Human Motor Systems

Lei Zhang

Institute for Neural Computation
Ruhr-Universitat Bochum
lei.zhang@ini.rub.de

Autonomous Robotics: Action, Perception, and Cognition (ST 2025)
Prof. Dr. Gregor Schoner
Teaching unit: Human motor systems (03.07.2025)



o

(T
in

II

|
L

il

Video: The humanoid robot Rollin' Justin, Institute of Robotics and Mechatronics, German Aerospace Center



Video: Individual cycle sport stacking world record 4.753s, Malaysia 2019 (Chan Keng lan)



Powerful torque motor Sluggish muscles
Conduction delay <1ms Conduction delay > 20ms

Accurate sensors Noisy sensory receptors



Overview of human motor system

! e Central nervous system (CNS)

- Brain
- Spinal cord

e Muscles

Musculoskeletal mechanics

Scott. Nature Reviews Neuroscience 2004



Outlines

e How muscles work?
- muscles, motoneurons, reflexes, spinal cord

* How movements look like?

- kinematic patterns

* How the brain works in movement generation?
- neuroanatomy, function
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“To move things is all that mankind can do, for such the
sole executant is muscle, whether whispering a syllable or
felling a forest.”

Sir Charles Sherrington




Muscle structure and motor neuron
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https://www.sciencenewsforstudents.org/article/explainer-what-is-a-neuron

Bear et al. Figure 13-1

Each muscle fiber is innervated by a single axon



Muscle structure and motor neuron
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Bear et al. Figure 13-7

Each muscle is innervated by multiple motor neurons



Muscle fiber structure
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The molecular basis of muscle contraction
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Muscle force generation
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Bear et al. Figure 13-8

Force ———

Force ——»

Time ——



The human spinal cord
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Bear et al. Figure 12-11



Motor and sensory pathways
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Bear et al. Figure 13-4 Bear et al. Figure 12-9

The ventral horn of the spinal cord contains motor

Sensory signals enter the spinal cord through the dorsal roots.
neurons that innervate skeletal muscle fibers.

Cell bodies of sensory neurons lie in the dorsal root ganglia



Muscle spindle structure
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A FIGURE 13.17
A muscle spindle and its sensory innervation.

Bear et al.



Muscle spindle structure
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Gamma motor neuron function
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* Gamma motor neuron adjusts the sensitivity of la sensory fibers



Gamma motor neuron function

A Alpha-gamma co-activation reinforces alpha motor activity
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Three sources of inputs to Alpha motor neuron

Input from spinal Sensory input
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Bear et al. Figure 13-9



Stretch reflex and reciprocal inhibition
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Muscle stretched — la axon activity increases — alpha MN activity of the same muscle increases — the same muscle shortened
(length increases) —alpha MN activity of the opposite muscle decreases — the opposite muscle relaxed



Flexor withdrawal reflex
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Bear et al. Figure 13-26



Crossed-extensor reflex

Flex

Bear et al. Figure 13-27



The Ib axon of the Golgi tendon
organ excites an inhibitory
interneuron, which inhibits the alpha
motor neurons of the same muscle
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Bear et al. Figure 13-24



Reciprocal inhibition and Renshaw cell
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Modelling of spinal reflexes
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Raphael, Tsianos, Loeb 2010

Interneuronal Control (IC)

Presynaptic Control (PC)

[-1,3]

Afferent (A) [0,1]

> Efferent(E)

_>E

l
Y
%

0—% 1

Membrane potential

Tsianos, Goodner, Loeb 2014



The mass-spring model of muscles

* A physical mass-spring-damping system:
- Elastic component k: proportional to position
- Viscous component c: resistance depends on velocity A

* Biological muscle-joint system has a similar “spring-like oo™
behavior” -
- But note: muscles can only pull, not push
- A joint with agonist and antagonist muscles work bidirectional ;M‘__
- Both passive mechanics and reflexes contribute >NV
e VAVAVAVAVAVAY e o

https://en.wikipedia.org/



Active tension (g)

Experimental measurement of muscle elastic property

The resting length (A1) of the “spring” can be modified by brain descending command
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The mass-spring model

Force A: Equilibrium Point

-
Length

A is the muscle length when external force = muscle force =0 (analogous to spring’s resting length)

Stabilization of EP is contributed by muscle passive mechanics and reflexes .
Latash. J Hum Kinet 2009



Movement emerges due to the interaction between muscular
system and external load

F "
oree B: Active Movement
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The force-length characteristics do not change. Change of A results in change of EP
Latash. J Hum Kinet 2009



Movement emerges due to the interaction between
muscular system and external load

Force C: Passive Movement
A
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Change of external force (L) results in change of EP

Latash. J Hum Kinet 2009



Movement emerges due to the interaction between
muscular system and external load

A: Reciprocal command (r)

Torque
A -
Ao N4 _Angle
)\;ez le"l

The joint torque-angle characteristic (thick lines) is the algebraic sum of the corresponding muscle characteristics.
Shifts of both Af and Ae in the same direction result in a shift of the joint characteristic parallel to the angle axis.

Latash. J Hum Kinet 2009



Movement emerges due to the interaction between
muscular system and external load

B: Coactivation command (c)
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Shifts of Af and Ae in opposite directions lead to a change in the slope of the joint characteristic

Latash. J Hum Kinet 2009



The mass-spring model —a modelling study

Muscle model (one A / central command per muscle):
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Biomechanical models
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Current research topic:

Using theorectial models of arm reaching (incl. reflex loops) to study the temporal profile of neural descending control signals
Experimental setup:

The mathematical model:

A(t) = [I(t — d) = N(0) + p(D)[(t — d)]*

M = plexp(cd) — 1]

1

&

¢ PMA+2TM+M=M
F=Mf1+f2atan (f3 +f4 D]+ k(I —r)

(Based on the model of Gribble et al. 1998)

HOM
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Reflex model
Motion and electromyographic recordings

Muscle model



Summary: How muscles work?

* Muscles are the actuators for movement
* Muscle spindle senses muscle length
 Spinal reflex loops modulate motor output

* Muscles act as a non-linear mass-spring model
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* [1] Bear et al. Neuroscience: Exploring the Brain, 4th Edition, 2016
* [2] Kandel et al. Principles of neural science, 5th Edition, 2013
* [3] Purves et al. Neuroscience. 3rd Edition, 2004
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