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attention/gaze

active perception/working 
memory

action plans/decisions/ 
sequences

goal orientation

motor control 

background knowledge

learning from experience

Cognition in the wild…Introduction



=> implied properties of the underlying 
neural processes 

graded state 

continuous time 

continuous/intermittent link 
to the sensory and motor 
surfaces 

from which discrete events 
and categorical behavior 
emerge

in closed loop

=> states must be stable



Embodiment hypothesis

all cognition is like soccer 
playing = has the properties 
of embodied cognition

=> there is no particular 
boundary up to which 
cognition is embodied and 
beyond which it is 
computational/symbolic



Five things needed to 
generate behavior 

source structured
environment

intensity

activation

wheel
motion

activation

sensory
system

body

nervous
system

motor
system

intensity

sensors

motors

linked by a 
nervous system

linked physically 
by a body

an appropriately 
structured 
environment

Braitenberg



Emergent behavior: this 
is a dynamics

feedforward nervous system

+ closed loop through 
environment

=> (behavioral) dynamics

heading
direction

heading
direction

differences in 
intensity
left-right

intensity

heading
direction

turning rate
of vehicle

differences in 
intensity
left-right

source

differences in 
turning rate 
left-right wheel



mental decisions, 
working memory..

Emergent cognition 
from neural 
dynamics

source1

dimension

activation

source2



Dynamical system

present determines the future

given initial condition

predict evolution (or predict the past)

x

dx/dt=f(x)

initial
condition

predicts
future

evolution

Dynamical 
systems



attractor

fixed point, to which neighboring initial conditions 
converge = attractor

x

dx/dt=f(x)

attractor



ẋ = ↵� x2

tangent bifurcation

normal form of tangent bifurcation

x

dx/dt

α

fixed point

α positive

α =0

α negative

unstable

stable

x0 =
p

↵



inputs from 
dendrites

spike 
formation at 
soma

output at 
axon

Neurons as input-output units
Neurophysics



threshold behavior

τ ·u = − u + h + S(t) τ ≈ 5 − 10 ms



temporal summation



Space: fields

Time: 

neural dynamics 

interaction 

Instabilities   

Simulating instabilities

Foundations 1a: Space and time



Where do the spaces come from?
connectivity from sensory surfaces / 
to motor surfaces

sensory signal, s(x)

dimension, y

dimension, x

activation
field, u(y) motor 

dimension, r

activation
field, u(r)

motor
state, r

dr/dt

sensory signal, s(x)

dimension, x

activation 
node, u

feature space concept

motor space



Neural dynamics

activation u ~ 
population level 
membrane potential

defined relative to 
sigmoid

above threshold: transmitted

below threshold: not 
transmitted 

1

0

σ(u)

u



Neural dynamics
τ ·u(x, t) = − u(x, t) + h + s(x, t)

u(x)

h+s

input, s

resting
level, h

du(x,t)/dt

time, t

u(x,t)

resting level, h

σ(u(x,t))

input, s(x,t)

activation dynamics = 
neural dynamics

originates from 
membrane dynamics

inputs as “forces”

positive: excitatory

negative: inhibitory



…beyond input driven activation

strong recurrent 
connectivity within 
populations 

excitatory for neighbors 
in space

inhibitory for activation 
at a spatial distance

dimension

inhibitory interaction

input

activation field

local excitation

τ ·u(x, t) = − u(x, t) + h + s(x, t)

+∫ w(x − x′ )σ(u(x′ , t))dx′ 

interaction



detection instability of sub-threshold state=> switch 
to peak 

peak persists below detection instability => bistable

dimension

activation peak

sub-threshold
state

input



reverse detection instability of peak 

dimension

activation peak

sub-threshold
state

input



sustained activation

~working memory



selection 

selection 
instability



detection and selection induced by homogeneous 
boost

=> amplify small inhomogeneities



Discretization of fields

Self-excitation 

Inhibitory interaction

Mathematical formalization

… beyond 1D fields 

Foundations 1b: Mathematical analysis



increasing input 
strength => 
detection instability

u 

du/dt 

resting
level, h

input strength

u 

du/dt 

 

fixed point

unstable

stable
stimulus
strength

stimulus
strength

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



decreasing input 
strength => reverse 
detection instability

u 

du/dt 

resting
level, h

input strength

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

u 

du/dt 

 

