Summary

Gregor Schöner gregor.schoener@ini.rub.de

Introduction

Cognition in the wild...

- attention/gaze
- active perception/working memory
- action plans/decisions/ sequences
- goal orientation
- motor control
- background knowledge
- learning from experience

=> implied properties of the underlying neural processes

graded state

- continuous time
- continuous/intermittent link to the sensory and motor surfaces
- from which discrete events and categorical behavior emerge
- in closed loop
 - => states must be stable

Embodiment hypothesis

- all cognition is like soccer playing = has the properties of embodied cognition
- => there is no particular boundary up to which cognition is embodied and beyond which it is computational/symbolic

Braitenberg

Five things needed to generate behavior

sensors

motors

- linked by a nervous system
- linked physically by a body
- an appropriately structured environment

Emergent behavior: this is a dynamics

feedforward nervous system

- + closed loop through environment
- => (behavioral) dynamics

Emergent cognition from neural dynamics

mental decisions, working memory..

Dynamical system

present determines the future

given initial condition

predict evolution (or predict the past)

```
dx/dt=f(x)
```


attractor

fixed point, to which neighboring initial conditions converge = attractor

tangent bifurcation

normal form of tangent bifurcation

$$\dot{x} = \alpha - x^2$$

Neurophysics

Neurons as input-output units

threshold behavior

 $\tau \dot{u} = -u + h + S(t) \qquad \tau \approx 5 - 10 \text{ ms}$

temporal summation

Foundations Ia: Space and time

Space: fields

Time:

neural dynamics

interaction

Instabilities

Simulating instabilities

Where do the spaces come from?

connectivity from sensory surfaces / to motor surfaces

Neural dynamics

- activation u ~ population level membrane potential
- defined relative to sigmoid
 - above threshold: transmitted
 - below threshold: not transmitted

Neural dynamics

... beyond input driven activation

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

strong recurrent connectivity within populations

$$+\int w(x-x')\sigma(u(x',t))dx'$$

interaction

excitatory for neighbors in space

inhibitory for activation at a spatial distance

detection instability of sub-threshold state=> switch to peak

peak persists below detection instability => bistable

reverse detection instability of peak

sustained activation

~working memory

Legend		
- h + s(x)	- $u(x)$	- g(u(x))

detection and selection induced by homogeneous boost

=> amplify small inhomogeneities

Foundations Ib: Mathematical analysis

Discretization of fields
Self-excitation
Inhibitory interaction
Mathematical formalization

beyond ID fields

Neuronal dynamics with self-excitation

increasing input
strength =>
detection instability

 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

Neuronal dynamics with self-excitation

decreasing input
strength => reverse
detection instability

 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

Inhibitory interaction: inhibitory recurrent connectivity

coupling/interaction

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

Field dynamics in different dimensions

I, 2, 3, 4... dimensions: peaks/ blobs as attractors

4-dimensional

Hebbian learning

memory trace

autonomous learning

Hebbian learning

Hebbian learning of projections among fields forward from sensory input to fields interaction leads to localized rather than distributed representations (SOM)

$$\tau \dot{W}(x, y, t) = \epsilon(t) \Big(-W(x, y, t) + f(u_1(x, t)) \times f(u_2(y, t)) \Big)$$

[Sandamirskaya, Frontiers Neurosci 2014]

Hebbian learning

learning reciprocal connections between zerodimensional nodes and fields

- => grounded concepts
- analogous to the output layer of DNN
- => ensembles of such nodes coupled inhibitorily form the basis for conceptual thinking...

=> the memory trace reflects the history of detection decisions

Autonomous learning

learning regularities in the world (contingencies) by acting on the world

[Tekülve, Schöner, IEEE Trans Cog Dev Sys 2022; Tekülve, Schöner Cog Science, in press (2024)]

Autonomous learning

contingency represented in a "belief network

learning rate modulated: learning "event" (opportunity)

[Tekülve, Schöner, IEEE Trans Cog Dev Sys 2022; Tekülve, Schöner Cog Science (2024)]

Experimental signatures

metric effects: distances between potential states matter

- effects of timing: time matters, spatiotemporal co-variation
- instabilities: it matters how far a state is from becoming unstable...

Background: different notions of binding
Joint representations and coupling patterns
Binding through space/ordinal dimension
Coordinate transforms
Intuition for "binding"

red cutter horizontally aligned

Binding

features, category, and location are all "bound" together..

