that vector navigation is driven by a goal 
vector computation that compares the grid code at the current location 
to the grid code at the goal.

How might this comparison of the current and goal grid codes be 
executed? Bush et al. (2015) present an algorithmic solution based 
on the Fourier shift theorem and two general possibilities for neural 
network implementations (also see Stemmler et al., 2015). The first 
class of implementations computes the vector by using an additional 
decoding module to decode the grid cell activity at the current and goal 
location and then computes the distance between those two locations. 
The second class involves sampling trajectories between the current and 
goal location, either sweeping forward from the current location until 
the goal is encountered or changing head direction. Edvardsen et al.’s 
(2019) model is a recent example of the first type of implementation. 
The agent contains a topological map where snapshots of grid cell 
activities corresponding to each location are attached to the nodes. As 
the agent moves, the goal vector is computed and updated by a grid 
cell decoder (Edvardsen, 2018) which explicitly compares the grid cell 
activity of the agent at the current node to that at the goal node. The 
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goal vector is thus extracted from a topological map of the environment 
that is enriched with coordinate information.

Erdem and Hasselmo (2012), Erdem et al. (2015) implement a 
mechanism of the second class in their model using a biologically 
plausible search algorithm for the rewarded location by sampling linear 
look-ahead trajectories on a combined grid cell and place cell map. 
Each virtual trajectory along a certain direction is initiated while the 
agent remains stationary and triggers a full chain from head direction 
cells, grid cells, place cells, and up to reward cells whose activities 
indicate an association with the reward signal. The agent then moves 
along the direction where a reward cell is found until it arrives at the 
corresponding location. Similar to Edvardsen et al.’s (2019) model, the 
vector is extracted from a map of the environment. Vector movement 
demonstrates a high degree of spatial generalization in these two 
models, since it can navigate between different start and goal locations 
based on the grid code.

A vector pointing from the agent to the goal does not necessarily 
require explicit representations of the two locations. In Goldschmidt 
et al. (2017), for example, the model directly maintains a homing 
vector pointing from the home location to the agent’s current location 
by using a layer of memory neurons which integrate the velocity 
modulated signals of the head direction neurons, i.e. a path integration 
algorithm. As the agent encounters a rewarded goal, the homing vector 
at the moment is copied onto another array of vector cells by employing 
a reward-modulated associative learning rule. Later, the vector from the 
agent’s current location to the goal can be computed by subtracting the 
current homing vector from the stored vector.

In addition to computing the goal vector, vector movement also 
requires the agent to update it as it moves towards the goal. For 
example, if the agent knows that the goal is 20 meters to the north-east 
at the start of navigation, it must be able to keep track of its motion 
along this vector in order to know when it has traveled 20 meters 
and arrived at the goal. This can be accomplished by path integration, 
which is often modeled using grid cells (see Section 3.1.6).

In general, vector movement is one of the behaviors that has re-
ceived relatively more attention from the modeling community, largely 
propelled by interest in uncovering the computational role of grid cells. 
However, there are still some important questions that remain unan-
swered. For instance, the disproportionate focus on grid cells means 
that other potential substrates for vector movement have not been fully 
explored, such as cells explicitly encoding the vector to the goal which 
have been discovered in bats (Sarel et al., 2017). Another question is 
whether the goal vector is directly represented and updated, or if there 
are separate vectors representing the current and goal locations, which 
are then subtracted to compute the goal vector. One can also ask, if the 
vector is represented in a Cartesian or polar coordinate system, which 
would manifest as differences in the distribution of errors made by the 
agent.

3.1.5. Guidance
Guidance is defined as navigating to a goal location by using 

information about its spatial relationship from landmarks and distal 
orienting cues. When designing a task to study guidance, the most 
obvious choice is to require the agent to navigate to an unmarked goal 
location in a maze surrounded by distal cues as, e.g. in the Morris water 
maze (Morris et al., 1982). As for representations, many computational 
models of guidance focus on place cells that encode spatial location 
based on configural cue (Shapiro et al., 1997).

Sheynikhovich et al. (2009) presented a computational model of 
rodent navigation that consists of two pathways to solve the task. 
The first pathway contains a visual module that processes visual input 
from the environment and an egocentric action module that generates 
actions by receiving the processed visual information. The second 
pathway starts from the self-motion signals, passes through a grid cell 
module and a place cell module, and eventually to another allocentric 
action module. Importantly, learning occurs in both pathways but only 
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in the immediate connections to the action modules. In the simulations, 
the second pathway clearly outperformed the first one, suggesting an 
advantage of having an explicit encoding of space (place cell module). 
Several studies (Ghazinouri and Cheng, 2025; Ghazinouri et al., 2024; 
Scleidorovich et al., 2020; Brzosko et al., 2017) use a two-layer spiking 
neural network to demonstrate the benefits of having a place cell 
module in the Morris water maze task. The first (input) layer is a purely 
spatial representation, where each unit mimics a place cell. As a result, 
the population activity pattern represents the position of the animal. 
The second layer is the action selection layer. The policy is learned 
by adjusting the feed-forward synaptic weights between two layers by 
using reward-triggered STDP learning rules. The above models have 
demonstrated that a place cell module together with an action selection 
model can solve a guidance task.

These models probe the representations and computations under-
lying guidance. Agents learn the location of the goal and localize 
themselves (using place cells in the above models) and use this informa-
tion to move towards the goal. To avoid this explicit computation, the 
result of that computation is learned and stored for each location, such 
that the appropriate action is triggered when the location is reached. 
For example, all the models in the preceding paragraph use an explicit 
encoding of space using place cells in their first layers and encode a 
preferred moving direction for each location in the connection weights 
from place cells to the action neurons. This shortcut has severe conse-
quences. Since there is no explicit representation of the goal location 
and appropriate computation of the movement direction, the agents 
can only navigate to one goal location at any given time. Navigation 
to another goal requires reversal learning (Ghazinouri and Cheng, 
2025). Similar representations and computations emerge in deep RL 
agents that receive only camera images as inputs (Vijayabaskaran and 
Cheng, 2022). As the spatial location is not supplied as an input, the 
agent develops a spatial representation internally. Similar to the neural 
network models, model-free RL models also associate an action with 
each location. The authors test this model on its ability to navigate 
from novel start locations, and show that place cell-like representations 
facilitate the ability of the agent to demonstrate spatial generalization. 
However, not all aspects of spatial generalization were probed, since 
the distal cues were not moved, rotated, or otherwise manipulated.

Other models take a view-matching approach to guidance, inspired 
by insect navigation. For instance, Baddeley et al. (2012) proposed 
an extreme case of representing the goal with visual information: the 
goal is stored as a panoramic snapshot of where the agent receives 
the reward, where the snapshot includes both distal and local cues. 
During navigation, the agent keeps minimizing the errors between the 
goal image and rotated images from the nearby locations to go back to 
the goal location. Due to the over-simplification of the view-matching 
algorithm, the agent can only reach those locations that are quite close 
to its current location. To reach a previously visited goal that is far 
away, the agent maintains a sequence of snapshots connected to each 
other along the route from the start to the goal location, so that it can 
move from one ‘‘sub-goal’’ to the next in order to reach the final goal. 
This means that guidance by view matching only happens between 
successive subgoals along a route. Thus, this model exhibits a low 
degree of spatial generalization when the goal is far away, because it 
can only reach the goal by starting from one of the sub-goals along a 
stored route. However, whether this is a problem of all view-matching 
algorithms is not clear. One possibility could be that these algorithms 
need to be combined with an exploration module to effectively find the 
goal from different starting locations.

