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Abstract

We present a novel method for constructing a close-to-optimal po-
tential function for drift analysis of evolution strategies and other
numerical optimization algorithms. It is based on a piecewise linear
ansatz for the potential function, defined by potential values on a
discrete grid of states together with a corresponding interpolation
scheme. We compute or approximate the algorithm dynamics on the
grid and then construct a linear program from expected progress
and (weighted) state transitions. The solution of the optimization
problem gives rise to parameters of the potential function maximiz-
ing (additive) drift. Under mild assumptions, the proceeding yields
an arbitrarily close approximation of the optimal potential function
at the expense of growing computational demands. As a proof of
concept we apply the method to the (1+1) evolution strategy on the
two-dimensional sphere function.

CCS Concepts

+ Theory of computation — Random search heuristics; The-
ory of randomized search heuristics.
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1 Introduction

Drift analysis is a major paradigm for establishing runtime guaran-
tees for randomized search heuristics, and for evolutionary algo-
rithms in particular [13, 14]. The method is particularly successful
for algorithms operating on discrete domains, but it was also ap-
plied to evolution strategies (ES) [1]. Drift arguments were used
implicitly already by Jagerskiipper [9] to analyze the convergence
behavior of the (1+1)-ES on spherical and convex quadratic func-
tions. He provided the first linear convergence proof, yet, his results
were strictly asymptotic and provided no explicit runtime bound.
Akimoto et al. [1] established the groundwork on which this
work is built. They developed drift theory on a continuous domain
and provided the first non-asymptotic analysis, proving linear con-
vergence and a convergence rate of ®(1/d) for the sphere function
in (finite) dimension d. A crucial part was the construction of a
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non-trivial potential function for proving two drift conditions for
the upper and lower bound on the runtime. The proof involved the
somewhat unnatural construction of a truncated process (cutting
off particularly successful steps) for controlling drift in light of the
domain of the potential, which is unbounded from below.

The studies [2, 15, 16] refine the methodology and greatly ex-
tended its scope to a wide class of problems, in particular to all
strongly convex objective functions with Lipschitz continuous gra-
dients. However, a similar generalization to other algorithms turns
out to be challenging.

Nonetheless, the grand goal of establishing linear convergence of
CMA-ES at a problem-independent rate was very recently achieved
with an analysis based on Markov chains [7]. While their analysis
also employed a potential function and analyzed its one-step be-
haviour, the results were derived through various properties of the
normalized homogeneous Markov chain. It would be very useful to
obtain a corresponding result based on drift, because the method al-
lows for much stronger statements about the actual runtime, about
the time it takes to adapt the covariance matrix, and about the de-
pendency of these times on the problem and algorithm parameters.
In contrast, the convergence rate derived in [7] remains implicit.
To distinguish between a Markov chain framework and drift analy-
sis, we denote the potential function as the function designed for
applying a drift theorem.

As of today there is no drift analysis even of the simplest variant
of the covariance matrix adaptation evolution strategy (CMA-ES)
with unrestricted covariance matrix. In particular, the only attempt
of constructing a potential function suitable for showing that CMA-
ES can converge at a problem-independent rate is limited to an
empirical study based on Monte Carlo simulations [6].

In general, a major challenge and a potential road-blocker for
drift analysis is the construction of a suitable potential function
that a) exhibits drift, and b) is simple enough to allow for the ap-
plication of analytic arguments. In this paper, we establish a novel
approach for constructing such a potential function. Our potential
function gives rise to uniformly positive drift suitable for applying
an additive drift theorem. Its special property is that the resulting
drift is arbitrarily close to optimal. By that property we mean that
the resulting runtime bounds are close to optimal, or optimally
tight across all runtime bounds that are achieved by drift.

At its core, our approach is rooted in an empirical analysis frame-
work. Still, it is suitable for obtaining rigorous runtime guarantees.
We sketch the full route for turning our analysis into provable drift
and resulting runtime guarantees. In this paper, we put a particular
emphasis on the arising numerical challenges.

In the next section we present a general form of a potential
function describing the behavior of elitist evolution strategies, as
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well as a corresponding drift theorem. We then establish our core
construction, yielding a close-to-optimal potential function. We
demonstrate an application of the framework to the (1+1)-ES in
section 4, and present corresponding numerical results in section 5.

2 Algorithm & Methodology

In this section, a probabilistic elitist adaptive algorithm will be
formulated. We further introduce the first hitting time through an
additive drift theorem and discuss the notion of an optimal potential
function.

2.1 A generic stochastic search algorithm

We introduce an algorithm template that fits many elitist evolution
strategies as well as several other algorithms in the continuous
domain. We leave several mechanisms open, like the population size
A, the offspring distribution (i.e., whether or not a full covariance
matrix is used), and how the distribution is updated. We model
our algorithm as a stochastic recursively defined sequence on a
state space ©. In each iteration ¢ € N, A new candidate solutions
are drawn from a sampling distribution P (6()), with 0 c o
denoting the current state of the algorithm. © encompasses the full
algorithm state including all adaptable parameters of the sampling
distribution. For example, the state of the (1+1)-ES with 1/5-success
rule [1] is (m(t), O'(t)) € R4xR*. To obtain the recursive sequence,
a transition function ¥ is defined. Given 0(0), future states are
computed by

gUt+1) — ?(H(t),X(t);f), (1)

where X () is the set of offspring samples in generation ¢, f is the
fitness, and ¥ encodes the (deterministic) computations performed
by the algorithm. An example for ¥ for the (1+1)-ES with success-
based step-size adaptation can be found in [15], which is picked up
in section 4.
We demand two properties of ¥
e The algorithm shall follow an elitist design, i.e., it main-
tains a non-increasing sequence of current best solutions
{m},cn, with which stopping criteria of the optimization
progress are checked. For a (p+A) setup, an additional mech-
anism (like global intermediate recombination) is required
to determine m(*) from (%)
o The algorithm shall be rank-preserving, i.e., ¥ is invariant
under strictly increasing transformations of objective values.
The construction covers evolution strategies with (1+ 1) or (1+ A)
selection. It yields a Markov chain {0}, describing the state
of algorithm, including the underlying sampling distribution.

Algorithm 1 Probabilistic adaptive algorithm

1: input 0y, f : RY SR

2 fort =0,1,2,..., until stopping criterion is met do
3: sample xi,...,x3 ~ P(0(1))

4 evaluate f(x1),..., f(x))

s 0 70 (DX
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2.2 Additive Drift in a Continuous Domain

Previous applications of drift theory in continuous domains high-
lighted the logarithmic distance to the optimum in the potential
function as the main contributor for a linear convergence guarantee
[1, 2]. Our potential function employs the same strategy. In the case
of convergence, it decays towards negative infinity, combined with
a mechanism that penalizes sub-optimal parameter values. Additive
drift is a natural tool for the analysis of this construction.