Binding is flexible

feature combinations never seen before may be bound

mis-bindings may occur in "illusory conjunctions" (e.g. Treisman, 98)

the "S" is green

Joint space-feature representation

- In a joint representation, localized peaks represent instances in which the different features dimensions are "anatomical bound"
- fixed: need the neural substrate every possible bound state

Extract features: unbinding

Projecting to lowerdimensional fields by summing along the marginalized dimensions

contraction mapping

Bind features

project lower-dimension field onto higherdimensional field: expansion mapping

Binding problem

- this binding operation runs into the binding problem
- solution: bind one object at a time
- => attentional bottleneck

Cued selection

- an operation that uses joint and individual representations
- combining expansion and contraction

Role-filler binding

color concepts... grounded in feature fields

- roles: reference, target, agent, tool, ...

 - joint representation of roles and concepts

[Sabinasz, Richter, Schöner: Cog Neurodyn 2023]

Binding through space

Coordinate transform

Grounding language

- Representing conceptual structure
- Grounding relational concepts
- Mental mapping
- Grounding nested phrases

Perceptual grounding

- "the cup to the right of the green book"
- "he reaches for the cup"

- grammatical/semantic structure
 - nouns vs relations/actions
 - roles: target object is related to a reference object

"green to the right of red"

"red to the left of green?" conceptual structure

propositions

Mental mapping

"There is a cyan object above a green object."

"There is a red object to the left of the green object." ...

inference

"Where is the blue object relative to the red object?"

[Kounatidou, Richter, Schöner, *CogSci* 2018]

Grounding nested phrases

"the tree to the right of the tree that is below the lake and above the house"

[Sabinasz, Schöner, TopiCS 2023; Sabinasz, Richter, Schöner Cog Neurodyn 2023]

Binding through ordinal position

[Sabinasz, Richter, Schöner, Cog. Neurodyn. 2023]

Neural representation of conceptual structure

binding arguments in particular roles to relations through the index dimensions

[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

4

3

2

rel. ind.

[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

the Condition of Satisfaction

- global view of sequence generation
- what state next?
- what if the CoS fails?

Neural dynamic principle

the current neural attractor state = intention

- predicts its condition of satisfaction (CoS)
- input matching prediction: CoS activated

[Sandamirskaya, Schöner: Neural Networks 2010; Sandamirskaya DFT primer 2016]

Serial order task

learn a serially ordered sequence from a single demonstration

yellow-red-green-blue-red

perform the serially ordered sequence with new timing

yellow-red-green-blue-red

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

ordinal stack

condition of satisfaction (CoS)

intentional state

2D color-space field

Global view of sequence generation

- Rabinovich's heteroclinic chain: many more dimensions are stable then unstable...
- the stability of neural attractors is the organizing principle!

[Rabinovich et al., Physics of Life Reviews 2011]

What state next?

I gradient-based selection

2 chaining

3 positional representation

[Henson Burgess 1997]

What if CoS is not reached?

Condition of Dissatisfaction (CoD) is the default answer after a time out of a "clock"

may be interrupted by the CoS

[Johnson, et al. 2009]

intentionality

- direction of fit: "action" (W2M) and "perception" (M2W)
- psychological mode
- thinking is "action"

Intentionality

- Intentionality = the capacity of organisms and their nervous systems to generate mental states that are about things in the world
 - *things* may include an organism's own body
 - things may ultimately also includes the nervous system's own states

Two directions of fit of intentional states (Searle)

- world-to-mind: the world must match the intentional state to fulfill that state's conditionof-satisfaction (CoS) => the "motor" flavor of intentionality
- mind-to-world: the intentional state must match the state of the world to fulfill the CoS => "perceptual" flavor of intentionality
Six psychological modes of intentional states (Searle)

Neural dynamic architecture

Recall-visual search-drive

[based on a desire and an activated belief, looking for a tall pink object, which is in memory]

Instantiating a "perception" intention is an "action" intention

e.g. cued recall from memory, visual search, opportunistic activation of knowledge

=> time structure: intention active until its CoS becomes active, then de-activated

most thinking is of that nature !

Achieving a desire

I activation = state of neural networks

- 2 sigmoidal threshold function
- In the second significance of activation comes from its connectivity ...
- I, 2, 3 = connectionism

4 autonomy

conceptually, connectionist networks are input driven (M2W)

thought and action are driven by the inner state of the mind = autonomy (W2M)

=> neural dynamics with strong interaction

5 higher cognition: binding

joint representations

- expansion/contraction coupling
- binding through space/index
- coordinate transforms

What skills have you learned?

academic skills

read and understand scientific texts

write technical texts, using mathematical concepts and illustrations

What skills have you learned?

mathematical skills

conceptual understanding of dynamical systems

capacity to read differential equations and illustrate them

perform "mental simulation" of differential equations

use numerical simulation to test ideas about an equation

What skills have learned?

interdisciplinary skills

handle concepts from a different discipline

handle things that you don't understand

sharpen sense of what you understand and what not