For a navigation behavior to qualify as guidance in our taxonomy, 
the agent has to be able to generalize its behavior to a different 
goal locations. This requires the explicit calculation of a movement 
direction by subtracting the current location from the goal location. 
For instance, in the deep RL model by Cruse (2003), a recurrent 
network receives vectors that describe the relationship between the 
landmarks themselves and between the landmarks and the goal as 
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inputs. Although the network has a relatively simple architecture, it 
uses built-in redundancies to be able to continue moving towards the 
goal even when a landmark becomes invisible for a while, which is 
crucial in real world navigation. Frommberger (2008) used a vector 
of positions of walls relative to the agent as input representations in 
a Q-learning agent. These representations speed up learning compared 
to a similar agent that relied on a metric representation (x-y coordi-
nates and head direction). The policy learned in the landmark-based 
agent also transferred to novel environments, showing some spatial 
generalization. Mirowski et al. (2019) showed that a similar approach, 
using only visual input and goal encoding as a vector of distances to 
a set of landmarks, can be extended to navigation in large cities such 
as London, Paris, and New York. These methods can generalize quite 
well since they rely on explicit representations of the relationships to 
landmarks. How these representations are extracted, i.e. the extraction 
phase of the behavior, is however not considered by these models.

There are multiple possible ways of execution, but the general 
criterion is that the computation should guide the agent such that 
the representations of the goal location and self-location become more 
similar with each step.

3.1.6. Path integration
Path integration is a process that allows agents to keep track of their 

position with respect to a reference point. Although it is not a separate 
navigation process within our taxonomy, path integration may be used 
by several of the processes to self-localize when needed. Given its role 
as a fundamental module shared across different processes, we briefly 
review models of path integration separately here.

One approach to learning path integration is to train a recurrent 
neural network using supervised learning (Cueva and Wei, 2018; Ban-
ino et al., 2018). That is, the network takes a linear velocity signal 
as input and, given an initial location, uses it to estimate the agent’s 
current location at every time step. Interestingly, units that look like 
grid cells emerge naturally in these network (but see Kanitscheider 
and Fiete, 2017). These studies, however, do not explain why the 
emergent grid pattern is sometimes square and sometimes hexagonal 
in a square environment (theoretical work suggests that hexagonal 
grids are optimal for spatial coding in 2D (Wei et al., 2015)). Other 
observations, such as grid scale grouping into discrete modules in the 
network (Banino et al., 2018), similar to that in rodents (Stensola et al., 
2012), and the need for regularization for grid patterns to arise, have 
also yet to be analyzed. In key work, Sorscher et al. (2022) show that 
using simple biologically inspired constraints, such as using place cells 
with surround inhibition as outputs and non-negative firing of hidden 
units, causes the grids in path-integration networks to become more 
hexagonal. They further examine these networks to demonstrate that 
attractor dynamics underlie path integration in these trained recurrent 
networks, establishing a clear relationship to previous mechanistic 
models of path integration (Samsonovich and McNaughton, 1997; Fuhs 
and Touretzky, 2006; Burak and Fiete, 2009).

Finally, in a setup similar to the recurrent neural network models 
discussed above but using angular velocity signals as input, Cueva 
et al. (2020) demonstrate that cells that emerge in the network share 
properties with head direction cells and shifter cells that jointly code 
for head direction and angular velocity. This is consistent with exper-
imental evidence that head direction cells play a role in angular path 
integration (Valerio and Taube, 2012) and may suggest a division of 
labor between grid cells and head direction cells in integrating the 
linear and angular components of self motion.

3.2. Computational models of navigation strategies

In our taxonomy navigation strategies are processes at the higher 
level that plan a path to a goal by identifying a sequence of sub-goals. 
Here we also include models that generate a behavior or even direct 
action signals as output, if these models provide interesting insights.
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3.2.1. Route navigation
In route navigation, a sequence subgoals is stored, so that arrival 

at a subgoal triggers the next subgoal. The dichotomy between route 
navigation and map navigation is often mapped onto the distinction 
between model-free and model-based RL (Chavarriaga et al., 2005; Daw 
et al., 2005; Dollé et al., 2010). However, we believe that model-free 
RL does not map directly to a particular behavior or strategy within 
the taxonomy. Depending on the implementation, representation, task, 
and other factors, model-free RL could be used to model a variety 
of navigation processes (for discussion of this issue, see Section 4.3). 
Instead, hierarchical approaches to RL (Dayan, 1993; Wiering and 
Schmidhuber, 1997; Sutton et al., 1999; Precup, 2000; Stolle and Pre-
cup, 2002) are a better match to our account of route navigation, and 
have also received considerable attention in neuroscience (Botvinick 
et al., 2009; Ribas-Fernandes et al., 2011; Botvinick, 2012; Diuk et al., 
2013). Hierarchical RL is a framework that organizes learning and 
decision-making processes into a hierarchy of tasks or subtasks. Unlike 
traditional RL, which focuses on finding a flat policy that maps states 
to actions, hierarchical RL decomposes the problem into multiple levels 
of abstraction (Barto and Mahadevan, 2003; Rasmussen et al., 2017). 
Commonly a two-tiered hierarchy is used, which is analogous to the 
hierarchical relationship between navigation strategies and behaviors 
in our taxonomy. In the following, we discuss the parallels between 
route navigation and two widely studied approaches to hierarchical RL, 
the options framework (Sutton et al., 1999; Precup, 2000; Stolle and 
Precup, 2002) and goal-conditioned hierarchical RL (Nachum et al., 
2018, 2019b).

In the options framework, a higher-level agent makes a discrete 
choice between a number of available lower-level behaviors, or options, 
which leads to the execution of a high-level action. Viewed through 
the lens of our taxonomy, these low-level policies correspond to the 
navigation behaviors, which share a hierarchical relationship to the 
higher-level agent, which corresponds to the navigation strategy, in this 
case, route navigation. However, since the higher-level agent directly 
chooses a behavior, rather than outputting a sub-goal, the options 
framework more closely mirrors the recognition-triggered response ac-
count of Franz and Mallot (2000). Alternatively, the options framework 
could correspond to the organization of behaviors in our taxonomy. 
This possibility is explored in detail later in Section 3.3.

The RL framework that most closely resembles our view of route 
navigation is perhaps goal-conditioned hierarchical RL (Nachum et al., 
2018, 2019b; Wang et al., 2023b). Here, the higher-level agent outputs 
a sub-goal, which must be reached by the lower-level agent. This lower-
level agent can be seen as analogous to the organization of behaviors 
in our taxonomy. Upon arriving at the subgoal, the lower-level agent 
hands control back to the higher-level agent which then sets the next 
subgoal. Building on this concept, Nachum et al. (2019a) introduce a 
novel approach to enhance hierarchical RL by focusing on near-optimal 
representation learning. The agent learns a transformation from raw 
observations into a structured target space that effectively capture the 
environment’s structure and that is useful for the specific tasks that the 
hierarchical RL agents are faced with. The quality of this goal repre-
sentation directly impacts the efficiency and optimality of the learned 
hierarchical policies since they determine what the low-level policy 
tries to achieve. This approach enables the agent to abstract relevant 
subgoals and optimize their behavior. More recently, Schiewer et al. 
(2024) introduced a novel hierarchical model-based RL framework that 
constructs hierarchical world models, simulating environment dynam-
ics at various levels of temporal abstraction. This approach enables a 
stack of agents to communicate in a top-down manner by proposing 
goals to their subordinate agents. This approach allows all agents and 
models in the hierarchy to be trained simultaneously. This also keeps 
the decision-making process simpler by reducing the number of abstract 
actions needed. While the hierarchical model-based RL approach did 
not achieve higher final episode returns than traditional methods, it 
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effectively enabled decision-making across two levels of abstraction by 
utilizing compact, low-dimensional abstract actions.

Although we have only discussed two-tier hierarchies so far, one 
could also imagine that three-tier hierarchies could be used to describe 
navigation, with the top level corresponding to navigation strategy, the 
middle level corresponding to the organization of navigation behaviors, 
and the lowest level to the actual behaviors. Although we did not 
find any 3-tiered hierarchical models that implement this precise setup, 
some researchers have used 3-tiered hierarchical models to implement 
navigation in a different form. For example, Levy et al. (2019) use a 
three-tier agent to navigate in a four-room environment. When this 
agent is given the task of navigating between two rooms separated 
by an intermediate room, the top-level agent first assigns a sub-goal 
to the middle agent in the intermediate room. The middle agent then 
selects the points that form a trajectory to the sub-goal, and the lowest 
level calculates the joint torques required to move the agent from one 
point to the next until the sub-goal is reached. The key difference to 
the taxonomy is that the middle agent in this case implements a single 
behavior, and the lowest agent deals with the calculation of detailed 
movement instructions, which we do not cover in our taxonomy.

