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Abstract. This paper works towards an analysis of a variable-metric
evolution strategy by means of drift analysis. Drift analysis has been
effective for proving convergence and analyzing the runtime of a sim-
ple (1+1)-ES. We make a first step towards including covariance ma-
trix adaptation (CMA). To this end, we develop a novel class of poten-
tial functions for the (1+1)-CMA-ES optimizing two-dimensional convex
quadratic functions. We leverage invariances to efficiently sample a rep-
resentative space of states. We use simulations to gain an empirical es-
timate of the expected minimal drift induced by the candidate potential
function and to tune potential function parameters. Our results indicate
that the tuned potential function is negative and uniformly bounded
away from zero, which yields linear convergence.

1 Introduction

Variable metric evolution strategies like the covariance matrix adaptation evo-
lution strategy (CMA-ES) [8,11,9] are among the best performing methods for
difficult black-box optimization problems [7,3]. However, due to their randomized
nature and the lack of convergence guarantees, they are sometimes considered
unreliable heuristics. The lack of analytical convergence guarantees can be a bar-
rier to the adoption of state-of-the-art methods like CMA-ES. Even though the
developers of such algorithms have a good understanding of how the methods
will perform on a problem, it can be difficult to convey this understanding to
practitioners. We therefore believe that developing theoretical performance guar-
antees is an important line of research. On that route, we pursue theory-guided
empirical analysis as an intermediate goal.

Runtime analysis of evolutionary algorithms is a well-established field [16].
It is very well developed for optimization in discrete domains, where nearly all
recent results were established by means of drift analysis techniques [12,13]. The
desire to understand the optimization behavior of evolution strategies is not new
[4]. In recent years, there was significant progress in transferring drift techniques
to the analysis of continuous optimization [10,5,1,14,2,15]. We witnessed an im-
pressive generalization in terms of problems, starting from the simple sphere
function and arriving at large function classes like all strongly convex functions
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with Lipschitz gradient. However, in terms of algorithms, only rather simplistic
evolution strategies without covariance matrix adaptation (CMA) were analyzed.
While being quite flexible in principle, the apparent challenge of the drift-based
approach is to identify a suitable potential function. The present paper is con-
cerned with the question of how to design a suitable potential for a variable
metric ES.

In the present paper, we aim to make progress towards analyzing variable-
metric evolution strategies by means of drift. We believe that analyzing conver-
gence through empirical means and the help of drift analysis can be valuable in
addition to the traditional method of using analytical proofs. The natural first
step in the analysis is the quest for a Lyapunov potential capturing the quite
involved algorithm dynamics sufficiently well. We propose to address the prob-
lem of designing a suitable potential function with an iterative method based on
empirical analysis. Our approach can lead to a better understanding of potential
functions and guide the development of analytical proofs, by allowing for piece-
wise advancements on potential functions, supported by empirical performance
data. The approach can be adapted rather easily to a wide range of algorithms
and objective functions, expanding the range of problems for which runtime and
convergence guarantees can be established.

Algorithms Our general methodology is not bound to a specific algorithm. It
can hence be applied, e.g., to a fully fledged state-of-the-art implementation
of CMA-ES. Instead, we use a simplified version of the (1+1)-CMA-ES [9] as
outlined in Algorithm 1. This is a natural choice if we wish to leverage existing
results, since the literature on analyzing evolution strategies with drift is focused
on elitist selection algorithms.

Algorithm 1: Simplified variant of (1+1)-CMA-ES
Input: d ∈ N, f : Rd → R, m ∈ Rd, σ > 0, ccov ∈ (0, 1]
ptarget =

2
11

while stopping condition not met do

z ∼ N (0, C)
x← m+ σ · z
if f(x) ≤ f(m) then

m← x ; psucc ← 1 ; C ← (1− ccov) · C + ccov · zzT

else
psucc ← 0

σ ← σ · exp
(

1
d
· ( psucc−ptarget

1−ptarget
)
)

Contributions In this paper, we make the following contributions:
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– We propose an experimental methodology supporting the design of a poten-
tial function capturing the dynamics of a variable-metric evolution strategy.