fixed point 

unstable

stable 

stimulus
strength

stimulus
strength

Neuronal dynamics 
with self-excitation



Inhibitory interaction: inhibitory 
recurrent connectivity

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))

coupling/interaction

self-
excitation

mutual
inhibition

s(x)
u(x)

u1 u2

x

s1
s2

self-
excitation



Field dynamics in 
different dimensions

2-dimensional1-dimensional

1, 2, 3, 4… dimensions: peaks/
blobs as attractors 

3-dimensional
Visual search and working memory: theory and experiment 15

size
orientation

color

x

y

Scene

Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

Case Study: Spatial Remapping during Saccades
transformation fieldA
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Hebbian learning

memory trace

autonomous learning 

Learning



Hebbian learning

Hebbian learning of projections 

among fields 

forward from sensory input to fields

interaction leads to localized 
rather than distributed 
representations (SOM)

dimension, x

activation, u1(x)

dimension, y

activation, u2(y)

Sandamirskaya DNFs and cognitive neuromorphic architectures

which the agent aims to achieve through contact with the envi-
ronment. For instance, “locate a red object” is a typical perceptual
intention, “turn 30 degrees to the left” is an example of a motor
intention. x is a perceptual or motor variable, which characterizes
the particular intention; S1(x, t) is an external input which acti-
vates the intention. This input may be sensory (condition of initi-
ation) or motivational (task input) (Sandamirskaya et al., 2011).
uCoS(y, t) is the condition-of-satisfaction DNF, which receives a
localized input from the intention DNF through a neuronal map-
ping W(x, y) (as introduced in Section 2.3). This input makes
the CoS DNF sensitive to a particular part of the sensory input,
S2(y, t), which is characteristic for the termination conditions of
the intended perceptual or motor act. The mapping W(x, y) may
be learned (Luciw et al., 2013). When the CoS DNF is activated,
it inhibits the intention DNF by shifting its resting level below the
threshold of the forgetting instability.

The DNF structure of an elementary behavior (EB) further
stabilizes the behavioral state of the neural system. Thus, the
intentional state of the system is kept active as long as needed to
achieve the behavioral goal. The CoS autonomously detects that
the intended action is successfully accomplished and inhibits the
intention of the EB. Extinction of the previously stabilized inten-
tion gives way to the next EB to be activated. With this dynamics,
the exact duration of an upcoming action does not need to be
represented in advance (and action durations may vary to a large
degree in real-world environments). The intentional state will
be kept active until the CoS signals that the motor action has
reached its goal. This neural-dynamic mechanism of intention-
ality enables autonomous activation and deactivation of different
modalities of a larger neuronal architecture.

Since the intention and the CoS are interconnected DNFs,
their WTA implementation may be achieved as described in
Section 2.3.

2.6. LEARNING IN DFT
The following learning mechanisms are available in the DFT
framework.

2.6.1. Memory trace of previous activity
The most basic learning mechanism in DFT is the memory trace
formation, also called preshape. The memory trace changes the
subsequent dynamics of a DNF and thus is considered an ele-
mentary form of learning. In neural terms, the memory trace
amounts to local increase in excitability of neurons, which may
be counterbalanced with homeostatic processes.

Formally, the preshape is an additional layer over the same
dimensions as the associated DNF. The preshape layer receives
input from the DNF, which is integrated into the preshape
dynamics as an attractor that is approached with a time-constant
τl/λbuild, Equation (11). This build-up constant is slower than the
time-constant of the DNF dynamics. When there is no activity in
the DNF, the preshape decays with an even slower time-constant,
τl/λdecay in Equation (11).

τlṖ(x, t) = λbuild

(
− P(x, t) + f

(
u(x, t)

))
f
(
u(x, t)

)

−λdecayP(x, t)
(

1 − f
(
u(x, t)

))
. (11)

Here, P(x, t) is the strength of the memory trace at site x of the
DNF with activity u(x, t) and output f

(
u(x, t)

)
, λbuild and λdecay

are the rates of build-up and decay of the memory trace. The
build-up of the memory trace is active on sites with a high pos-
itive output f

(
u(x, t)

)
, the decay is active on the sites with a low

output. The memory trace P(x, t) is an additive input to the DNF
dynamics.