A significant advantage of using hierarchical RL is that higher-level 
actions are semantically meaningful, aiding in the interpretation of 
otherwise black-box-like agents. For example, in learning to navigate 
in mazes, Pertsch et al.’s 2020 RL agent learned two useful skills 
— walking through narrow doorways, and following corridors, which 
seem to correspond to aiming and path following in our taxonomy. 
Thus, deconstructing complex navigation tasks using hierarchical RL 
and looking for parallels between learned policies and elementary 
navigation behaviors is a promising area for future research.

3.2.2. Topological and metric navigation
In this section, we refer to topological and metric navigation collec-

tively as map navigation, following the taxonomy (Parra-Barrero et al., 
2023). In topological navigation, the underlying ‘map’ takes the form 
of a graph and contains only connectivity information between nodes, 
much like a subway map. In metric navigation, the map contains a 
globally consistent metric, like a city map. We believe that topological 
and metric navigation are two extremes rather than distinct categories, 
and most models reviewed in this section fall somewhere between these 
two extremes. We therefore combine the review of topological and 
metric navigation.

As described in Section 2, there are two aspects that define the 
navigation strategies — the spatial knowledge structure (in this case the 
map) and the planning algorithm that operates on it. Hence, we discuss 
the models in this section mainly based on the implementation of the 
map in the models, with a focus on the planning mechanisms. Since 
map navigation is the most extensively modeled among the processes 
in our taxonomy, we divide this section into two parts: biologically 
plausible models and RL-based models.
3.2.2.1. Biologically plausible models. Place cells, and more recently, 
grid cells, are often regarded as the neural basis of the cognitive map. 
This view, however, is driven primarily by findings in rodents, and 
the picture in humans is very likely more complex. Overall, this topic 
remains the subject of scientific debate and ongoing research (see 
Ekstrom and Hill, 2023, for a review). While grid cells have been 
proposed to underlie metric navigation, the view on place cells has been 
more mixed. While many uphold a metric view of them (O’Keefe and 
Nadel, 1978), others propose that they form a topological map of the 
environment (Dabaghian et al., 2014; Dabaghian, 2019). In the context 
of planning, two neural mechanisms have been proposed as possible 
candidates: theta sequences (Parra-Barrero and Cheng, 2023) and sharp 
wave ripple activity, such as replay and preplay of sequences (Buhry 
et al., 2011; Pfeiffer and Foster, 2013). Consequently, biologically 
plausible models of map navigation have largely focused on how place 
and grid cells could be used to guide navigation, predominantly using 
replay.
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The question of how place cell maps may be used to plan and navi-
gate has been considered in models quite early on. For instance, Muller 
et al. (1996) propose that a place cell map takes the form of a directed, 
weighted topological graph, with the place cells as nodes and the 
synapses between them as edges. The synaptic weights thus correspond 
to the edge weights of the graph, and a graph planning algorithm 
(the authors suggest Dijkstra (1959)) is used to plan a route to the 
goal. While this model clearly leans towards the topological side of the 
spectrum, as evidenced by the fact that it would still need to explore 
a new route when it becomes available before it can plan using it, 
the model also has a metric element to it. Specifically, the synaptic 
strength between place cells in the model decays with the Euclidean 
distance between the field centers, thus incorporating metric distance 
information.

Most other models based on place cells do not explicitly align with a 
topological or metric interpretation. For instance, Gao (2023) proposes 
a continuous attractor network model of place cells a model where the 
place cell map is not pre-wired, but formed during a period of random 
exploration. In this model, place cells whose fields are sequentially 
visited by the agent are also sequentially connected. Additionally, a 
second layer of striatal neurons encodes the geodesic distance between 
place cells and the reward location. Thus, the map encodes some 
metric information in the form of distance to the goal. However, the 
distance between arbitrary locations is not encoded, since unlike the 
model of Muller et al. (1996), the synaptic weights between place cells 
are not correlated with the Euclidean distance between their place 
field centers. The planning mechanism in this model incorporates both 
awake and offline replay. During awake replay, the agent samples 
multiple forward trajectories akin to forward replay that originates 
from the agent’s current location. The agent then selects the trajectory 
with the highest probability of reaching the reward location, based on 
the activity of the striatal neurons. In the offline replay phase, external 
inputs to the network are removed, and the synaptic weights between 
place cells and striatal neurons are updated based on network activity 
during this phase. Interestingly, although the model does not include 
an explicit randomization mechanism, the offline replay trajectories 
distribute fairly uniformly across the environment.

Despite not explicitly encoding complete metric relationships, Gao’s 
(2023) model demonstrates a substantial degree of planning gener-
alization. The agent exhibits flexibility by adapting to environmental 
changes such as blocked paths or newly available routes. However, it 
relies on re-exploration followed by offline replay to do so, suggesting 
that this model aligns more closely with the topological end of the 
spectrum.

A closely related model is that of Gönner et al. (2017), which 
also uses a continuous attractor network model to simulate place cells 
in the CA3 region of the hippocampus. An additional layer of place 
cells, representing the dentate gyrus, projects to the CA3 layer. The 
model also includes some metric information: inter-place-cell synaptic 
weights are pre-configured based on the Euclidean distance between 
field centers. In addition, like in the model by Gao (2023), the agent 
also encodes distances between place cells and the reward location in 
the synapses between the dentate gyrus and a separate context layer 
representing the prefrontal cortex (which we do not discuss here). 
Thus, the model encodes both distances to the goal as well as distances 
between place fields in its synaptic weights. The planning mechanism in 
this model differs in that it generates a single place-cell sequence at the 
start of navigation, occurring on a compressed timescale. The endpoint 
of this sequence serves as a subgoal for vector movement, and this is 
carried out until the goal is reached. Notably, the sequences generated 
by the model are biased by the rewarded location, and can span through 
previously unvisited trajectories, again suggesting a metric component. 
However, unlike Gao’s (2023) study, the agent was not tested on its 
ability to take shortcuts or detours, which makes it difficult to gauge 
the level of planning generalization that this agent supports.
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The two models discussed so far build maps of the environment 
by relying on a place cell module. Other models go a step further by 
including grid cells, which have been hypothesized to function as a 
metric system (Dang et al., 2021; Ginosar et al., 2023). For example, 
the model proposed by Erdem and Hasselmo (2012) consists of a chain 
of layers of head direction, grid, place cells and prefrontal cortical 
columns. The place cells encode pure location information, which is 
enriched with neighborhood connectivity by the prefrontal units, thus 
encoding the topology of the environment. The map thus consists of 
metric information from the grid cells and topological information 
from the place and prefrontal units. The planning mechanism relies on 
forward linear look-ahead trajectory probes. The head direction activity 
shifts the spiking phase of grid cells, sequentially reading out potential 
future trajectories from the agent’s current position. In addition, the 
planning mechanism also relies on a reward signal that originates at 
the goal and diffuses through the place cell map. The model then selects 
the look-ahead trajectory that activates the place cells with the highest 
reward signal. The authors demonstrate that these two mechanisms — 
linear look-ahead and reward diffusion — enable the agent to navigate 
along novel routes and take shortcuts, making this an instantiation 
of metric navigation under our taxonomy. A limitation of this model, 
however, is that these look-ahead computations occur at fixed intervals, 
meaning that subgoals are always selected at a uniform distance from 
the previous location. This rigidity does not fully capture the flexible 
subgoal selection that we propose.