– We introduce the target step size of the (1+1)-CMA-ES as a key concept for
constructing a suitable potential function.

– Based on the target step size, we define a potential function.
– We provide systematic empirical evidence for the suitability of the novel

potential function. At the same time, we are in the position to highlight its
weak spots, which might need to be addressed in future work.

Taking the above together, we provide a drift potential function that potentially
can give rise to an analysis of the optimization behavior of a variable metric ES.

2 Theoretical Background

This section introduces the necessary background. First, we give a brief bird’s
eye introduction to drift analyses and its challenges. We then turn to invariance
properties of CMA-ES, which are instrumental to the design of a Lyapunov
potential.

2.1 Drift Analysis

Drift analysis goes back to Hajek [6]. It was later adapted to the specific needs
of runtime analysis of randomized search heuristics [12,13]. The general idea
of a drift theorem is to connect a statement about the expected single-step
reduction of a potential function to the expected number of steps it takes to
reduce the potential to a target value. Drift is a powerful concept, since the
analysis is reduced to statements about the single-step behavior of the algorithm.
Furthermore, drift theorems are not limited to expected values – they can also
bound quantiles and hence control the tails of the runtime distribution. For
further details, we refer the interested reader to [12,13].

Applying a drift argument amounts to the following steps: we define a po-
tential function ϕ, show that the algorithm exhibits a certain type of expected
progress with respect to that potential, and apply a drift theorem to turn the
stepwise progress into a runtime bound. Let S denote the state space of the
algorithm, st the sequence of algorithm states, and ϕ : S → R the potential. In
the simplest case, the expected progress E[ϕ(st+1) − ϕ(st)|st = s] is bounded
from below by a negative constant −b. If the progress is also bounded (or its
tails controlled in a suitable way), then the so-called additive drift applies, yield-
ing an expected runtime of E[T ] ≤ a

b + const, where a = ϕ(s0) − ϕtarget is the
potential difference to be crossed and T is the so-called first hitting time of the
event ϕ(sT ) ≤ ϕtarget.

Defining a suitable potential function is an art, not a science. The job of the
potential is to capture progress of the algorithm across the whole state space S.
For an evolution strategy, this is a non-trivial task because even elitist algorithms
make nearly no progress if the step size is either much too small or much too
large, or if the covariance matrix is unsuitable. Then with high probability,
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the algorithm adapts its distribution parameters towards more suitable values,
hence bringing them closer to the regime where progress towards the optimum
is achieved. Strategy adaptation does not yield immediate progress in terms of
objective function improvement, but rather in terms of the potential to achieve
such improvements in the future. Therefore, a suitable potential function needs
to capture not only the goal of minimizing the objective function when the step
size is well adapted, but also the goal of adapting step size and covariance matrix
towards a regime where this is the case. We will discuss a corresponding potential
function design in section 3.

Compared with a simple (1+1)-ES, this task is considerably harder when co-
variance matrix adaptation is involved. The ability to adapt the covariance ma-
trix has the benefit of gaining invariance to affine transformations, which yields
more general results in terms of the class of objective functions covered. The
price to pay is that it takes away some symmetries, which increases the dimen-
sion of the normalized state. Moreover, CMA interacts with step size adaptation
in non-trivial ways. However, depending on the tightness of the resulting bound,
we may or may not need to capture all of these dependencies in a potential
function.

2.2 Invariances

The goal of this section is to reduce the dimension of the state space. We will
describe the reduced space by means of a normal form with easy-to-interpret
state variables. The reduction also makes sampling a grid of states feasible.