Akimoto et al. [1] extended the theory of additive drift towards
continuous domains. To deal with the difficulty of an unbounded
domain, they introduced the notion of a truncated process, which
upper-bounds the possible single-step progress made by the actual
process. We refer to [1] for a detailed discussion. In our analysis, we
instead make use of an alternative additive drift theorem, introduced
by Doerr and Kétzing [5, 11]:

THEOREM 1 (ADDITIVE DRIFT, UPPER BOUND WITH OVERSHOOT-
ING). Let (X(’))teN be an integrable processs over R, and let T =
inf{t € N|X®) < B} for some § € R." Furthermore, there isa 8 > 0
such that, for allt < T, it holds that

0<8<E[XW - xt+)  xO x®)], @)

Then
T
E[T] < BN - BT
é

By dropping the requirement of a non-negative process and in-
troducing the overshooting term E[X (M (replacing p) into the
classical additive drift theorem, we overcome the difficulty of con-
trolling extreme events.

We argue that this drift theorem is beneficial in two ways: by
neglecting the truncated process, we investigate a more realis-
tic model of the algorithm and one-step progress, as there is no
“magic” constant that cuts the progress at an arbitrary point. Fur-
thermore, the notation and calculations simplify as only the term
X0 — E[x@) | x(©)  X()] needs to be investigated. As a
compensation, the term E[X (T)] needs to be bounded from below.

®)

2.3 Optimal Additive Drift

The following definition captures our notion of an optimal potential
function, in the sense of providing a perfectly tight runtime bound.
A similar concept is found in [12, 14].

DEFINITION 1. Consider a Markov chain (G(t))teN on © with a
set ©F of terminal states stopping the process. We define the optimal
potential function V* : © — R for the Markov chain as the first
hitting time

V*(0) =E [inf{t € N‘Q(O) — 0 and 0 ¢ Q*H
of ©".

Of course, the optimal potential is not necessarily a practical
choice for analyzing an actual algorithm because constructing V*
as an explicit function of 6 is expected to be an utterly impossible
task in all but the simplest cases.

The original theorem in [11] uses a threshold of zero instead of the slightly more
flexible formulation using .
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It obviously holds V*(0) = 0 for all § € ©*. We assume in the
following that ©* is chosen so that V* is nowhere infinite (i.e., the
chain stops eventually with full probability).

LeEMMA 1. Consider the optimal potential function V* for the
Markov chain 6!, and assume that V*(8) < oo forall 0 € ©.
Let 6’ denote the successor state of 0 € © \ ©*, and let A(0) =
V*(0) —E[V*(0’)] denote the additive drift. Then it holds A(0) = 1
forallf € ©\ ©*.

Proor. The statement follows immediately from applying the
Markov property to the definition of V* and using the law of total
expectation:

V*(0) =E[inf{t € N|0®) = 9 and 61*) € ©*}]

=E[inf{t e N[0V = ¢’ and 61) € ©"}]
=E[inf{t e N|0(®) = ¢’ and 1) € ©"}] +1
=E[V*(0')] +1

]

The above lemma shows that the drift is constant. We can then set
d = 1in Theorem 1 and obtain a perfectly tight bound. In this sense
the potential V* is optimal for bounding the expected runtime of
the Markov chain for reaching the terminal set. The same argument
applies to all potential functions of the form B-V* + A with constant
drift B > 0 and setting 6 = B. This insight serves as the guiding
principle of the construction in the following section.

3 Additive Drift as an Optimization Problem

This section introduces the main methodology of the paper. Based
on our generic elitist stochastic search algorithm and the additive
drift theorem, a numerically computable formulation of the drift
will be derived, based on an optimization problem, that maximizes
the pointwise drift across a grid of parameter values.

3.1 Potential Function

The potential function V() is defined as follows. It generalizes
the form that has been used several times for the analysis of the
(1+1)-ES with success-based step-size adaptation [1, 2, 15].

DEFINITION 2 (POTENTIAL FUNCTION). For 6 € © the potential
function V (0) is defined as

V(0) = log(fu(m)) +Q(0) 4
where Q : ® — R{ is a scale-invariant function and f}, denotes the
spatial suboptimality function defined in [8].

The spatial suboptimality function f,, assigns to each point m
the measure p of the sub-level set {x : | f(x) < f(m)}, where p

can be chosen as the Lebesgue measure if all level sets are bounded.
Under mild regularity assumptions it can be thought of as a normal
form of f among all rank-preserving transformations. Including
the spatial suboptimality function into the potential was proposed
by Morinaga et al. [15] as it naturally extends the class of functions
that can be analyzed. They consider the d-th root of the Lebesque
measure. On the spherical function centered around 0, f;,(m) then
reduces to ||x|| up to a multiplicative constant, recovering the orig-
inal norm that was used in previous studies.
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The term Q(0) is used to penalize sub-optimal parameter values
of the distribution. It needs to be tailored carefully to the analyzed
algorithm and objective function. For the (1+1)-ES with success-
based step-size adaptation, several examples exist, ranging from
the sphere function to the full class of convex quadratic functions
[1, 2, 15].

With respect to the progress of the algorithm, the potential
function represents the following behavior: the term log(||m||) =
log(f,(m)) + const measures the actual optimization progress and
decays to —co when approaching the optimum. When the distribu-
tion is not well adapted, for example, for the (1+1)-ES, the normal-
ized step-size d - o/||m|| is too small or large, the state is penalized
by some positive value. Through the self-adaptation ¥, the algo-
rithm then corrects its parameters, on average, in a direction that
reduces the penalty term, therefore yielding drift even if progress
of log(f,;(m)) is arbitrarily small.

Q will be modeled as a parametric family of functions. We intro-
duce a parameter grid G C © as a discretization of our state space ©.
The exact nature of this finite set of supporting points depends on
the algorithm and objective function that is analyzed. For example,
the one-step progress of the (1+1)-ES with 1/5-success rule is fully
described through the normalized step-size, independent of m, and
therefore requires only a one-dimensional grid on R, whereas a
(1+1)-ES with full covariance matrix adaptation has a much larger
state space for d > 1. Here, one might consider a high-dimensional
grid in a non-Euclidean space.

Proceeding with the general setting, across the grid we obtain
corresponding function values g1, . .., qn, with g = Q(6x) if Oy €
G. Hence, for fixed grid points, the class of potential functions is
parametrized by a parameter vector ¢ = (q1, . . ., qn), with n = |G|.
For an arbitrary state 6, an interpolation scheme is used to compute
Q(0), i.e., for each 0, there exists a weight vector w(8) € R", such
that it holds Q(0) = qTW(G). This leads to the insight that the
parameter vector g can be used as a constant vector that is not tied
to the state. The parametrized form of the potential for an arbitrary
g € R" is then

V(0) =log (fu(m)) +q" w(0). )

The drift theorem requires only the investigation of the one-step
behavior of the algorithm. To simplify the notation we denote the
current state (%) by 0 (without superscript) and the successor
state 0(+1) after one step of the algorithm by 6’. Inserting the
parametrized potential (5) into the drift inequality (2) yields

0<B
<E[V(0) - V(0')] 6]
= log(fu(m)) + Q(0) — E[log(fu(m)) + Q(6") | 6]
= log(fu(m)) + q" w(6) — E[log(f,(m")) | 6] - E[q" w(6’) | 6]
= log(f(m)) + ¢ w(6) — E[log(f,(m")) | 0] - ¢"E[w(0") | 0].