Similarly, the model of Edvardsen et al. (2019) also integrates both 
place cell and grid cell modules to build the internal map. The place cell 
module is implemented by an abstract graph where each node contains 
a snapshot of the grid cell activity associated with that location, while 
the firing patterns of the grid cells encode the coordinates of locations 
within the environment. The connections between the nodes are formed 
during a phase of random exploration. The place cell map thus takes 
on the structure of a topological graph that has coordinate information 
associated with each node, and the grid cell network forms a metric 
map of the environment. During goal-directed navigation, a place cell 
(graph node) is associated with a reward signal. Planning in the agent 
involves both the grid and place cell modules. First, a grid cell decoder 
is used to compute a vector pointing from the agent to the reward 
location by using the grid cell patterns associated with the current node 
and the reward node. Thus, in an open field without obstacles, the 
agent would plan a direct path to the goal using the grid cell network. 
The place cell module kicks in only when the computed vector leads 
the agent to an obstacle that cannot be overcome by simple obstacle 
avoidance. Planning on the place cell module involves a backward 
replay mechanism that looks for a subgoal that leads the agent around 
the obstacle. This subgoal is then again reached by directly planning a 
path to it using the grid cell module. Thus, in cluttered environments, 
both the topological and metric components interact to plan a path to 
the final goal.

One clear takeaway from the discussion above is that modeling 
efforts have almost exclusively focused on place and grid cells as the
de facto neural substrates of map navigation. While their regular and 
readily interpretable firing properties make these cell types attractive 
candidates for modeling, experimental evidence increasingly points to 
distributed and mixed representations (Rigotti et al., 2013; Ekstrom 
et al., 2020; Parra-Barrero et al., 2023; Maisson et al., 2023). Thus, one 
future research direction for modelers is to incorporate these findings 
into computational models that better capture the complexity and 
flexibility of map navigation.
3.2.2.2. Robotics and RL models. In this section, we discuss robotics 
and RL-based models of navigation. We first discuss broadly on how 
these models approach the representation of the map and planning 
and then analyze specific computational models in terms of the map 
structure and planning mechanisms they use.

Most studies of the Simultaneous Localization And Mapping (SLAM) 
problem are driven by engineering demands and they might, therefore, 
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seem rather remote to this review. However, some approaches to SLAM 
use more biologically plausible algorithms (Milford et al., 2004; de 
Souza Muñoz et al., 2022) and some studies even use neural networks 
to implement similar algorithms (Zhao et al., 2022). The approach of 
having both topological and metric representations, discussed in the 
previous section for biologically plausible models, has proven fruitful 
in the field of robot SLAM, too. There are two primary strategies for 
building such hybrid maps in SLAM. The first strategy starts with a 
global metric map, which is later simplified into a topological repre-
sentation using clustering or graph partitioning (Thrun, 1998; Zivkovic 
et al., 2006). This results in a map representation analogous to those 
proposed by some of the biologically plausible models (Erdem and 
Hasselmo, 2012; Edvardsen et al., 2019). An alternative proposal fa-
vored by many is that of a large-scale topological map with embedded 
local metric maps (Poucet, 1993; Meilinger, 2008; Parra-Barrero et al., 
2023) that may be deformed (Parra-Barrero et al., 2023; Lynch, 1964). 
This approach in robotics is inspired by the spatial semantic hierarchy 
theory (Kuipers, 2000a), and builds a global topological map first and 
attaches local metric maps to its nodes. Unlike global metric maps, 
these local maps do not share a consistent reference frame; instead, an 
agent is localized relative to its current map.

Planning in SLAM-based models is typically computed using graph 
search algorithms such as A* or Dijkstra’s algorithm (Hart et al., 1968; 
Dijkstra, 1959), which find an optimal route between two nodes in the 
topological map. Once the path is planned on the global scale, local 
movement, is handled using a navigation stack of different algorithms 
such as wall- or path-following and obstacle avoidance. Since, by defi-
nition, these models simultaneously build maps of unexplored territory, 
they exhibit a high degree of planning generalization.

Although these approaches are primarily technical solutions for 
map-building, localization and navigation, there are some valuable 
lessons for those interested in mammalian navigation. For one, they 
neatly demonstrate the role that spatial scale plays in the type of 
map that is most effective for navigation. While at smaller scales, 
metric maps are feasible, large-scale planning and navigation are much 
more efficient when using topological maps. For instance, Konolige 
et al. (2011) demonstrate that at short distances, planning times for 
metric and topological maps are nearly identical. However, as the 
scale increases, the differences become much more pronounced, with 
planning on a metric map taking roughly seven times longer than on 
a topological map at larger scales. Notably, while the planning time 
varies significantly, the actual length of the planned path remains 
largely similar between the two map types. In addition, these ap-
proaches demonstrate where metric maps become essential — planning 
and navigating in environments that require flexibility and precise 
localization, such as cluttered indoor spaces, consistent with Edvardsen 
et al.’s (2019) findings.

While SLAM methods focus on constructing the maps that enable 
navigation and accurate localization, RL models address the question of 
how map navigation could be learned and optimized using interactions 
with the environment. Model-based RL (Sutton and Barto, 1998) is 
the most obvious candidate for modeling map navigation, since it 
constructs an explicit model of the environment, which corresponds to 
the map. An alternative representation in RL-based navigation is the 
successor representation, which encodes the expected future occupancy 
of states (Stachenfeld et al., 2017; Menezes et al., 2025). The predictive 
horizon of successor representation is controlled by a discount factor, 
which determines how far into the future state relationships are consid-
ered relevant. The structure of successor representation can resemble 
either a metric or topological map, depending on how the states are 
represented. If the states are defined on a regular grid by the modeler, 
the successor representation will reflect metric relationships up to a 
distance controlled by the discount factor. One can also construct a 
hierarchical version of successor representation using different predic-
tive horizons to represent different levels of the hierarchy (Stachenfeld 
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et al., 2017), and there is some experimental evidence that this hier-
archical version is able to fit human behavior (Wientjes and Holroyd, 
2024).

Broadly speaking, planning in RL models can be categorized into 
online (decision-time) planning and offline (policy-learning) planning. 
Decision-time planning corresponds to a more traditional view of plan-
ning that involves evaluating possible future trajectories based on the 
map and selecting the optimal one based on some cost function. This 
approach exhibits a high degree of planning generalization, since it can 
flexibly re-plan trajectories if, for instance, paths are blocked. However, 
a major drawback of using decision-time planning on the map is the 
computational cost, which increases exponentially as the size of the 
map grows. This can be mitigated by using offline planning, i.e. using 
the model exclusively to generate simulated experiences, which are 
used to improve the policy learned by a model-free controller, like the 
DYNA family of models (Sutton et al., 1999). This also means that, if 
the environmental structure or goals change, the policy can be adjusted 
accordingly based on simulated experiences.

Of course, online and offline planning are not mutually exclusive. 
Indeed, highly successful deep RL algorithms like AlphaZero (Silver 
et al., 2016, 2018) and MuZero (Schrittwieser et al., 2020) combine 
them, using decision-time planning via Monte Carlo tree search, as well 
as offline learning using the results of the Monte Carlo tree search to 
improve its model. However, these models have not been explicitly 
tested on navigation tasks to the best of our knowledge, although they 
should extend quite naturally to them.

Planning in the successor representation framework differs from the 
notions of planning we discussed above, and consists of two different 
aspects. First, since the successor representation essentially captures 
a compressed version of the environment’s transition dynamics, long-
term values can be computed quickly, even for states that are far 
away. This mimics the forward simulation aspect of online planning, 
although alternative trajectories are not explored and no explicit cost 
computation takes place. Second, since the reward function is decou-
pled from the predictive map, the algorithm can flexibly adapt to 
changes in reward contingencies, e.g. if the goal is moved, which 
resembles re-planning in traditional algorithms. However, changes in 
the environmental structure take longer to learn and adapt to, and the 
previous policy can strongly bias the behavior, making it less flexible 
than traditional online planning algorithms.

These different notions of planning highlight the trade-off between 
flexibility and computational complexity. While online planning ex-
hibits a high degree of planning generalization, it has a high com-
putational cost. On the other hand, other notions of planning, such 
as offline planning, which effectively re-frames planning as learning 
from replay (Mattar and Daw, 2018; Diekmann and Cheng, 2023), and 
planning in the successor representation (Momennejad et al., 2017), 
exhibit less planning generalization but are computationally far more 
efficient. Note that this trade-off may not apply to biological systems in 
the same way as it does in RL — for instance, one model demonstrates 
that rapid and parallel path planning can be executed relatively easily 
in biological networks (Ponulak and Hopfield, 2013).