We consider the (1+1)-CMA-ES with parameters (m,C) of its multi-variate
Gaussian sampling distribution N (m,C),1 optimizing an objective function f :
Rd → R. The parameters (m,C) and the objective function f define a state of
the algorithm, in the sense that this information determines the distribution of
successor states. Therefore, we pack them into the tuple θ = (m,C, f). Given a
state θ, we denote the state after a single iteration of (1+1)-CMA-ES as θ′ =
(m′, C ′, f). The following definition captures the invariance properties of the
(1+1)-CMA-ES algorithm:

Definition 1. We say that two tuples θ1 = (m1, C1, f1) and θ2 = (m2, C2, f2)
are equivalent, and we write θ1 ∼T θ2, if there exist an affine transformation
T (x) = Ax+ b and a strictly monotonically increasing function h : R → R such
that it holds
1. m2 = T (m1) = Am1 + b, (affine invariance, mean)
2. C2 = ATC1A, (affine invariance, covariance matrix)
3. f2 = h ◦ f1 ◦ T−1. (strictly monotone fitness transformations)

In other words, given a representative θ = (m,C, f) of an equivalence class, then
all other members of that class are of the form (Am + b, ATCA, h ◦ f ◦ T−1).
The following lemma clarifies how the definition relates to invariance:
1 Under slight misuse of notation, we incorporate the step size into the covariance

matrix at this point, writing C instead of σ2C from now on. The parameter σ is
re-introduced in the normal form, see equation (1).
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Lemma 1. Consider a sequence of points x1, . . . , xn ordered by their f1-
ranking: f1(x1) ≤ f1(x2) ≤ · · · ≤ f1(xn). Then the transformed points y1 =
T (x1), . . . , yn = T (xn) have an equivalent f2-ranking, i.e., it holds f2(y1) ≤
f2(y2) ≤ · · · ≤ f2(yn).

Proof. The proof amounts to plugging the definition into the formulas of the
lemma. We obtain f2(yk) = f2(T (xk)) = h(f1(T

−1(T (xk)))) = h(f1(xk)) and
we note that h does not change the ranking. ⊓⊔

Plugging properties (1) and (2) of the definition into the PDF of the multi-
variate normal distribution yields the same result as the transformation theorem
for densities applied to T . Hence, the PDFs are simply transformed into each
other by means of T . Together with the above lemma, this implies that perform-
ing a step from θ1 to θ′1 and the three-step sequence of transforming θ1 into θ2,
performing a step from θ2 to θ′2, and finally transforming θ′2 back into θ′1, yield
the same result if the same randomness is used, and the same distributions in
any case. In short: if we understand the algorithm dynamics starting in θ1 then
the insight immediately transfers to θ2 and to the whole equivalence class.

We use this notion of invariance in two different ways, namely to formulate
a potential that respects invariances, and for efficient sampling. In both cases,
the goal is to reduce the number of cases for the subsequent analysis. This is
achieved by analyzing only one state per equivalence class.

From now on, we consider a general convex quadratic objective , unction
f(x) = 1

2 (x − x∗)TH(x − x∗) + c with optimizer x∗, Hessian H, and optimal
value c. This case is of great interest, since it is a second order approximation of a
local optimum of a twice continuously differentiable objective function. The first
application of invariance is to simplify f . We can set c = 0 since the offset does
not impact the ranking. Setting T (x) = Ax+ b with A = H−1/2 and b = −Ax∗,
we see that (m,C, f) is equivalent to (Am + b, ACAT , s), where s(x) = 1

2∥x∥
is the sphere function. In other words, in order to understand the optimization
behavior of a variable-metric evolution strategy on all convex quadratic objective
functions, it suffices to consider the sphere function, as long as we consider
general initial conditions. This greatly simplifies the task of designing a drift
potential.