Computing the expected values requires some form of integration.
Denoting ¢ (x; 6) as the probability density of our distribution (6)
and assuming the expected values exist, the term E[log(f,(m”)) | ]
is expressed as

(6)

E[log(fu(m")) 6] = /Rd log(fu(m)) - ¢(x;0) dx.
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The exact formulation of m” depends on the algorithms transition
function ¥ . Even for the (1+1)-ES with an isotropic distribution
N(m, el ), closed form solutions of these expected values are not
available. Therefore, we rely on numerical integration to approxi-
mate these quantities. Furthermore, the integrals are parametrized
by the current state 0 of the algorithm and have to be evaluated
across the whole discretized domain 04,...,0, € G.

To clarify the notation we inspect ' and m’ further. Through
the transition function (1) we know that 8" = F (6, x; f). Since the
starting state is restricted to the grid, we highlight this dependency
of 0" on O € G and write 0; = F (6, x; f) under slight misuse
of notation. It is important to note that the successor state 9;( is
in general not a grid point. Instead, the index indicates that the
starting state is fixed to ;. The same notation applies to m;c.

For the sake of generality, the following numerical scheme is
assumed. An explicit integration scheme for the (1+1)-ES on the
two-dimensional sphere function will be introduced later.

AsSSUMPTION 1. For any state Oy € G, there exist approximations
Bllog(fu(m!)) | 0] and E[w(0) | 0] of Ellog(fu(m])) | ] and
E[w(@l’C | )], respectively, with the property

| E[log(fu(m})) | 6] — Ellog(fu(m})) |61 | < e,
|E[wi(6), | 0x)] — E[wi(0,) | 6] | < &,

™
®
for some e > 0.

The assumption highlights a major restriction of the approach:
for larger parameter spaces, applying a suitable scheme quickly
becomes computationally demanding. Furthermore, our evaluation

of the drift inequality (6) will now be restricted to the discretization
G.With k € {1,...,n}, we obtain

0<B<E[V(0) - V(6,) | 6k]
= log(fi (mi)) +q" w(Ok) — Bllog(f (m})) | 0]
g E[w(6;) | 0]
= log(fu(m)) — Ellog(f(my)) | 6]
+ 4 = q E[w(0) | 0]
By 5{; = log(fu(mg)) —E[Iog(ﬁ,(m;c)) | O], we denote the one-step
logarithmic progress of the algorithm, starting from state 6. At this
point, only the drift bound B and the penalty vector (qi, ..., qn)
are unknown. Furthermore, the right hand side of the inequality

is a linear function in q. To maximize our pointwise drift, we can
tune the penalty vector through a linear program (LP):

max B, o)
st. B<oy+qe—q -E[w(0)) 0] VO eG (10)

The solution of this LP yields an optimized drift lower bounded
by B across the parameter grid of states exactly in the sense of the
optimal drift defined in the previous section. In fact, Definition 1
and Lemma 1 can be considered an alternative motivation for the
construction of the above LP.

The LP solution is not unique because the vector g is well-defined
only up to adding the same constant to all components g;. We
therefore demand the additional constraint min{qx|1 < k < n} =0,
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which is easy to fulfill post-hoc by subtracting the minimal com-
ponent from a given solution vector g. Analogous to [1], we then
obtain Q(6) > 0 by construction.

From a theory perspective we can consider a sequence of grids G
such that the grid boundaries tend to infinity and the grid distance
tends to zero at the same time. In parallel, we let the approximation
error ¢ tend to zero. Intuitively? the resulting sequence of potential
functions resulting from the LP will converge to a function of the
form B - V* + A. In other words, provided enough compute for
solving problems (7), (8) and (9), we can obtain an arbitrarily close
approximation of the optimal potential function.

The difference between optimal pointwise drift and optimal run-
time has been discussed in [4]. It was made explicit that tuning the
hyperparameters of an algorithm so as to achieve optimal point-
wise drift does not necessarily result in optimal runtime. In that
sense, optimal drift and optimal runtime are not necessarily the
same. The discrepancy can be caused by the potential function
being a sub-optimal fit for the problem at hand. In our framework
one could build a new close-to-optimal potential function for each
parameter setting. Then the only gaps that can possibly remain and
cause a similar discrepancy are the differences between the actual
potential function and expected fitness, which can be made as small
as desired with our construction, and an additive term that comes
from bounding the amount of overshooting (see Theorem 1).

3.2 Towards Provable Runtime Bounds

The overarching goal of this approach is to provide a computable
and provable drift that yields a linear convergence guarantee
through Theorem 1. On that way, several problems have to be
addressed.

The computed drift underlies an approximation through numer-
ical integration. The stability of the solution of the LP needs to be
shown, calculating how this error influences the final drift. Section
4 provides further insights how this can be handled for the (1+1)-ES
with 1/5-success rule. The practical applicability is furthermore
limited to low-dimensional parameter spaces because the grid size
n and the resulting computational demand grows exponentially
with the dimension of the parameter space.

Application of the additive drift theorem requires the expected
one-step progress to be lower bounded on the whole domain ©.
Yet, the optimization problem only yields drift across a bounded
domain G. We therefore need further information on the one-step
progress of our potential function in between grid points and its
asymptotic behavior outside of the parameter grid.

A possible two-stage approach to handle these difficulties is cen-
tered around Lipschitz continuity of the expected one-step progress.
While closed-form solutions for the expected values are unavailable,
Lipschitz continuity of E[log(f,(m)) | 6] and qTE[w(0’) | 6] can
be analyzed. Assuming that the drift across the grid points is known
up to a small and a-priori controlled uncertainty ¢, we can lower
bound the drift in between grid points using the Lipschitz property.
The bound depends on the grid cell size and on the Lipschitz con-
stant of the drift. It can be made as small as required by choosing a
sufficiently dense grid.

2A corresponding technically precise statement requires suitable regularity conditions.
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Drift outside of the bounded domain can be established in multi-
ple ways. The boundaries of the grid, on which the penalty term
is computed, should represent regions where asymptotic effects
dominate algorithm dynamics. For the (1+1)-ES, this corresponds
to far too small and far too large step-size, or equivalently, suc-
cess probabilities that are very close to 1/2 or to zero. The choice
of a suitable grid generally requires understanding of the algo-
rithm. One approach is then to extend the penalty function linearly
and demonstrate drift analytically by leveraging properties of the
selected boundary points. Another approach involves explicitly
constructing a penalty function tailored to the asymptotic region,
guided by both empirical data and theoretical insights. Either way,
the design of the discretized domain will be guided by theoretical
considerations.