The memory trace formation can be used to account for one-
shot learning of object categories (Faubel and Schöner, 2009),
representation of visual scenes (Zibner et al., 2011), or action
sequences (Sandamirskaya and Schoner, 2010b).

In a neuromorphic WTA implementation, the memory trace,
or preshape, may be interpreted as the strength of synaptic
connections from the DNF (or WTA), u(x, t), to a “memory”
population. This “memory” population activates the preshape
by transmitting its activation through the learned synaptic con-
nections, P(x, t). Learning of the synaptic connections amounts
to attractor dynamics [as in the first parenthesis of Equation
(11)], in which the pattern of synaptic connections approaches
the pattern of the DNF’s (WTA’s) output. This learning dynamics
may also be implemented as a simple Hebbian rule: the synap-
tic weights which connect active sites of the DNF (WTA) with
the memory population are strengthened. Another possible inter-
pretation of the preshape as a change in the resting levels of
individual nodes in the DNF (WTA) is harder to implement in
neuromorphic WTA networks.

2.6.2. Learning mappings and associations
When the memory trace dynamics is defined within a structure
with a higher dimensionality than the involved DNFs, the pre-
shape dynamics leads to learning of mappings and associations.
The dynamics of an associating map is similar to the memory
trace dynamics, Equation (12).

τẆ(x, y, t) = ϵ(t)
(

− W(x, y, t) + f (u1(x, t)) × f (u2(y, t))
)
. (12)

The weights function, W(x, y, t), which couples the DNFs u1(x, t)
and u2(y, t) in Equation (12), as well as in Equations (4, 5),
has an attractor at the intersection between positive outputs of
the DNFs u1 and u2. The intersection is computed as a sum
between the output of u1, expanded along the dimensions of the
u2, and the output of the u2, expanded in the dimensions of the
u1, augmented with a sigmoidal threshold function (this neural-
dynamic operation is denoted by the × symbol). The shunting
term ϵ(t) limits learning to time intervals when a reward-
ing situation is perceived, as exemplified in the architecture in
Section 3.

This learning mechanism is equivalent to a (reward-gated)
Hebbian learning rule: the cites of the DNFs u1 and u2 become
coupled more strongly if they happen to be active simulta-
neously when learning is facilitated by the (rewarding) sig-
nal ϵ(t). Through the DNF dynamics, which builds localized
activity peaks in the functionally relevant states, the learning
dynamics has the properties of the adaptive resonance net-
works (ART, Carpenter et al., 1991), which emphasize the
need for localization of the learning processes in time and in
space.

www.frontiersin.org January 2014 | Volume 7 | Article 276 | 7

[Sandamirskaya, Frontiers Neurosci 2014]



Hebbian learning

analogous to the output 
layer of DNN

=> ensembles of such 
nodes coupled inhibitorily 
form the basis for 
conceptual thinking…

activation node, u1

dimension, y

activation
field, u (y)2

learning reciprocal connections between zero-
dimensional nodes and fields 

=> grounded concepts



=> the memory trace reflects the 
history of detection decisions
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Autonomous learning

learning regularities in the world (contingencies) by 
acting on the world

time

σ(u)
u

activation
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-

[Tekülve, Schöner, IEEE Trans Cog Dev Sys 2022; 
Tekülve, Schöner Cog Science, in press (2024)]

Autonomously Learning Beliefs Introduction
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contingency represented in a “belief network 

learning rate modulated: learning “event” (opportunity)
Autonomously Learning Beliefs Introduction

Beliefs

I Learning from a single episode

I Cued activation to guide behavior

I Rejection in the face of
conflicting evidence

Coat Canvas Result

Collect Paint Observe

��.��.���� � / ��

Autonomously Learning Beliefs Model - Belief Architecture

Belief Architecture
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[Tekülve, Schöner, IEEE Trans Cog Dev Sys 2022; 
Tekülve, Schöner Cog Science (2024)]

Autonomous learning



Experimental signatures

metric effects: distances between potential 
states matter 

effects of timing: time matters, spatio-
temporal co-variation

instabilities: it matters how far a state is from 
becoming unstable… 

Evidence for DFT



Background: different notions of binding

Joint representations and coupling patterns 

Binding through space/ordinal dimension

Coordinate transforms

Foundations 2: Space-time coupling



Intuition for “binding”

Figure 4.3: The 30 objects which the system learned and was tested on.