To round-off this section, we now turn to a discussion of some 
representative RL models of map navigation. Models that use the 
map for planning at decision time typically use a topological graph-
like representation to plan on. This is because these models typically 
represent the environment as a set of discrete state transitions or other 
structured format. For example, Savinov et al. (2018) propose a semi-
parametric topological memory architecture that stores a topological 
graph containing connectivity information from various locations in 
the environment in its memory. The agent has a retrieval network 
that takes the current visual observation and the observation at the 
goal and outputs the corresponding nodes in the topological map, thus 
establishing a connection between visual observations of the environ-
ment and the stored topological map. As mentioned before, planning is 
done at decision time using Dijkstra’s algorithm (Dijkstra, 1959). Given 
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this path, the semi-parametric topological memory agent calculates 
a waypoint, or subgoal, on the path and outputs the corresponding 
observation. This observation is then used by a separate locomotion 
network that generates the actions required to move from one subgoal 
to the next until the final destination is reached. Thus, the semi-
parametric topological memory network, like our conception of map 
navigation, plans a path to the goal and outputs subgoals, and the 
attainment of each subgoal is handled by another process — in this 
case, the locomotion network.

In a somewhat similar approach, Eysenbach et al. (2019) use the re-
play memory buffer of a deep RL agent to construct a topological graph 
on which to navigate, known as ‘‘Search on the Replay Buffer’’. The 
replay memory refers to a memory of all experiences that the agent has 
had in the environment, including an environmental state (usually the 
visual observation at each location), the action taken at that state, and 
the reward and next state resulting from the action. A topological graph 
is built on top of the states in the replay memory, thus connecting the 
actual environmental observations and the map. The graph is weighted 
by using the values of the states to predict the distance between them, 
and using the predicted distances as weights associated with the edges. 
Like the semi-parametric topological memory agent (Savinov et al., 
2018), a planning algorithm such as Dijkstra’s algorithm is used on this 
graph to plan a path and calculate subgoals.

Finally, a notable example of models that use offline planning is the 
Dreamer class of models (Hafner et al., 2019, 2020), which use a latent 
space world model to generate synthetic data, which it uses to improve 
its policy. An interesting feature of this model is that the simulated 
experiences are based on the latent space states, unlike other forms of 
experience replay directly replay the sensory states (Lin, 1993; Mnih 
et al., 2015; Diekmann and Cheng, 2023). This has parallels to how 
replay in the brain involves place cells (a latent space representation) 
rather than direct sensory experiences.

3.3. Computational models of the organization of behaviors and strategies

In most navigation computational models, the strategy and behavior 
of navigation are predetermined i.e. hard coded. However, in some 
models, at the start of a navigation task, the agent can choose a strategy 
and during the task can change the type of navigation behavior. In 
this section, we review models where the agent dynamically selects a 
strategy and/or behavior during navigation tasks.

3.3.1. Organization of behaviors
In our taxonomy, an agent can either select a behavior or inte-

grate competing behaviors. Integration can occur either by combining 
sensory information from the goal and/or environment (i.e., representa-
tions) in the extraction stage or by integrating movement signals in the 
execution stage. We categorize models into three main classes: hard-
coded behavior selection, learned behavior selection, and integrated 
signal models.

In models with hard-coded behavior selection, behaviors are se-
lected based on a fixed algorithm. For instance, the agent controller 
might operate as a state machine, determining which behavior is 
active at any given time (Edvardsen et al., 2019). In this model, the 
agent employs vector navigation to calculate direct paths in open 
fields, but switches to topological navigation in cluttered environ-
ments. In doing so, the model adaptively switches from relying on 
grid to place cells, demonstrating dynamic interactions between grid 
and place cell systems in varying environments. The model of rodent 
navigation by Chavarriaga et al. (2005) incorporates a striatum-based 
response system for cue-driven, habitual navigation (aiming) and a 
hippocampus-based system for flexible, exploratory navigation (guid-
ance). Their model replicates observed changes in rodent strategy under 
changing environmental familiarity and complexity (Goodroe et al., 
2018).
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To overcome the limitations of hard-coded models, the second class 
of models learn the behavior selection process. For instance, in the 
models of Dollé et al. (2010) and Sheynikhovich and Arleo (2010) 
agents must choose between a taxon and locale strategy, closest to 
aiming and guidance in our taxonomy. The switching is controlled by 
gating units that control the probability of either module being selected 
over the other. The individual modules as well as the gating network 
are trained via RL. As a result, gating, i.e. behavior selection, becomes 
dependent on the performance of the modules. Although each module 
proposes an action at each time step, selection only occurs when the 
accumulated prediction error of the currently active module crosses 
a threshold (dynamic switching). Although, at a given time step, an 
action is chosen only from one module, the other modules participate in 
learning about the goal position. Another example is the hierarchical RL 
model (see Section 3.2.1), where behaviors — referred to as options — 
can be learned through experience, facilitating flexible and hierarchical 
navigation, particularly in complex or dynamic environments (Wang 
et al., 2023b).

The third class of models integrate behaviors by combining signals 
weighted by its reliability in a given environment (Cheng et al., 2007), 
often using Bayesian integration. Vijayabaskaran and Cheng (2024) 
exemplify this approach, showing that the integration or selection 
of processes depends on the robustness of the input signal to noise. 
When input representations are noisy, the agent favors processes that 
use more robust signals. At lower to moderate noise levels, behaviors 
integrate cooperatively rather than compete. At high noise, however, 
the unreliable behavior is ignored, which amounts to permanent se-
lection of the more reliable signal. The form of integration suggested 
by Vijayabaskaran and Cheng (2024) applies to the extraction stage, 
when goal-related information is processed, not the execution stage. We 
did not find any models that integrate behaviors at the execution stage, 
i.e. where an agent executes a weighted combination of behaviors 
simultaneously rather than switching discretely between them.

3.3.2. Organization of strategies
An agent can rely on multiple navigation strategies (see Section 2.3) 

to determine the final or an intermediate goal during a navigation 
task. Before discussing the computational models of how the strategies 
are organized, it is useful to first consider the scenarios in which the 
agent needs to switch from one strategy to another. In principle, if 
the agent possesses an accurate, complete metric map of the envi-
ronment with detailed spatial information of obstacles and landmarks 
and has sufficient computational resources, it does not need to invoke 
other navigation strategies other than planning over the metric map. 
However, in most cases an agent or animal builds the map of the 
environment by itself, which covers only parts of the environment 
and might suffer from the noisy measurements of the space due to 
inaccurate sensors. Hence, switching to topological or even route nav-
igation becomes necessary in certain occasions. Also an agent might 
have limited computational resources, e.g. due to inherent limitations 
or time pressure, so that the agent might rely on route navigation when 
the route is reliable, because the other two strategies require planing 
over a map and, thus, require more computations.

Franz et al. (2008) developed a robotic system that utilizes all three 
navigation strategies during the process of building a metric map of the 
environment. At the behavioral level, the agent stores a snapshot of the 
inverse distances to the surrounding objects at a particular location (the 
‘‘disparity signature’’) to mark that location. It then moves to another 
location by comparing the current signature to a stored one which has 
been memorized within a certain neighborhood. In a new environment, 
the robot begins by random exploration, marking and connecting a 
sequence of locations to form a route. The robot is then able to 
perform route navigation starting from any location in a stored route. 
Whenever two separate routes are detected to share one or more same 
locations, they are integrated. After a certain amount of exploration, 
multiple routes will be connected and form a topological representation 
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of the environment. The agent then utilizes standard graph planning 
algorithms to find available routes to a given goal location. The topo-
logical graph is only used for planning and the robot immediately 
switches to route navigation once it finds a route to the goal to save 
computational resources. A general problem in topological navigation, 
perceptual aliasing, occurs when multiple nodes in the graph have 
similar stored snapshots and there is ambiguity in self-localization. To 
solve this problem, Franz et al. (2008) embedded a global metric into 
the graph and included odometry signals of the robot into the disparity 
signature, so that nodes become more distinguishable from each other. 
This metric information also enables the robot to plan a route over 
unexplored terrain in the environment. Although Franz et al. (2008) 
did not systematically test the capabilities of the robot in goal-directed 
navigation, but rather focus on the map of the environment, it presents 
a system that naturally switches from route navigation, to topological, 
and then to metric planning as the map develops.