3.3 Solving the Linear Program

Solving the LP (9) is rather easy because all constraints are active.
That can be seen as follows. The Lagrangian of the problem is

L(B,g.2) = —B—iak (8¢ +ac - wla-B)
k=1

with wy = E[w(@l’c) | 6], and with dual variables Ay > 0. The
Karush-Kuhn-Tucker (KKT) optimality conditions demand that the
derivatives with respect to the primal variables vanish:

= iﬂkzl
k=1

s A=W

7] & !
LB :_H,;Ak 20

n
2 L(B.ah) = k= > Ailwi 20
9K k=1
Note that the matrix W consisting of the row vectors wy is a right
Markov (or stochastic) matrix if all weights are positive.> Even in
case of negative weights (caused by extrapolation beyond the grid)
the weights in each vector wi sum to one. Therefore, the vector
(1,...,1) is an eigenvector for eigenvalue one. Then the properties
A 20,37 A =1,and WA = dyield At = 1/n > O forallk €
{1,...,n}, and the KKT complementary condition Ay - cx(B, q) =0
guarantees that the inequalities (10) are fulfilled with equality.

All inequalities becoming equations means that the LP reduces
to a system of linear equations, which has a closed-form solution.
Also, the analysis of the numerical error of its solution reduces to
the analysis for the corresponding linear system.

4 Example for the (1+1)-ES

This section applies the introduced method to the (1+1)-ES with
1/5-success rule. We briefly introduce the algorithm, its state space
and transition function. To fit the setup introduced in the previous
section, an interpolation scheme and the resulting expected values
are derived. Furthermore, our numerical integration scheme for
the two-dimensional sphere function is briefly explained and the
numerical stability of the LP for the (1+1)-ES is investigated. Finally,
we provide insights into how to deal with the overshooting term
E[X(T)], introduced by Theorem 1.

31t describes the transition probabilities of the Markov chain on the grid 0 that arises
from using the weight vectors wy as transition probabilities, instead of as interpolation
weights.
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4.1 The (1+1)-ES with 1/5-success rule

We focus on the (1+1)-ES with one-fifth success rule (see Algo-
rithm 2), which is designed for minimization of a function f :
RY S5 R

Algorithm 2 (1+1)-ES with 1/5-success rule

1: input m© ¢ Rd, AN o,f: RY - R, parameter o > 0
2 fort =1,2,..., until stopping criterion is met do
3 sample x® ~ N(mW), o) . 5]
iff(x(t)) < f(m(t)) then
mE+1) (D)
g(t+1)  5(1) |
else
mE+) o (0)
g(t+1)  5(t) | p-al4

b R A A

While it’s the simplest evolution strategy, it performs online
adaptation of the sampling distribution, an important feature that
also the state-of-the-art algorithm, CMA-ES, uses. Given the al-
gorithm template introduced in section 2, the (1+1)-ES fulfills the
criteria in the following way. We define the state of the algorithm at

iteration t as 0(*) = (m(t), log(a(t))) € © = R? x R. The offspring

x is sampled from the isotropic normal distribution A (m, 6I). The
algorithm’s transition function ¥ is [16]
0" =F(0,x:f) = (x,log(a) +a) - L{f (x) < f(m)}
+(m,log(o) — a/4) - 1{f(x) > f(m)}. (11)
The step-size adaptation mechanism was first introduced by Rechen-
berg and later simplified by Kern et al. [10]. It adapts the step-size to
maintain a success probability of roughly 1/5, where the value of «
controls the speed and the stability of the adaptation of o) We an-
alyze the algorithm on the sphere function f : RY 5 R x > ||x]]2.
Due to the computational effort, the numerical integration scheme
further limits the analysis to d = 2 dimensions. With the definition
of the potential function in equation (4), the spatial optimality func-
tion was used to measure the logarithmic optimization progress
of the algorithm. For the sphere function centered around the ori-
gin, log(f,(m)) reduces to log(||m|[), up to an irrelevant additive
constant.

We define the normalized step-size o as o = o/||m — x*||, where
x* denotes the optimum of f. It accumulates the effect of 0 and m
into one variable. As our interest lies in the algorithm’s behavior
dependent on log(o), the logarithmic normalized step-size log(o) =
log(a/||m — x*||) = log(c) —log(||m]]), with x* = (0,...,0), will
be investigated.

Akimoto et al. [1] highlight the independence of the success
probability and one-step progress of the mean m on the sphere
function. This simplifies the application of our method considerably,
since it reduces the state space to just one variable log(o). Without
loss of generality we fix our starting state to the first unit vector e;
and obtain log(o) = log(o). On the sphere function, the logarithmic
norm of the successor point log(||m’||) equals

log(|lm’|[) = log(llx|]) - T{lIx[| < 1} +log(lles]]) - T{lIx[| > 1}
= log({|x[[) - T{|Ix|| < 1}. (12)
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Due to m = e, the one-step logarithmic progress

8" =log(lle1|]) - log(|lm’]]) = —log(||x[]) - L{l|x|| < 1} (13)
is fully controlled by the sample x ~ A (ey, e21°8(9) 1) and therefore
by log (o).

Before considering the successor state log(c”), we shorten the
notation by introducing s = log(c) and 5 = log(). The logarithmic
normalized successor state then becomes

5 =5 —log(|lm’|])

= (s—a/9L{llx|l > 1} + (s + &) L{]|x]| < 1}
= log([lx N L{|lx]| < 1}
= (s —a/4) L{|Ix|| > 1} + (s + a = log(||x]])) L{||x|| < 1}.
[ — N—— ——
5 5,
We describe the algorithms dynamics through two scenarios. In the
case of an unsuccessful offspring, i.e. 1{||x|| > 1}, the successor
state results from a shift by /4 to the left. For a sample that satisfies
1{||x|| < 1}, the successor state is shifted to the right by & plus the
logarithmic improvement — log(]|x||) > 0. We denote the arising
states as 5, (failure) and 5% (success).

For a general s € R, the inequality for the one-step change of

the potential is

B < —log(llxl)) - 1{llxll < 1} +¢" -w(s) —¢" -E[w(s")|s]. (14)

At this point, all the prerequisites have been introduced and the
focus will shift towards the linear interpolation scheme and its
expected value.

4.2 Linear interpolation

Up until now, an interpolation scheme was assumed but not explic-
itly stated, as it depends on the choice of algorithm and objective
function. This sections introduces a simple linear scheme with the
corresponding parameter grid. It aims at deriving a computable
expression for E[w;(5") | s].

We want to analyze the one-step progress of the algorithm on a
logarithmic scale. Since the states themselves are logarithmic, i.e.,
s =log(o), and these states undergo additive changes as outlined
above, a uniform grid is a suitable choice. By G we denote the
one-dimensional equidistant parameter grid

G={silsi=si+(i-1)-A n}, (15)
with grid-size A > 0. The linear interpolation scheme on G is

defined as

i=1,..

s—sj

+1 ifse[s;i—Asi],

< 51 Aosi
si—$ .

wi(s) = +1 ifse [sysi+A]
0 otherwise.