1 2 3

4 5 6

7 8 9

Figure 4.4: The 9 poses used during learning. The poses used in the order indicated by
the inset number. At each of the poses all objects are recognized one after the other.

40

red cutter
horizontally 
aligned



Binding

features, category, and location are all “bound” 
together.. 



Binding is flexible

feature combinations never seen before may be 
bound

mis-bindings may occur in “illusory 
conjunctions” (e.g. Treisman, 98)

the “S” is green

[Chapter 5, DFT book 2016]

FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.



Joint space-feature representation

in a joint representation, 
localized peaks represent 
instances in which the 
different features 
dimensions are 
“anatomical bound”

fixed: need the neural 
substrate every possible 
bound state

Space-Color Field
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visual scene

for now: 2D field, one spatial
dimension and one color dimension

color processing in visual cortex not
fully understood, but population
code over hue values is a reasonable
simplification

qualitatively same e↵ects as in 3D
field, but easier to visualize in 2D
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[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Extract features: unbinding

projecting to lower-
dimensional fields by 
summing along the 
marginalized dimensions

contraction mapping 

Read-out from high-dimensional field
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Bind features
project lower-dimension field onto higher-
dimensional field: expansion mapping
Ridge Inputs to Multi-Dimensional Fields

−30° −20° −10° 0° 10° 20° 30°

0

10

−10

010 −10
activation

co
lo

r (
hu

e 
va

lu
e)

spatial location

co
lo

r f
ie

ld

space-color field

0

90

180

270

360

visual scene

spatial field

−30° −20° −10° 0° 10° 20° 30°

0

10

−10

010 −10
activation

spatial location

co
lo

r f
ie

ld

space-color field

visual scene

spatial field

projection from 1D to 2D: ridge input
does only specify value in one dimension, homogeneous in the other
should typically not induce a peak by itself

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 11 / 37

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Binding problem

[Schneegans et al.,Ch 5 of DFT Primer, 2016]

Feature Conjunctions and Feature Binding
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this binding operation 
runs into the binding 
problem

solution: bind one 
object at a time 

=> attentional 
bottleneck



Cued selection

an operation that uses 
joint and individual 
representations 

combining expansion 
and contraction

[Schneegans et al.,Ch 5 of DFT Primer, 2016]

Visual Search
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Role-filler binding

roles: reference, target, 
agent, tool, …

“green to the right of red’’

[Sabinasz, Richter, Schöner: Cog Neurodyn 2023]
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FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.

FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.

cue “green”

answer “s”

[Schneegans et al.,Ch 5 of DFT Primer, 2016]

Binding through space



Reference Frame Transformation

solution:

expand into combined, higher-dimensional field

then can implement arbitrary (smooth) mappings from this field to
target representation
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steer: gaze angle retinal space

body space[Schneegans Ch 7, DFT Primer, 2016]

Coordinate 
transforms

bind neural representations of 

retinal space

gaze angle 

into a joint representation 

(gain field ~Andersen/Pouget

then contract to body space

Eye Movements and Reference Frames

visual image visual image

visual scene visual scene

eye with 
ocular muscles

limited visual acuity in periphery of the retina, eye movements to
perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as
single variable in the following
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DNF Mechanism for Reference Frame Transformation
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[Schneegans Ch 7 of 
DFT Primer, 2016]

Coordinate transform



Grounding language 

Representing conceptual structure 

Grounding relational concepts

Mental mapping

Grounding nested phrases 

Grounding language



Perceptual grounding

“the cup to the right of the 
green book”

“he reaches for the cup”

grammatical/semantic structure

nouns vs relations/actions

roles: target object is related to a 
reference object



M. Richter, J. Lins, G. Schöner / Cognitive Science 45 (2021) 3 of 40

Fig. 1. The two directions of linking language to visual cognition: perceptual grounding (orange arrows) and
description generation (blue arrows). The language phrase that the model is representing here is “the red object
above the green object.” See text for description.

when in the activation field representing target locations (middle left) an activation peak is
positioned over the location of the red object that is above the green object. The activation
field representing reference object locations (middle right) has a peak at the location of that
green object. The activation pattern in the relational field (middle center) reflects the same tar-
get location now centered on the location of the reference object (the areas marked by white
ellipses correspond).