The remaining invariances are known as rotation and scale invariance. They
refer to transformations for which A is a scaled orthogonal matrix and b is zero.
Since the objective function is fixed, we write θ = (m,C) in the following, with Θ
forming the space of all algorithm states. For the two-dimensional case, we define
a section through the quotient space Θ/ ∼T . Equivalently, it can be considered a
normal form for states. First of all, we use the scaling degree of freedom to turn m
into a unit vector. We then use the rotation degree of freedom to diagonalize the
covariance matrix C. By swapping the axes of the coordinate system and flipping
the axes individually, we can transform m to the form m = (cos(α), sin(α)) with
α ∈ [0, π/2]. Furthermore, we can decompose the (diagonal) covariance matrix
into scale and shape components. Hence, without loss of generality, we can write
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all relevant states in the form

m =

(
cos(α)
sin(α)

)
C = σ2

(
κ 0
0 1

κ

)
(1)

with normalized step size σ > 0, approach angle α ∈ [0, π/2], and eccentricity
κ ≥ 1 encoding the shape of the distribution. An algorithm for transforming any
state into the normal form is found in the online supplement2.

3 Construction of a Lyapunov Potential Function

To construct a potential function that yields drift everywhere in the state space,
each part of the algorithm’s actions needs to be rewarded. By design (elitism),
the distribution mean never moves away from the optimum. This ensures that the
algorithm will never lose progress in terms of distance to the optimum. However,
for increasingly bad parameter settings (too small or large σ or too large κ) the
progress rate quickly approaches zero. In order to avoid vanishing drift, we want
the potential function to account for the quality of the strategy parameters. We
design building blocks for such a function in the following.

3.1 Target σ

For each setting of α and κ we define a target σ. The meaning of the target is
that the algorithm adjusts the parameter towards this value while (artificially)
keeping the other parameters fixed. This does not mean that the target value
is optimal in terms of optimization progress; instead it reflects the adaptation
actually performed by the algorithm. We denote the target as a function σ∗(α, κ).
We omit the parameters in the following.

3.2 Potential Function

Our potential function is defined in terms of the normal form:

V (θ) = V (m,κ, σ) = log(||m||)
(1)

+ v1 · |log(κ)|
(2)

+ v2 · fκ
(∣∣∣log ( σ

σ∗

)∣∣∣)
(3)

fκ(x) =

1− exp

(
−s · log

(
x
wκ

)2
)

if x ≥ w(κ), s = 1
100 , wκ = 1 + log(κ)

10

0 else

Here, v1, v2 > 0 are tuning parameters to be determined later. There are
three dimensions in which the CMA-ES can make progress, namely the distance
to the optimum m, the eccentricity of the matrix κ, and the (normalized) step
size σ. Those dimensions are taken care of in the potential function separately:
2 https://github.com/RUB-INI-Theory-of-Machine-Learning/

EmpiricalDriftAnalysis/blob/main/Empirical_Drift_Analysis___Supplements.
pdf

https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/blob/main/Empirical_Drift_Analysis___Supplements.pdf
https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/blob/main/Empirical_Drift_Analysis___Supplements.pdf
https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/blob/main/Empirical_Drift_Analysis___Supplements.pdf
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m: The term log(||m||) describes optimization progress by finding a point that
is closer to the optimum. For “well-adapted” parameters of the algorithm,
it should make significant expected progress in this sense. We refer to this
term as the log(||m||)-term.

κ: The second term of the potential function determines progress by adjusting
the eccentricity κ towards the minimal eccentricity of 1, encoding an isotropic
distribution. We refer to this term as the κ-term.

σ: The third term of the potential function measures progress by adjusting
the step size σ towards the stable step size σ∗. The term should become
dominant if σ is far away from σ∗. We refer to this term as the σ-term. The
activation function fκ asymptotically approaches the identity, but it is flat
in a neighborhood of zero, with a differentiable transition (see Figure 1).

4 Experiments

This section describes the experimental setup to gain empirical data on two
types of quantities: the target step size and a lower bound of the expected drift
of the potential function.