Forany s € [s1, sp] in the vicinity of s;, specifically s € [s;i—A, s;+
A], wi(s) assigns a value relative to the distance of s to s;. Therefore,
for any s € [s1, sn], at most two weights will be larger than zero for
qT -w(s) = qi - wi(s) + qi+1 - wi+1(s). This behavior is illustrated
in Figure 1. Additionally, an extrapolation strategy is required for
handling successor states that fall outside the defined interval. To
address this, we linearly extend the two boundary weight functions
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Wn

sn‘—l 5‘1\‘ s

Figure 1: Linear interpolation functions w;, w,—1 and wy,.
While w; represents the standard linear interpolation within
the grid, w,—; and w, are extrapolated to support values
of s > s, when evaluating ¢q” w(s). Similarly, the first two
weights, w; and wy, are extended accordingly to account for
s < 81.

w;  Wn-1

Si+1 Sn-2

on either end of the grid. A more detailed explanation will follow
at the end of this section.

As we are interested in the expected value with respect to the
logarithmic normalized successor state, we investigate

E[wi(s") |s] = E[wi(5p - I{{lx|| > 1} +55 - L{|[x[| < 1}) | 5]
=E[wi(5}) - T{{lx|l > 1} +wi(s) - L{lIx[] < 1} 5]
=wi(s — a/HDE[L{[|x|| > 1} |5]

+E[wi(55) - T{|Ix|l < 1} | s].
With the success probability p$U“(s) = Pr(]|x|| < 1), the expected

value is

E[wi(5) 5] = wi(s—a/4)(1=p™(s))+E[wi(5¢)- 1{[|x]| < 1}]s].

(16)

The first part simplifies to the linear interpolation shifted by a/4

to the left and the probability of an unsuccessful step happening.

Let ¢(x; s) denote the density of N (e1, e2°I). Focusing on the latter
term

E[wi(5) - I{|lx[] < 1} |s]

= [ G Llxll < 1) p(xis)

oo *
B4(0,1)

+ (s,- ;_' + 1) 1{5, € [si.si +A]}) o(x;s) dx

SS
we rewrite the indicators as
1{si — A <s+a-log(||x|]) <si}
=1{exp(s+a—s;) < ||x|| < exp(s+a—s;i+A)}

—Si

A

+1)]1{§; € [si - A sil}

and

1{s; <s+a—-log(||x|]) <si+A}

=1{exp(s+a—s;i—A) <||x|| < exp(s+a—si)}.
Therefore, both indicators impose further restrictions on the inte-

gration volume. To represent the spherical shells formed by the
indicators, we introduce the balls

B?“ter = B(0,exp(s+a —s; + A)) \ B(0,exp(s + @ — 5;)),
B%nner = B(0,exp(s + a — 51)) \ B(0,exp(s + a — s; — A)).

These spherical shells represent the following scenario: starting
from s € R, in case of a successful step, it holds 5’ € [s; — A, s;] or
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¥ € [si,si+A]ifx € B?uter orx € B%nner, respectively.
We separate the terms and reduce the volume to

E[wi(55) - 1{|lx]| < 1} 5]

4 . L3
=/ u+1 (p(x;s)dx+/ 175
Bti)uter A Biinner A

+ 1) @(x;s) dx.

(17)
Further rearranging the first term yields
/B?uter (ss ;_si + 1) @(x;s) dx
—1 s
(et )
B?uler A
— s 1
= (s-e-oz—s,+l)/ @(x;s) dx—/ qu(x;s) dx.
A B?uter B(i)uter A

Essentially, the required numerical integration reduces to a proba-
bility of success and a logarithmic progress over a spherical shell.
Similar rearrangement can be applied to the second term of (17),
leading to a computable expression for the expected value of a
single weight vector in the success case:

E[wi(55) - 1{]lx]| < 1} 5]

_(sracs . log(lxl)

() [ e [ D
7S¢ : log(flx[l)

( A +1) /Bi""“(p(x,S) dx+‘/Bi'nner A @(x;5) dx.

(18)

The result highlights the mechanism behind the expected value
of the linear interpolation scheme in the success case. Starting
from some state s € G, a single weight E[w; (55) - 1{||x|| < 1}]s]
becomes active, i.e. E[w;] > 0, if the success probability to land in
[si — A, si + A] is positive. This is the case if s + & < s; + A.

To account for successor states that land outside of the bounded
region covered by the grid, we establish an extrapolation approach.
These situations arise if

s—afl4 <siors+a— E[log(||x|)1{||x]| < 1}|s] > sn.

To handle such cases, we linearly extrapolate the first and last pair
of weight functions, wi, wp and w,_1, wp, as displayed in Figure 1.
With respect to qT -E[w(3’ | 5)], this extends the weight functions
and all quantities based thereon from the bounded interval [s1, s, ]
to the unbounded state space R.

For wy, and wy,—1 we obtain

s—s
41 ifs> sy,
wn(s) = A
0 else,
and
S —Sp—
Tnl +1 ifs € [sp-2,8n-1],
Sp—1-—S5
wn-1(8) = % +1 ifs> sy,
0 else.

The pair of weights at the left side of the grid, wi and wy, are
modified accordingly. As the left bound of the grid can only be
crossed with an unsuccessful step, wy/,(s — @/4) can be evaluated
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directly. Yet, the arising expected values E[w,,/,,_1 GoL{||x|| < 1}]
need further consideration:

E[wn (59)1{]lx]| < 1}]

-
= / (u) 1{5% > sn—1}o(x;s) dx
Ba(o) \ A

-1 _
-/ (s+a 08Ul =1 | ) ) v
]| <esresnos

A

+1) / p(xis) d
B(0,exp(s+a—sp_1))

log(fIxID)
A

_(s+(x—sn
B A

_ / @(x;s) dx.
B(0,exp(s+a—sp_1))

While other expected weight functions are defined through inte-

gration over a spherical shell, the boundary weights account for

the non-zero probability that a successor state lands arbitrarily far

from s, by integrating over a ball centered around the origin.
Finally, w,—; yields

E[wn-1(5)1{lIx|l < 1}]

:(MH)/ o(x:s) dx
A B?lu_tir
log(Ix|))
_ / log(llxlD) ,
By A

(mﬂ)/ 9(x:s) dx
B(0,exp(sta—sp-1))

A
!
+/ og(|lxl)
B(0,exp(s+a—sp-1))

A
4.3 Numerical integration

(x;5) dx

o (x;s) dx.

For analysis of the (1+1)-ES, we need approximations of various
expected values, in particular of the weights w; of successor states
and the progress log(||x||), for each grid point s;. Both functions of
the offspring sample x are piecewise smooth, the Gaussian density
@(x;s) of x is smooth, and the boundaries between the smooth
parts are spheres. Most prominently, the unit sphere separates the
bounded success region from the unbounded region of unsuccessful
steps. To this end, we also estimate the success probability P(||x|| <
1), which is the expected value of the indicator function of the unit
sphere. The special property of the (1+1)-ES always performing
the exact same adaptation for all unsuccessful steps allows us to
restrict the integration area of all quantities to the unit ball.