In description generation (blue arrows on the right of Fig. 1), the attentional selection of
objects in the scene is based on their salience and their match to spatial or movement relations.
In the figure, the red object on the right of the scene is brought into attention by salience. This

conceptual
structure

grounded 
representation

world

ground describe

“red above green”

“red above green”



referencetarget

spatial relation match

ABOVE

BELOW

LEFT

RIGHT

target reference

“green to the right of red’’

3.3 Spatial transformations

(a) camera input

(b) spatial relation CoS field

(c) spatial relation CoD field

F .: Activation of the (b) spatial rela-
tion CoS field and the (c) spatial relation CoD
field. Both fields receive input representing
the relative spatial position of two objects, visi-
ble as bumps of activation to the left and right
of the center of the plots. Only the object on
the left overlaps with the spatial template 
   in the spatial relation CoS field.
If this objects was not in the scene, the bump
on the right would form a peak in the spatial
relation CoD field.

dimensions x and y.
Both fields match the input against spatial templates that repre-

sent relational concepts such as  or     (Fig-
ure 3.9). If the spatial relation CoS field forms a peak during such
a match, the model converged on a combination of target and ref-
erence object that fits a given or existing relation. e field is se-
lective and thus only allows for a single object to match any of the
relational templates. If the spatial relation CoD field forms a peak,
on the other hand, the current combination of target object and ref-
erence object candidates does not fit the relation. is triggers that
the process of matching objects against spatial relations is repeated
with a new target object. is mechanism is part of the process
organization system and will be explained in Section 3.5.

e spatial relation CoS field with activation uScs follows the
differential equation
τ Scsu̇Scs(x, y, t) =− uScs(x, y, t) + hScs + wξ · ξScs(x, y, t)

+ [kScs,Scs ∗ g(uScs)](x, y, t)

+

∫∫
dφ′dr′ ARD(φ′, r′, t)

BRD(φ− φ′, r − r′, t)

+
∑

i=1,...,NR

WRi(x, y) · g(uSPi(t))

+ wScs,SRI g(uSRI(t))
− wScs,SR g(uSR(t)),

(3.28)

where the third and fourth line formalize the steerable neural map-
ping, which is implemented as a convolution between

ARD(φ, r, t) = [kRC ∗ g(uRC)](x, y, t), (3.29)
the output of the relational candidates field (uRC), convolved with
a Gaussian kernel (kRC) and converted to polar coordinates and

BRD(φ, r, t) = [kROT ∗ g(uROT)](φ, r, t), (3.30)
the output of the rotation field (uROT), convolved with a Gaussian
kernel (kROT); this field will be explained later in this section. e
fifth line of Equation 3.28 formalizes input from an array of neu-
ral nodes, u⃗SP, that represent discrete relational concepts like 
   or . e meaning of the concepts is encoded
in the connection weights W⃗R(x, y). Please note that dim(W⃗R) =
dim(u⃗SP) = NR. is will be explored in more detail in Section 3.4.
e sixth line is input from the intention node of the ‘spatial rela-
tional field process’, which is part of the process organization system

59

coordinate frame 
centered on the 
reference object

relational concepts

patterned 
coupling



00

CoS

attention

color/space
attention field (color, space)

color fields
(color)

relational candidates field
(relative space)

reference field (space)

target field (space)

00

CoS

pc

ground
target

ground
relation

ground
reference

motion/space
attention field
(motion direction,
space)

motion fields
(motion direction)

multi-peak spatial
attention field (space)

selective spatial
attention field (space)

rotation field
(polar coordinates)

spatial relation CoS field
(relative space, rotated)

default ridge along
scale dimension

attention

*

*

*

*
color/space perception

field (color, space)

motion/space
perception field
(motion direction,
space)

target IOR field
(space)

spatial relation CoD field
(relative space, rotated)

*

*

*

*

green

red

left-
ward

right-
ward

cognitive operations
& sequences

categorical
concepts

coordinate transformations

perception & visual search

camera

ci

mp ground
relational
phrase

*

*

*

*

*

*

right

left

below

above

away

toward

relational response field
(relative space)

ci

mp

ci

mp

ci

mp

notation

*

excitatory connection
inhibitory connection
patterned connection
homogeneous inhibitorysteerable neural

mapping (convolution)

2D field activation
1D field activation

inactive node
active node

Cartesian/polar conversion

[Richer, Lins, 
Schöner, 

Cognitive Science 
2021]



green

left

red

“red to the left of green?”

reference

target

relational CoS

target

reference

conceptual structure 

input

attentional selection



[Kounatidou, Richter, 
Schöner, CogSci 2018]

Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
are denoted by blue diamonds. See text for details.

orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).