4.1 Target Step Size

To obtain values for the target step size σ∗, we conduct the following experiment:
First we prepare a lattice of 64 linearly spaced α-values from 0 to π/2 and 2048
geometrically spaced κ-values from 1 to 2000. Then, for every point on the
lattice, we transform the normal form into the parameter form (σ is set to 1
in the beginning) and initialize the algorithm with this state. We then conduct
a step of the algorithm and transform the resulting state back into the normal
form, however, omitting the rescaling to |m| = 1, and resetting α and κ to their
initial value. After 50,000 iterations for reaching the limit distribution we record
σ for further 1,000,000 iterations. In the end we compute the geometric mean
of the recorded values. We end up with a lattice of target step sizes σ∗. For
parameters that are not on the grid, we compute σ∗ with bilinear interpolation.

4.2 Drift Experiments

We perform three experiments, one where the focus lies on understanding the
drifts of the potential function around sensible values for (α, κ, σ) and the other
two, with a much wider but less dense grid for investigating the potential func-
tion’s boundary behaviour, i.e., when σ or κ approach ∞ or σ approaches 0.

Sampling Parameters We define a grid for each parameter (α, κ, σ) and com-
bine those into a three-dimensional product grid. The parameters for the dense
grid are shown in table 1 and for the wide grids (κ-grid, σ-grid) in table 2. We
then take each of these states and perform a Monte-Carlo simulation to obtain
the expected value of the drift at that point.
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Table 1: Dense Grid κ

param. range steps spacing
α [0, π/2] 24 linear
κ [1, 10] 128 logarithmic
σ [0.1, 10] 256 logarithmic

Table 2: Wide Grids (κ-grid, σ-grid)

param. range steps (κ/σ) spacing
α [0, π/2] 12/12 linear
κ [1, 1000] 512/24 logarithmic
σ [0.01, 100] 24/512 logarithmic

Significance and Precision Since we work with a fixed number of random
samples to estimate the drift, we are interested in the quality of those estima-
tions. To that end we perform a one-sided t-test. Let d denote the (observed)
population mean. For a fixed candidate precision ϵ, the null hypothesis is that
the distributions of d and d+ ϵ are overlapping, while the alternative hypothesis
is that d + ϵ is significantly larger than d. We then perform a golden-section
search to find a value of ϵ where the t-test returns a p-value of at most 0.001.
This establishes a 99.9% confidence that the observed drifts are not smaller than
the precision ϵ. However, due to multiple testing, this does not imply that the
overall confidence is 99.9%. In the dense grid run, we evaluate 786, 432 samples,
out of which we would statistically expect the null hypothesis to be true for
approximately 787.

Potential Function Parameters To determine the optimal weights v1, v2 of
the second and third term in the potential function we used CMA-ES. We used
the sum of the experimentally obtained drift-values and the precision-values as
drift-values and optimized for the largest drift-value to be minimal, i.e., for the
gap between uniform drift and zero to be maximal.

5 Results

In this section, we show our empirical results. We start with the target step size
σ∗. Following that, we analyze the results of the dense grid dataset (Table 1).
Finally, we present the results of the wide grid experiments (Table 2) to examine
the boundary behaviour.

5.1 Target Parameters

In Figure 2 we present the target step size σ∗ for 64 linearly spaced values of α
between 0 and π/2. We notice significant differences with respect to the approach
angle α, and a decreasing trend for growing eccentricity κ.

5.2 Drift Analysis

We observe that the difference between close α values is small, indicating that
the drift is continuous. Furthermore, it is also monotonic for the most part. For
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Fig. 1: Graphs of the “ac-
tivation” function fκ for
κ ∈ {1, 10, 100, 1000, 10000},
from left to right.