We obtain approximations of the above expectations by means of
numerical integration with the midpoint rule applied to rectangles.
For each rectangle we compute (term-specific) upper bounds on the
deviation of the integrand from its first order Taylor approximation
in the midpoint, directly yielding an error bound. Consider the
rectangle R = [l4, u1] X [l2, uz] with midpoint ¢ = %(ll +uy, Iy +up),
as well as an integrand h € C2(R). Let hy (x) = h(c)+(x— )TVh(c)
denote the first order Taylor approximation of h around c, and let
b denote an upper bound on the deviation |A(x) — hy(x)| (usually
obtained by bounding second derivatives of h). Then it holds

/Rh(x)dx = (u1 = I1)(uz = )h(c)| < b(uy =) (uz = I2)
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because the first order term in hy cancels out when integrated
over the rectangle. If the bound is too large then we subdivide the
rectangle with the largest error contribution until the overall error
bound falls below the pre-defined threshold ¢ > 0.

Three cases need special attention.

o The rectangles must be capped at the sphere-shaped bound-
ary. In this case the linear term does not cancel out and must
hence be computed explicitly. The problem of integrating
a linear function over the intersection of a rectangle and a
sphere has a closed form solution (with a number of case
distinctions depending on where the circle intersects the
rectangle), which we exploit.

o The logarithmic progress /||x||51 log(||x|[)¢(x;s)dx has a
pole at the origin, however, with finite integral. We therefore
cut out a small ball around the origin, which is chosen so
that the Gaussian density ¢(x;s) is well approximated by a
linear function. Then the integration over the small ball can
be performed in closed form with a similar error bound as
above.

e Due to the linear interpolation scheme, the weight function
is non-smooth at its maximum. We therefore integrate the
two smooth parts independently. Each integration region
is a ring, i.e., the set difference of two balls centered at the
origin.

For the last two cases a similar consideration as for the unit sphere
applies to the two spherical boundaries of the integration region,
which are handled with the same techniques.

By subdividing a rectangle along both axes into four smaller
rectangles the computational effort grows by a factor of four. The
second derivatives of h are bounded. Therefore, halving the length
scales of x — ¢ has a quadratic effect on

(x = 0)TV2h(c) (x = ¢)

and on its bound b. This also holds for the boundary rectangles:
while the linear term does not vanish, its closed form integration
does not incur an increased numerical error. We conclude that the
computational effort of each numerical integration is @(1/e¢).

The above consideration focuses on the approximation error
¢, which we set to 107° in our experiments. That precision is far
more than sufficient for demonstrating drift. For that setting the
approximation error dominates rounding errors caused by floating
point arithmetics. However, when increasing the precision further,
round-off errors must also be taken into account.

4.4 Linear Program with Approximate Weights

Following up on the considerations outlined in section 3.3, we start
from

B=8f+qr—q" E[w()|s].
With W; = E[w;(5") | 5], the linear system is derived as

SE\ (wils) -1 wals1) wn(s1) \[(q1\ (B

B

ST

St \ WiGs) walsw) Wasn) = 1) \qn

We (temporarily) introduce the additional constraint 3!, gx = 0in
order to make the solution unique and obtain the following system
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of equations:
wi(s1) =1 wa(s1) wn(s1) 1\ (q1 st
wi(sn) wa(sn) Wn(sn) =1 1|[qn 5,L1
1 1 (X 1 0/\B 0

At this point, we rely on numerical integration to obtain approxima-
tions for w;(s;) and 5{“ with i, j € {1,...,n}. The process introduces
a componentwise error into the resulting system of linear equations.
Let Wq = 6L represent the exact system, and let W§ = 5L denote
the perturbed system arising from the numerical approximation.
With a slight abuse of notation, we also include the pointwise drift
B in g, and extend W accordingly. The size n is adjusted to reflect
these additions. By construction of the integration method it holds
|Wij — Wij| < ¢ and |51L - 5lL| < eforalli,je {1,...,n}. We are
interested in the relative error of our solution ||g — §||/||qll, specif-
ically in terms of its Euclidean norm || - ||2. As a starting point,
we rely on a classical result from perturbation theory [3, Theorem
7.29]:

THEOREM 2. Assume Ax = b and A% = b. If A is nonsingular and
[|A — Al| < 1/||]A™Y]| then it holds

cond(A) (

1—con

116 - b]|
1ol

|1 — xII

A-A
L ||)‘

[IxI] [1All

Since we only have access to W, 5L and the componentwise
pertubation ¢, we upper-bound our relative error further. Exploiting
the properties of the Euclidian norm yields ||W — W||; < n - ¢ and
[IW]|2 > ||W]|2 — n - . For the vector containing the logarithmic
progress, we obtain ||5L — %||, < v - e and [|6])2 > [|65||2 —
\/n - &. Lastly, a bound on the condition number cond(W) = ||[W]||2 -
[|[W™1||5 is derived. Let A;(W) denote the i-th largest eigenvalue
of W, by Weyl’s inequality for singular values, it holds |4; (W) —
Ai(W)| < ||W — W|| and for the smallest eigenvalue A (W) >
Amin (W) = [|W = W||2 > Amin(W) — n - &. This allows us to upper-
bound the spectral norm of W1 as

1 1
/lmin(w) : Amin(W) —n-¢

To be able to verify the prerequisites of the theorem, the same bound
is applied as ||[W —W|lg < Amin(W)—n-£ < 1/|[W |2 = Amin(W).
To show that W is nonsingular, we again rely on Weyl’s inequality,
by which we know that |2;(W) = 2;(W)| < n - e Therefore, if
Ai(W) > n-eholds foralli € {1,...,n}, then W is nonsingular.

Assuming these conditions can be fulfilled and Amin(W) > n- ¢,
we can bound the relative error by

Wl = if Ain (W) > 1 - .

119 - qll2 < cond(W*)
llgllz = 1 — cond(wr)— 25
Wz —n-e
i n-e i Vn-e ’ (19)
[[Wllz2=n-e |62 —+vn-e¢

with cond(W*) denoting our bound
1

cond(W*) = (||W||z+n-¢)  ————
USEXILAYIP )Amin(W)—n-E
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of the condition number.

4.5 Bounding the Amount of Overshooting

In order to obtain a useful runtime bound from Theorem 1 we
need to bound the expected overshooting § — E[X(T)]. The term
describes by how much the last step of the algorithm overshoots
the target potential threshold of . Such excess progress is super-
fluous for the goal of reaching f, and therefore large overshooting,
potentially coming from rare events, can be detrimental for the
expected runtime (and its bound).