As Franz et al. (2008) and many other studies of robotic navigation 
already pointed out, a general issue in building a metric map for large 
environments is that errors accumulate in the distance sensors, such 
that metric information is inconsistent across the different parts of the 
environment. Kuipers (2000b) and Beeson et al. (2010) introduced and 
tested a navigation framework, where they break down the mapping 
problem in large environments into building metric representations 
in local, small-scale spaces and topological representation in global, 
large-scale space. The same arrangement was previously suggested to 
be used by mammals as well (Parra-Barrero et al., 2023). The local 
metric maps provide precise spatial information necessary for tasks 
such as obstacle avoidance and accurate positioning. On the other 
hand, as the robot navigates through the environment, it identifies 
significant places (e.g., intersections, doorways) and paths, build an 
abstract representation of the environment as a topological map. During 
long-distance planning, the robot uses the topological map to determine 
the sequence of nodes and edges to reach a goal efficiently (e.g., room 
A → corridor → elevator → room B). When the robot reaches a node in 
the topological map, it uses the local metric map to navigate through 
that specific place accurately. In addition, the robot periodically uses 
the local metric map to confirm it is on the correct path described by 
the topological map, adjusting for deviations caused by obstacles or 
errors. In this way of organization, the robot can navigate through long 
distances with high accuracy without the need to maintain a global 
metric representation of the entire environment.

These two examples demonstrate the benefits of switching between 
different navigation strategies to compensate the errors caused by 
sensors and the lack of complete maps in large environments, or to save 
computational resources to make navigation more scalable. There are 
two interesting observations worth mentioning. First, topological and 
metric maps of an environment are usually built and maintained in a 
interleaved way, either in a hierarchy (Kuipers (2000a), global to local) 
or as overlays (Franz et al., 2008). Second, route navigation naturally 
follows after the planning stage of the topological navigation to avoid 
planning multiple times.

4. A synthesis of key insights

In the following sections, we discuss the key insights gained from 
our review of the literature on computational modeling of spatial nav-
igation in mammals and their broader implications for understanding 
navigation processes.

4.1. What have we learned about the state of the field?

Reviewing the landscape of computational models of navigation 
using our taxonomy as a backbone has led to several broader insights 
about the state of research in this field. First, it became apparent 
that some navigation processes are less frequently modeled and may 
warrant more attention. A striking example of this is the seemingly 
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straightforward process of path following. While this process has re-
ceived a lot of attention from the perspective of technical solutions, 
evidenced by several hundred robotics papers proposing various meth-
ods (Hung et al., 2023), there is a notable lack of models exploring 
how mammals may accomplish path following. Other understudied 
processes are route navigation as well as the organization of behaviors 
and strategies. The flip side of this state of affairs is that other pro-
cesses are overrepresented in the literature, e.g. map navigation and 
guidance (Best et al., 2001; Madl et al., 2015). We hypothesize that this 
broader bias could be driven by several factors, such as leaning towards 
the human experience (vision-based models are strongly overrepre-
sented, especially in RL, e.g. Kulhanek et al., 2019; Jaderberg et al., 
2016; Mirowski et al., 2017), the technical ease of implementing certain 
models, and, perhaps rightfully so, the prioritization of models based 
on experimentally known neural substrates, such as models based on 
place and grid cells (Burgess and O’Keefe, 2011). Beyond these factors, 
a key reason is conceptual blindness about what navigation process is 
actually being modeled. This is where the taxonomy and our current 
review article can be especially useful, as they offer a structured frame-
work and specific generalization criteria for distinguishing between the 
different processes. As pointed out throughout this review article, this 
blindness often stems from a lack of clarity about the representations 
and computations that underlie each process. In experiments, this fre-
quently manifests as either neural representations of space considered 
separated from the behaviors they support (such as on linear tracks 
or random foraging in small arenas) or alternative explanations for 
the observed behaviors being overlooked, as discussed in Parra-Barrero 
et al. (2023).

This leads us to the second broad insight from our review: com-
putational models, perhaps unexpectedly, often suffer from the same 
shortcomings as experiments. The underlying issue regarding the rep-
resentations and computations are surprisingly similar between ex-
periments and models, especially as models become more complex. 
The most extreme example of this comes from the deep RL literature, 
where almost all state-of-the-art agents are capable of some form of 
navigation (Jaderberg et al., 2016; Mirowski et al., 2017; Kulhanek 
et al., 2019, 2021). However, since these agents are usually trained 
and tested on video games or very complex navigation tasks, we 
can only draw broad conclusions about how well these agents can 
navigate in general and not about how they actually do it, i.e. what 
representations and computations are being used. The first step in 
solving this issue is to use constrained and well-defined navigation 
tasks in lieu of video games to better understand how these agents 
solve them. While more recently, explicitly navigation-based simulation 
environments have been developed (Kolve et al., 2017; Wu et al., 
2018; Savva et al., 2019), the complexity of these environments might 
represent a challenge rather than a solution for neuroscience research.

The next step that we propose is a common solution to this deficit 
for both experiments and computational models: testing for generaliza-
tion. We specifically identified what aspects of the task and environ-
ment an agent must generalize over in order to ensure that the observed 
behavior is truly an instance of a particular navigation process. For the 
navigation behaviors, this is spatial generalization, and for the strate-
gies, planning generalization. This is an insight that applies equally to 
computational modeling and experimental research — placing empha-
sis on generalization enables experimentalists and modelers alike to be 
more confident in their assessment of which process is at play and draw 
more reliable and robust conclusions.

Third, models of navigation in pathological or dysfunctional con-
ditions are scarce in the literature. Several experimental studies have 
demonstrated that normal aging and clinical conditions such as
Alzheimer’s disease affect navigation abilities (Laczó et al., 2018; 
Rodgers et al., 2012; Coughlan et al., 2018) and paint a complex 
picture of which specific processes are impaired. Although one pre-
vailing view is that the use of specific reference frames is selectively 
impaired in different conditions (Serino et al., 2014; Colombo et al., 
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2017; Allison et al., 2016; Ruggiero et al., 2020), other results sug-
gest that what is affected is switching or transformation between the 
two reference frames (Ruggiero et al., 2018; Schmitt et al., 2021). 
Further complicating the picture surrounding aging is that aging-
related navigation deficits seem to be attenuated when using real-world 
naturalistic tasks (McAvan et al., 2021; Hill et al., 2024), which may 
often involve multiple, redundant sources of navigationally relevant 
information presented in different ways. This is consistent with the 
hierarchical, dynamic view of navigation proposed in the taxonomy 
— the impairment of some navigation processes may be compensated 
for by others in naturalistic settings, which may facilitate the use of 
multiple processes. Looking at these issues through the lens of our 
taxonomy enables us to ask more principled questions. For instance, 
are processes at both levels of the navigation hierarchy affected? 
Deficits associated with general cognitive decline may affect higher-
level processes, such as the organization of behaviors and strategies 
and the navigation strategies (i.e., route and map navigation), while 
largely sparing navigation behaviors. Alternatively, specific strategies 
or behaviors may be impaired selectively. Modeling can help resolve 
some of these issues by providing a structured framework to test 
hypotheses and distinguish between different underlying mechanisms.

4.2. What have we learned about the navigation processes, their represen-
tations and computations?

We have also gained perspective on issues relating to specific rep-
resentations and computations underlying the navigation processes. 
Among these, the question of which processes and computations in-
volve spatial representations, such as place and grid cells, is per-
haps the most well-studied. Generally speaking, AI-based and biolog-
ically plausible models tend to approach this question from different 
perspectives.