σ
*

κ
1 10 100 1000

1e-4

1e-3

1e-2

1e-1

1e+0

0.0 0.2 0.4 0.7 0.9 1.1 1.3 1.6

α

Fig. 2: Graphs of Target Sigma, as a
Function Functions of the Remaining
Parameters.

that reason, we will only present the extreme cases of α = 0 and α = π/2 in
the following figures, as this provides a sufficient impression of the results. The
plots do not include the precision values added to them, since these are always
at least two orders of magnitude smaller than the drift values. The plots of the
full data as well as the precision values can be examined in the supplementary
material.3

Figure 3 shows the legend used for the following heatmap plots. The color
scale of each plot is scaled to the minimum and maximum drift for that plot.
A blue color indicates negative values, i.e., positive drift (desirable), while red
color indicates positive values, i.e., negative drift (undesirable). Values close to
0 appear white.

0positive drift negative drift

Fig. 3: The Heatmap Scale

Weights The resulting weights from the CMA-ES optimization for the drift
terms differ for each experiment, however v1 = 1.7 and v2 = 3.14 prove to yield
good results across all datasets. All following plots use these weights.

3 https://github.com/RUB-INI-Theory-of-Machine-Learning/
EmpiricalDriftAnalysis/tree/main/plots

https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/tree/main/plots
https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/tree/main/plots
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The log(||m||)-term – Optimization Progress We first present the result
of the overall drift from the dense grid run. We see that for α = 0 the overall
drift is positive. Furthermore, for large values of κ we notice that for 0.05 <
σ < 1 a region with especially large drift emerges. For α = π/2 we also see an
overall positive drift with slightly larger drift values for very small κ values and
0.3 < σ < 1. The minimal drift (gap to zero) in this dataset is ≈ −0.00198.

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(a) α = 0

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(b) α = π/2

Fig. 4: The log(||m||)-term Progress

However, we notice for both α values and for increasing σ values decreasing
drift, while for very small σ the drift diminishes. Since the goal of (additive)
drift analysis is to find a potential function that provides a lower bound on the
drift, this trend defeats that purpose. Therefore we will now look at the results
where the σ-term of the potential function is added.

Adding the σ-term – Behaviour on the Boundaries The σ-term of the
potential function rewards progress for changing the σ value towards σ∗. Figure 5
shows the drift of the σ-term in isolation.

We notice a large red strip in the results where the drift is negative. This
corresponds to the target σ values. When the algorithm’s σ parameter is already
at or very close to the target value σ∗ then any change results in negative drift.

The negative drift around σ∗ stems from a moving target problem. Even
though the algorithm adapts its σ parameter towards σ∗, in the new algorithm
state that value has changed (because α and κ were adapted by the algorithm).
This effect is present everywhere, however in the cases where the drift becomes
negative this effect is so strong that it dominates the otherwise favourable σ
adaptation of the algorithm. We used a filter fk in this term to alleviate this
effect. Although the effect is still present, it produces far less negative drift than
without the filter.

Besides that, we also witness that for large values of σ the σ-term shows a
stable drift. In Figure 6 we see the combined drift of the log(||m||)-term and the
σ-term. In Figure 7 we plotted the influence of the σ term on the overall drift. We
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σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(a) α = 0

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(b) α = π/2

Fig. 5: Sigma Progress

σ

κ1e+0 1e+1 1e+2 1e+3
1e-3

1e-2

1e-1

1e+0

(a) α = 1.5404

σ

κ1e+0 1e+1 1e+2 1e+3
1e-3

1e-2

1e-1

1e+0

(b) α = π/2

Fig. 6: Drift of the log(||m||)-term and the σ-term combined. Note that this graph
shows a larger grid to present the problematic areas.

notice that for large σ the third term dominates the overall drift. This is what
we hoped to see, as this counteracts the diminishing drift of the log(||m||)-term.
This also makes sense from the perspective of an ES, since the search distribution
is misaligned and needs to improve. The same effect can be observed for small σ
in the bottom left corner, where the moving target problem does not dominate
the drift. In Figure 6a and 6b, we see that for large α, large κ and small σ the
drift from the first term is not large enough to make up for the negative drift of
the third term. Because of that the κ-term is necessary, which we will add next.