The amount of overshooting is bounded by the change of the
potential V() in a single step, conditioned on the event that the
improvement drives the potential beyond the stopping threshold
B.Lety = V(6) — > 0 denote the gap between current potential
and stopping threshold. The following bound is independent of f:

B-EXD] < sup (V(O) -E[V(6)|V(0) -V()>7]) (20)
6,y>0
This term is no easier to control than the drift itself, but we may
be satisfied with a less tight bound because it has only an additive
effect on the runtime bound, in contrast to the multiplicative effect
of the drift.
Plugging the transition function (11) into the potential (4) we
see that an unsuccessful offspring can cause a potential difference
of at most mg - a4, where

|9k — qr-1l
A

mq=max{ 1<k§n}
denotes the maximal slope of Q. These events enter the conditional
expectation only for small gaps y, and more importantly, the amount
of overshooting is well controlled. The potential improvement of
a successful offspring can be bounded by (1 + mq)(log(||m||) -
log(||xI]) + mga. It needs closer attention because log(||x||) is
unbounded, and we therefore have to control its effect on the con-
ditional expectation (20).

At this point we can return to the normalized setting with m =
e; and parameter s. For each fixed tuple of y > 0 and s there
exists a radius 0 < r < 1 so that successful offspring samples
x € B(0,r) cause a progress of at least y. They overshoot by at most
(1+mg) - (log(r) —log([|x]])) + mga. The expected overshooting
of successful steps is therefore bounded by

mqa+(1+mq)/3(0 )(log(r)—log(||x||))(p(x;§)dx. (21)

We note that it holds ./B(O,r) log(r) — log(||x|])dx = %rz. Taking
the worst case r = 1, it remains to control the (Gaussian) density

o(x;3) = p (—%Hx ik exp(—2§)) .

1
27 exp(25) &
For s — —oo the density is unbounded in the vicinity of x = m,
but with a bounded effect on the integrand, which vanishes at that
point. We exploit that fact in the following, which requires some
technicalities.

For s > 0 we obtain the bound ¢(x;5s) < % For s < 0 we split
the integration region into an inner ball B(0, p) and an outer ring
R = B(0,1) \ B(0, p) with p = 1 — 2V—=5exp(5). On B(0, p) the
density attains its maximum at p - e1, where it takes the value %
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by construction of p. On the ring R the integrand —log(||x||) is
upper bounded by —log(p) = —log(1 — 2v=s exp(s)). The func-
tion 2 exp(g)\/—_E attains its maximum at s = —% and we obtain

—log(p) < —log(1 - \/ﬂ), which computes to a value slightly
less than two. Integrating that value over a part of a probability
density with probability mass bounded by p¥'°°(5) < 1/2 yields a
bound of one.

Combining all results, the expected overshooting is bounded by

B-E[XT] < mga+ (1+my) (%J). (22)

4

5 Experimental results

This section demonstrates the application of the framework to the
(1+1)-ES with 1/5-success rule on the two-dimensional sphere func-
tion. We discuss different grid setups and their accuracy, highlight
the expected value of the linear interpolation scheme and compare
empirical runtimes to those obtained from our approximated drift.

5.1 Setup

The previous section dealt with the numerical difficulties arising
from the method developed in Section 2. Yet, variables central to
the experimental setup, the grid boundaries s; and s,, along with
the grid-size A, were mostly untouched. Section 3 highlighted their
importance from a theoretical point of view. Here, we introduce
various grids and conduct an experimental study on the stability of
the simulation and the corresponding drift dependent on the tuple
(s1,sn, A).

We introduce our reference grid with the following parameters:
s1 = —9,sp = 3and A = 0.1. We set a to 1/3 in all experiments.
Based on our simulations, this grid captures all asymptotic effects
with significant buffer, and thus serves as the baseline for assessing
sensitivity to reductions in the grid’s range and density.

The analysis will focus on several parameters, the constant drift
obtained across the grid, the condition number of the resulting
(perturbed) matrix of the linear system with a respective error
bound, and the general shape of the resulting penalty function.

5.2 Results

We present our main experimental findings through Figure 2 and
Table 1. Starting with Figure 2, the penalty term g7 w(s) is displayed
for various grid configurations, compared to the reference grid.
The setups are deliberately chosen to include cases where stable
simulations may not be expected, either because not all effects are
fully captured or because the grid is particularly coarse.

Focusing on the baseline, represented by the dotted line, we note
that its behaviour aligns with that described by other explicit meth-
ods, such as in [1]. The curve can be divided into three regions: two
asymptotic regions, where the penalty function grows linearly, and
a transition phase in which the step-size is well adapted. We further
note the difference in slope for both asymptotic cases, indicating
that the step-size adaptation is faster when the step-size is too large,
hence the larger slope. Compared to explicit penalty terms of the
form max{0, f(&), f(1/5)}, for example in [2], the transition zone
exhibits a much smoother shape.
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Figure 2: The penalty term g7 w(s) displayed across multiple parameter combinations in comparison to the reference grid with
s1 =—9,sp =3 and A = 0.1. The legend depicts the values in the same order: s;, s, and A.

The optimal asymptotic left and right slopes
lim Q'(s)
s——00

can be computed explicitly. On the left, the success rate tends to
1/2, while the impact of a success tends to zero. With half of the
steps changing the potential by +« and the other half by —a/4
we obtain an expected change of s by %a. The right asymptotic
case is governed by the success rate tending to zero, and hence
by a near-deterministic change of s by —a/4 = —%a. In order to
achieve a constant drift, the right asymptotic slope must there be
—3/2 times the left asymptotic slope. For reasonably large grids
that capture the asymptotic behaviour, this prediction is conformed
to high precision by our experimental results.

Shifting the view to smaller discretized spaces, we observe that

and lim Q’(s)
S$—+00

almost all plots, with the exception of (e), closely follow the baseline.

This is interesting, especially for grids that do not capture the entire
spectrum of relevant behavior. The smallest grid, (e), yields a slightly
shifted penalty term due to normalization of its minimum value to
zero, yet it preserves the overall slope. In terms of coarse grids, only
small deviations can be seen for (b), whereas even (d) still follows
the baseline.

Table 1 supports the observed findings. The relative error is
computed according to equation (19) with ¢ = 107, for which all
requirements are fulfilled a posteriori. All parameter combinations
yield a similar drift. Comparing (a) and (b), a less dense grid reduces
the drift by a small percentage while reducing conditioning of W
due to the lower number of grid points. A general trend emerges
in which a larger and denser grid results in slightly more drift and
a higher relative error. Interestingly, (e) yields more drift than (f)
despite missing much of the transition phase. Our experimental
studies highlight the significance of accurately capturing the right

asymptotic region, which may explain the discrepancy between
(e) and (f). Furthermore, a grid that only spans the left asymptotic
region up to the transition phase yields a matrix W that does not
fulfill the requirements for a relative error analysis due to its high
condition number, and is therefore insufficient for our analysis.

In conclusion, we emphasize the robustness of our approach,
even when boundary values are poorly chosen or the grid is rela-
tively coarse. This is particularly important when transitioning to
algorithms with larger state spaces, where numerical limitations
become a significant constraint.