On the one hand, AI-based models offer insights into which navi-
gation processes might lead to the emergence of distinct spatial repre-
sentations. Studies in artificial agents have shown that under certain 
conditions, grid cells emerge to support path integration (Banino et al., 
2018; Cueva and Wei, 2018; Sorscher et al., 2022), head-direction 
cells for angular path integration (Cueva et al., 2020), place cells 
for guidance (Vijayabaskaran and Cheng, 2022), and egocentric cue 
direction cells for aiming (Vijayabaskaran and Cheng, 2022). On the 
other hand, biologically plausible models provide insight into how 
these representations might be implemented in the brain. These models 
consider how networks composed of spatially selective neurons might 
be used in navigation, taking into account biological constraints and 
mechanisms such as connectivity motifs and plasticity rules (Brzosko 
et al., 2017; Ghazinouri and Cheng, 2025).

Despite significant insights from both approaches, our understand-
ing of the precise functional role(s) of place, grid, and other cell types 
is still incomplete. Experimental evidence supports the involvement of 
place cells in guidance (Gothard et al., 1996; Hales et al., 2014), topo-
logical (Dabaghian et al., 2014; Dabaghian, 2019), and metric naviga-
tion (Wilson and McNaughton, 1993). Correspondingly, models of place 
cells exist for these three processes, i.e., guidance (Vijayabaskaran and 
Cheng, 2022; Ghazinouri et al., 2024), topological (Edvardsen et al., 
2019) and metric navigation (Gao, 2023; Gönner et al., 2017). How-
ever, there are still asymmetries and gaps in the modeling literature, 
as we discuss below.

First, in biologically plausible models, place cells have been used to 
model both guidance and map navigation. However, these models often 
do not explicitly consider if the map is metric or topological, as we 
outline in Section 3.2.2. Moreover, many models using place cells for 
guidance focus on navigation to a single goal location (e.g. Ghazinouri 
et al., 2024), making it difficult to assess if the model is capable of 
generalizing to new goal locations (e.g. Ghazinouri and Cheng, 2025). 
From the RL perspective, one study demonstrated that place cells facil-
itate generalization to new start locations (Vijayabaskaran and Cheng, 
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2022), although generalization to novel goals and sensory properties 
of the environment was not explicitly tested in that study. The role of 
place cells in map navigation has also received relatively little attention 
in the RL literature. However, the study by Banino et al. (2018) found 
that an agent using place cells to navigate was less effective at finding 
shortcuts compared to one endowed with grid cells.

Second, models of grid cells propose a functional role for them in 
path integration (McNaughton et al., 2006) and vector movement (Bush 
et al., 2015), as well as metric navigation (Ginosar et al., 2023). 
However, while these models illustrate how the grid code could be 
used to compute a direct vector to the goal, it remains unclear how 
they might be used to flexibly plan detours around obstacles. Edvardsen 
et al.’s (2019) model proposes an interplay between place and grid 
cells in this scenario, where place cells are responsible for re-planning 
subgoals upon encountering obstacles, while grid cells compute direct 
paths to these newly identified subgoals.

A perspective on place and grid cells and their role in the cognitive 
map that has gained considerable attention in recent years is the 
successor representation theory (Section 3.2.2.2), which proposes that 
place cells encode predictive relationships between states in the envi-
ronment (Stachenfeld et al., 2017; Momennejad et al., 2017; Gershman, 
2018). However, as we will argue in the next section, while we believe 
that the successor representation has many potential applications, it is a 
general representation learning technique rather than a particular type 
of map, which makes it difficult to relate it to a specific navigation 
process in the taxonomy.

Third, as we note above, and in Section 3.2.2, place and grid cells 
have received the bulk of attention in the modeling literature. Thus, 
a crucial gap in the literature concerns incorporating cells with mixed 
selectivity (Rigotti et al., 2013; Maisson et al., 2023) as well as consid-
ering the contribution of cells that encode other spatial features of the 
environment (with the notable exception of border cells (Dabaghian, 
2023; Santos-Pata et al., 2017)). Cells such as object vector cells (Høy-
dal et al., 2019) and landmark vector cells (Deshmukh and Knierim, 
2013) found in the entorhinal cortex, could potentially be integrated 
into the metric map to indicate the choice of sub-goals for navigation 
strategies. Understanding how these, and other, cell types contribute to 
the navigation strategies remains an important open question. As others 
have argued, rather than studying specific cell types in isolation, it is 
worth considering them in their larger context as part of a dynamical 
system, where neural representations flexibly adapt to environmental 
and task demands to support behavior (Ekstrom et al., 2020).

Finally, the discussion above surrounding place and grid cells also 
highlights a notable asymmetry in the attention given to the two 
aspects of the navigation strategies, i.e. the spatial knowledge structure 
and the planning process. While place and grid cells may form the 
neural basis of the spatial knowledge structure, the equally critical 
component of planning has received comparatively less attention in 
the context of navigation. This imbalance is particularly significant 
because, as we emphasize at various points, it is planning general-
ization that determines which strategy is currently at play. Although 
some models of navigation have considered the role of replay and 
preplay of neural sequences (Section 3.2.2) in learning (Pezzulo et al., 
2019), a similar phenomenon that might be involved in planning — 
theta sequences (Parra-Barrero et al., 2021; Parra-Barrero and Cheng, 
2023) — has been relatively understudied by modelers. Given that 
theta sequences have been shown to represent meaningful segments of 
spatial experience (such as sections of a maze) (Gupta et al., 2012) and 
reflect an agent’s current goals (Wikenheiser and Redish, 2015), they 
present an exciting avenue for computational modeling.

4.3. What have we learned about current computational tools?

Our review raises several important open questions about RL-based 
models. One key question concerns what model-free RL actually cap-
tures when used to model navigation. The simplest perspective suggests 
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that, because each state is associated with an optimal action, model-free 
RL primarily represents a sequence of learned state–action associations, 
aligning more closely with habitual, sensorimotor associations rather 
than ‘genuine’ navigational processes. This interpretation is reflected in 
some models that use a model-free controller for precisely this purpose, 
i.e. to model stimulus–response associations (Chavarriaga et al., 2005; 
Sheynikhovich et al., 2009; Dollé et al., 2010). We provide a counter-
point to this perspective, and propose that in itself, model-free RL is 
not limited to a single interpretation, and, rather is a computational 
tool that can be potentially used to model different processes. For 
instance, some have used model-free RL to model complex navigation 
processes (Banino et al., 2018; Vijayabaskaran and Cheng, 2022). How 
successfully model-free RL can capture a given behavior or strategy 
should again be evaluated through the lens of generalization, and we 
can already make some educated guesses about the direction this line 
of investigation may take. For example, it is unlikely that tabular 
model-free RL would pass the threshold of spatial generalization, since 
it cannot easily adapt to new goal (i.e., reward) locations without 
extensive re-learning. This problem also affects deep RL models, but 
depending on the network and learning algorithm the agent might be 
able to extract useful representations for navigation, which could aid 
generalization (Devo et al., 2020). It is important to continue to test 
these hypotheses empirically, especially since agents that successfully 
learn navigation develop representations that resemble place and grid 
cells (Vijayabaskaran and Cheng, 2022; Kappel and Cheng, 2025; Ban-
ino et al., 2018; Sorscher et al., 2022). There are several questions 
that these models can potentially answer — how, and to what extent, 
are internal representations and computations of the agent shaped by 
different factors? What types of representations other than those known 
in biological agents can aid successful navigation and generalization?

We also view the successor representation (Section 3.2.2.2) through 
a similar lens, i.e. as a tool that could potentially be used to model 
different processes. At first glance, key properties of the successor rep-
resentation give it the appearance of being metric in nature — since the 
successor representation matrix represents future expected occupancy 
of states, in a 2D open field, this reflects metric relationships between 
the states (Stachenfeld et al., 2017). However, this is only true given 
that the states are defined based on a regular grid and exploration is 
uniform. If one constructed a successor representation of a subway map, 
for instance, where connectivity matters more than metric properties, 
the predictive relationship would more closely reflect topological than 
metric properties. Another key property of the successor representation 
that factors into our view of it as a computational tool rather than an 
instantiation of a particular process is its dependence on the policy, 
i.e., it reflects the behavior within an environment rather than purely 
spatial relationships. For example, the successor representation will 
skew to reflect routes that are more frequently taken.