Adding the κ-term – Fixing Moving Targets In Figure 8 we present the
drift for the κ-term in isolation. Similar to the negative drifts for the σ-term,
there also exist regions with negative drift. Since this term only gratifies the
eccentricity to become smaller, naturally there are configurations where the al-
gorithm has negative drift. This is due to the fact that for small α and reasonable



12 S. Frank, T. Glasmachers

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(a) α = 0

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(b) α = π/2

Fig. 7: The Sigma Influence in a Percentile View. The influence is the drift of
the σ-term divided by the sum of the absolute values of the log(||m||)-term and
the σ-term.

σ the algorithm is making better progress by becoming more eccentric. When κ
becomes exceedingly large the algorithm does not profit from eccentricity any-
more and is inclined to make κ smaller. For large α this point is reached for
smaller κ. Furthermore, when κ = 1 the algorithm can only get worse. This
corresponds the red regions on the bottom left.

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(a) α = 0

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(b) α = π/2

Fig. 8: Kappa Progress

The Final Result - Adding It all together We now add the κ term to see
the drift of the complete potential function, which is shown in Figure 9. For small
α we continue to see a region with strong drift for larger κ and σ < 1. Overall we
see a moderate amount of drift everywhere, and no regions with negative drift.
The minimal drift value for the complete potential function is ≈ −0.0063 which
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is three times as much as the minimal drift value of just the log(||m||)-term in
the same region of the state space.

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(a) α = 0

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1

(b) α = π/2

Fig. 9: The Drift of the Complete Potential Function V (θ)

5.3 Asymptotic Behaviour

Even though we observed an improved drift for extreme values of κ and σ, there
is still a small decrease visible as the parameters become more extreme. We
believe that this trend will saturate such that we can guarantee a lower bound
for the drift. In Figures 10 and 11 we present the result of the experiments that
probe deeper into the parameter space (Table 2).
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(a) κ = 1
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Fig. 10: The Drift for a Single κ along the σ Axis

We leave Figure 10 for visual inspection to the reader. However, we believe
to identify the asymptotic behaviour of the drift. Even though in Figure 10b
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towards smaller σ the drift is decreasing, we suspect that if the experiment had
an even wider grid, we would observe a behaviour similar to the one in Figure 10a.
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Fig. 11: The Drift for a Single σ along the κ Axis

Figure 11a displays increasing drifts for most α and at least stable drifts
for some α, while Figure 11b shows decreasing drifts at σ = 100 and at least
suggests an asymptotic behaviour towards large κ. A more detailed investigation
of asymptotic effects needs better noise handling, and will be subject to future
work.

6 Conclusion

We have filled a gap in the analysis of evolution strategies by proposing a drift
potential function for a variable metric evolution strategy. In general, designing
a potential for drift analysis is a difficult task. Our function involves an auxiliary
function, namely target states of the scale parameter σ of the search distribution,
which is interesting to investigate in its own right. Our empirical analysis shows
that the novel potential works well in the sense that it yields negative drift
everywhere, and that it is bounded away from zero.

Naturally, our result has limitations. We consider only two-dimensional search
spaces since our sampling-based approach scales badly to higher dimensions.
While Monte Carlo simulations leave space for random effects, our huge sample
size yields high confidence. Inter- and extrapolation from a fixed parameter grid
may induce inaccuracies. However, the smoothness of all observed effects indi-
cates that the grid is well-chosen, and that our results do indeed generalize—at
least qualitatively—to the full continuous and unbounded state space.

Although our study is empirical in nature we believe that it can serve three
distinct goals: it increases the trust into the reliability of variable metric evolution
strategies like CMA-ES, it enhances our understanding of their behavior, and
it paves the way for an actual mathematical convergence proof based on drift
arguments.
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