Plot s; s, A Drift Rel. Error  cond(W)

Ref. -9 3 0.1 0.046178 0.016 611.37
(@ -7 2 0.1 0.046174 0.01 393.87
(b) -7 2 0.5 0.045744 0.003 172.05
() -2 -15 0.1 0.046154 0.001 65.28
(d -5 1 0.2 0.046 0.0044 257.95
(e) -1 1 0.1 0.046044 0.0005 45.06
f) -3 05 0.1 0.045881 0.0053 375.45

Table 1: Grid parameters si, s, and A and corresponding re-
sults: pointwise drift across the domain, relative error of the
solution according to (19) and condition number of the re-
sulting pertubed matrix W.

5.3 Linear interpolation

Given the observed stability in the experiments, we inspect the
underlying expected weight vector E[ (wy, ..., wy)T | s] of the grid
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with parameters s; = =7, s, = 2 and A = 0.1, corresponding to
Table 1 (a).

0 20 40 60

80

Figure 3: Expected weight vector E[(wy, ..., wp)T | s] visual-
ized across the discretized domain with parameters s; = -7,
sn = 2and A = 0.1. Both axes correspond to grid point indices:
the x-axis represents the index i of E[w; | s;], while the y-axis
increases sj from top to bottom.

It is visualized in Figure 3. Both axes represent index positions
within the grid: the x-axis indicates the index i of E[w;(5") | /],
while the y-axis increases s from top to bottom. The diagonal rep-
resents the starting state s;. The difference in the adaptation mech-
anism of the logarithmic normalized successor state 5’ is clearly
visible. Left to the diagonal, at most two weights are active. They in-
terpolate the successor state resulting from unsuccessful offspring.
On the right, we observe a different pattern: as s increases, the
interpolation spreads across more than two weights, leading to a
broader distribution over the successor states. This behavior stems
from 5% = s + a — log(||x||) taking more diverse values for large
step size. Additionally, the influence of the success probability is
displayed through the increasing probability mass allocated to the
interpolation of the failure state.

5.4 Runtime comparison

In this section, we compare the expected runtime resulting from our
pointwise drift through the drift theorem with empirical results for
the (1+1)-ES with 1/5-success rule on the two-dimensional sphere
function. It is important to note that our analysis only yields a
uniform drift across all grid points of the chosen bounded domain.
At these points, we know it to a certain precision, described by our
relative error. However, we have no information about the drift in
between grid points or beyond the boundaries of the grid. As such,
the derived drift remains an approximation and does not capture
the behavior across the entire state space.

As a starting point, Figure 4 yields insights about a typical run
of the (1+1)-ES on the two-dimensional sphere function. The figure
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is based on [2] and while their potential function was explicitly
defined for the whole domain, our method relies heavily on extrap-
olation due to the initial normalized step-sizes being far outside the
covered grid range. Nonetheless, the Figure captures the expected
behavior, for which the normalized step-size is first adapted into a
regime where optimization progress can be made. Then, it remains
approximately constant while the algorithm converges linearly.

5o =log(10~1%) 5o = log(10%5)

101 Ay e ° 7 —ve  [®
5] frin AT o —-= log(Imd) | 30
{ =5 1 & 25
- 0_ - - \ B
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Figure 4: Dynamics of the potential function V (5;) and log-
arithmic distance to the optimum log(||m;||) over function
evaluations ¢ for the (1+1)-ES with 1/5-success rule on the
two-dimensional sphere function. The potential utilizes a
penalty term computed using grid parameters s; = -7, s, = 2
and A =0.1.

We conclude by conducting an empirical comparison between
the averaged runtime of the algorithm and its overshooting with the
runtime we obtain through our computed drift. We note again that
the drift, as of right now, only serves as an approximation without
rigour, as parts of the domain are not covered yet. An actual bound
on the drift will likely be smaller to accommodate the remaining
obstacles. Still, assuming our drift would be produced across the
entire domain, we are interested in the accuracy of our bound. Ta-
ble 2 provides a comparison between the runtime and overshooting
values. The setup consists of a target value f = log(10~12) for all
simulations. The penalty vector and corresponding drift is com-
puted using a grid with parameters s; = =7, s, = 2and A = 0.1,
with the resulting drift shown in Table 1 (a). The initial mean of
the distribution is fixed as m = eq, while the step-size is varied.

A noticeable difference is observed between the empirical over-
shooting, displayed through its 10th, 50th and 90th percentiles, and
the one obtained from inequality (22), which partially explains the
difference between the averaged evaluations and our bound from
the drift theorem. Nonetheless, our estimates offer a reasonably
accurate characterization of the observed behavior.

6 Conclusion

We have presented a novel method for constructing a potential
function for drift analysis of evolution strategies. It is suitable for
describing the dynamics of a linearly convergent algorithm.

The central technique is to discretize the state space to a grid,
and to compute the algorithm dynamics by means of numerical
integration. Based on the resulting data an optimized penalty term
is constructed for the strategy parameters. The term is extended



FOGA 25, August 27-29, 2025, Leiden, Netherlands

S0 Mean evals. E[T] £ Est. oversh. B- E[x(M)
log(10%) 1026 + 37 1091 0.005/0.026/0.122 3.016
log(1071%) 851 +45 914  0.005/0.026/0.113 3.016
log(1071) 600 + 36 665  0.005/0.028/0.152 3.016

Table 2: Comparison of empirical runtime and overshooting
values with our bounds across three different initial setups.
The initial step-size is varied with my = e;. The averaged
evaluations are presented with the respective standard devia-
tions, whereas the estimated overshooting is shown through
its percentiles 10%/50%/90%. The target f is set to log(10712)
in all experiments.

to the complete state space by means of inter- and extrapolation.
By construction, it achieves constant drift on the grid. Constant
drift is desirable because an additive drift theorem then provides a
perfectly tight runtime bound across all runtime bounds achievable
by drift.

We demonstrate the feasibility and the utility of the approach on
the most basic evolution strategy, the (1+1)-ES. It provides an ideal
testbed for out method because it is extremely well analyzed. In
fact, drift was established before by much simpler means. We show
that our approach provides an extremely accurate description of the
algorithm dynamics, which matches our theoretical understanding
and which closely resembles its empirical behavior.

Due to the computer-aided nature of our approach, several limita-
tions arise. In particular, we are unable to derive explicit mathemat-
ical expressions for the dependencies on algorithmic parameters,
most notably, the problem dimension. Further, the computational
complexity restricts the method to low dimensional cases.

While the method already provides useful potential functions,
it is not yet fully developed into a proof technique. In future work
we will analyze asymptotic effects outside of the grid, and we plan
to establish drift in between grid points by means of Lipschitz
continuity of the drift. Completing these two steps would enable
a fully stringent computer-aided drift-based analysis that yields a
tight bound on the convergence rate.

Furthermore, we plan to tackle the analysis of an evolution strat-
egy with covariance matrix adaptation. To the best of our knowl-
edge there is no principled method for constructing a potential
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function for a variable metric ES suitable for drift analysis. There-
fore we believe that our constructive method has the potential to
make a significant contribution to the analysis of this important
class of optimization algorithms.
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