Our review also highlights a general mismatch between the two 
broad modeling approaches. On the one hand, methods based on AI 
and deep RL in particular are highly powerful and are therefore used 
on fairly complex tasks, where navigation is often not even explicitly 
the main task (e.g. while playing the video game Doom (Kempka et al., 
2016)). In these cases, it is very clear that the agents can navigate, but 
not clear at all how they do it. This type of agent is not so fruitful 
for neuroscience, as it involves the highly complex, and sometimes 
intractable, problem of deciphering a black box. On the other hand, bio-
logically plausible models use simplified inputs and simple navigation 
tasks and often cannot even cope with a changing goal location (e.g. 
Ghazinouri and Cheng, 2025). In general, our impression is that current 
models based on synaptic plasticity lack flexibility, which manifests as 
an inability to switch between different behaviors and strategies. Thus, 
while it is clear how they navigate to the goal, i.e., what mechanism 
drives the behavior, it is not so clear if navigation is flexible or 
general enough to qualify as a navigation process in our taxonomy. A 
consequence of this limited flexibility in biologically plausible models 
is the scarcity of models that explicitly study the organization of 
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behaviors and strategies (Sections 3.3.1 and 3.3.2). While this gap is 
also apparent in RL-based models, RL at least theoretically offers a 
framework for addressing this issue through hierarchical RL (Botvinick, 
2012). However, how such flexibility could be achieved in biologically 
plausible models remains an open question. One potential approach 
might be the use of neuromodulators to transition the network between 
different states (Marder, 2012).

4.4. What have we learned about the taxonomy?

The taxonomy serves as a much-needed scaffold for structuring our 
understanding of spatial navigation and facilitating interdisciplinary 
communication. However, it must be noted that the boundaries be-
tween different processes are defined at a computational level (Marr, 
1982), allowing for various implementations and algorithms to achieve 
the same process. Thus, while the boundaries outlined in the taxonomy 
are both useful and meaningful, they remain a conceptual framework 
rather than absolute divisions. This implies that, depending on specific 
algorithmic choices, some ambiguity may arise in classifying a model 
as belonging to one process or another. A notable example of this 
ambiguity is the classic Braitenberg vehicle (Braitenberg, 1986), which 
illustrates the fuzziness at the boundaries of the behaviors — in this 
case between aiming and direction field navigation. Behaviorally, a 
Braitenberg vehicle with crossed sensor–motor connections navigating 
towards a light source may appear to be engaging in aiming. However, 
in its simplest form, it does not slow down as it approaches the source 
and may not even stop upon arrival. Since its movement is guided solely 
by local differences in sensor measurements and lacks an estimate 
of distance, it could be interpreted as an instance of direction field 
navigation within our taxonomy, as discussed in Sections 3.1.1 and
3.1.2. The fact that it moves in a relatively straight line towards the 
goal is a consequence of the properties of the sensory signal — light 
propagates in straight lines — rather than the ability to localize the 
source directly. A modification that enables the Braitenberg vehicle 
to estimate the distance to the goal, for example, by using intensity 
readings to adjust its behavior accordingly, could however lead to its 
reinterpretation as a genuine model of aiming. This example illustrates 
the subtleties involved in interpreting the processes implemented by a 
model. Similar issues in interpretation may occur at various boundaries 
between different processes in the taxonomy, particularly in real-life 
navigation or in complex settings involving artificial agents. This is 
because there are many possible ways in which the same real-life 
navigation task could be solved, and it is very difficult to distinguish 
which specific process(es) an agent is using. This is further exacerbated 
by the sensory richness of real-world environments, which often con-
tain redundant information that enables the use of multiple navigation 
processes, and the dynamic interaction between navigation processes, 
where agents may integrate different processes or switch between them 
rapidly. In some cases, it may even be unclear if the observed process 
is a behavior or strategy. Take the example of navigating in a street 
network within a city — it can be difficult to distinguish if, while 
constrained to walk along the streets, an agent is engaged in path 
following, route navigation, or both. Thus, it is important to exercise 
caution and keep in mind potential ambiguities while applying the 
taxonomy.

Despite these ambiguities, we strongly believe that establishing 
clear terminology is essential for discussing and analyzing these sub-
tleties in a structured and principled manner, which the taxonomy pro-
vides. Without such a framework, these nuances might be overlooked 
or lost entirely.

Finally, the taxonomy remains agnostic about two key issues related 
to spatial navigation. The first concerns the choice of reference frame 
to which spatial representations are anchored, namely, whether certain 
navigation processes inherently rely on an egocentric or allocentric 
reference frame. Experimental evidence suggests that both types of 
representations coexist in parallel, with factors such as environmental 
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structure, familiarity with the environment, and task complexity influ-
encing which reference frame is utilized (Burgess, 2006). Relatively few 
studies have explored this question through modeling. Vijayabaskaran 
and Cheng (2022) suggest that guidance based on allocentric repre-
sentations and aiming using egocentric representations result in better 
generalization performance than using the other representation, respec-
tively. Based on the available evidence and theoretical considerations, 
we propose that different navigation processes might be biased towards 
specific reference frames, however, whether this represents a strict di-
chotomy remains unclear at this moment. For the navigation behaviors, 
this bias may depend on the nature of the cues required to extract 
relevant representations, such as whether the cues are fixed, local, or 
distal. For the navigation strategies, the bias may be shaped by how 
the spatial knowledge structure,i.e. route, topological or metric map, is 
constructed, a process which likely unfolds gradually (Golledge et al., 
1985). While purely egocentric or allocentric representations may exist 
as endpoints on a spectrum, it is likely that in most cases, the navigation 
strategies involve mixtures and distortions influenced by factors such as 
memory, attention, and experience.

Another, somewhat similar, issue concerns the relationship of sen-
sory modalities to the navigation behaviors, specifically, whether cer-
tain navigation processes are inherently biased towards particular sen-
sory modalities. As with reference frames, modeling studies on this 
topic remain scarce, with a predominant focus on vision-based models, 
as noted above. We do not assume a priori that any navigation behavior 
is restricted to a specific sensory modality. However, the nature of the 
sensory signal may strongly bias certain behaviors towards particular 
modalities. For instance, aiming may be particularly well-suited to 
vision, given that light travels in straight lines, whereas other sensory 
signals, such as sound, which is prone to reflection in environments 
with walls, may be less reliable for precise localization. In addition, the 
suitability of a modality for navigation depends on the type of sensor 
that is available to a species and its sensitivity, which varies widely 
from species to species.

An important open question for future modeling and experimental 
work is how an agent executing the same behavior using different 
sensory modalities integrates multiple signals. One possibility is that 
each modality undergoes a distinct extraction stage to generate the 
necessary representation before a common process operates on it. 
Alternatively, parallel processes may extract and process information 
separately, later interacting through integration or selection mecha-
nisms. This question has been extensively explored in robotics, where 
sensor fusion is a key technical challenge (Sasiadek, 2002). For the 
navigation strategies, since the spatial knowledge structure involves 
abstract goal representations, it is likely that agents incorporate in-
formation from multiple sensory sources. Some experimental evidence 
supporting this idea comes from studies demonstrating that place cell 
maps can be formed based on landmarks detected across different 
modalities, such as vision (Poucet et al., 2000), taste (Herzog et al., 
2019), and odor (Zhang and Manahan-Vaughan, 2013).

5. Conclusions

In this review, we have significantly expanded on the hierarchical 
taxonomy proposed by Parra-Barrero et al. (2023), refining and extend-
ing it to identify the representations and computations required for 
each navigation process. A central argument we put forth is that the 
key to distinguishing between different navigation processes lies in as-
sessing an agent’s ability to generalize. We examined both biologically 
plausible and RL-based computational models of navigation through 
the lens of our taxonomy. While many computational studies have been 
performed and much has been learned from them, we have identified 
several shortcomings in the state of the field, our understanding of the 
computational tools we use to model navigation, and our understanding 
of navigation and its neural basis. We have made several suggestions 
how these shortcomings could be addressed and how this process could 
benefit from applying our taxonomy of spatial navigation.
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