Mental mappingpropositions

“There is a cyan object above a green object.”

“There is a red object to the left of the green object.” … 

inference

“Where is the blue object relative to the red object?”



Grounding nested phrases

“the tree to the right of the tree
that is below the lake and

above the house”

[Sabinasz, Schöner, TopiCS 2023;
Sabinasz, Richter, Schöner Cog Neurodyn 2023]



object/object concept target/relationship relationship/relation concept reference/relationship

patient/actionaction/action conceptagent/actionobject/property concept

[Sabinasz, Richter, Schöner, Cog. Neurodyn. 2023]

“red ball”

Binding through ordinal position



[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

binding arguments in 
particular roles to 
relations through the 
index dimensions

target reference

Neural representation of 
conceptual structure 



ridge overlaps with the concept. This activates the current
concept in the object concept readout field (d). An analo-

gous mechanism enables reading out property concepts.

The relationships that contain the selected object as a
target are read out through the target/relationship readout
field (f) which receives input from the target/relationship

Fig. 16 Interface between the
conceptual structure and the
grounding system to ‘‘read out’’
the currently selected object and
relations/actions. Adapted from
Sabinasz and Schöner (2022b)

Cognitive Neurodynamics
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[Sabinasz, Richter, Schöner Cog Neurodyn 2023]
imposed through precondition nodes, which enable the

activation of the next step only when the previous step has
successfully terminated. More details about the individual

processes are laid out in Sabinasz and Schöner (2022b).

Figure 20 shows a time course of activation through
snapshots at discrete moments in time as the architecture

grounds the sentence ‘‘the blue ball approaches the big tree,

which is to the left of the lake and to the right of the house’’
in the scene shown in Fig. 18. Prior to the simulation, the

conceptual structure fields have already been filled, leading
to the activation pattern depicted in Fig. 15. Refer back to

Fig. 13 for looking up the object indices and relationship

indices assigned in this example phrase.
Grounding of object 3 (the lake). At time t2, the object

production field has selected object 3, reflecting a decision

to search for that object (the lake). The readout mechanism
has resulted in a peak on the LAKE concept in the object

concept readout field. By time t3, via the search mecha-

nism, the target field has formed a peak on the spatial
location of the lake in the target field. That peak reflects

that a candidate for object index 3 is present at that loca-
tion. It causes the CoS node of the select target candidate

Fig. 18 Grounding the phrase
‘‘the big tree which is to the left
of the lake and to the right of the
house’’ requires three grounding
processes, where the possibility
to ground the third (c) depends
on having grounded the first
(a) and the second (b) before,
and having remembered their
locations in a working memory

Fig. 19 The model architecture for sentence verification. Adapted from Sabinasz and Schöner (2022b)

Cognitive Neurodynamics

123



ridge overlaps with the concept. This activates the current
concept in the object concept readout field (d). An analo-

gous mechanism enables reading out property concepts.

The relationships that contain the selected object as a
target are read out through the target/relationship readout
field (f) which receives input from the target/relationship

Fig. 16 Interface between the
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Sabinasz and Schöner (2022b)

Cognitive Neurodynamics

123

[Sabinasz, Richter, Schöner Cog Neurodyn 2023]
imposed through precondition nodes, which enable the

activation of the next step only when the previous step has
successfully terminated. More details about the individual

processes are laid out in Sabinasz and Schöner (2022b).

Figure 20 shows a time course of activation through
snapshots at discrete moments in time as the architecture

grounds the sentence ‘‘the blue ball approaches the big tree,

which is to the left of the lake and to the right of the house’’
in the scene shown in Fig. 18. Prior to the simulation, the

conceptual structure fields have already been filled, leading
to the activation pattern depicted in Fig. 15. Refer back to

Fig. 13 for looking up the object indices and relationship

indices assigned in this example phrase.
Grounding of object 3 (the lake). At time t2, the object

production field has selected object 3, reflecting a decision

to search for that object (the lake). The readout mechanism
has resulted in a peak on the LAKE concept in the object

concept readout field. By time t3, via the search mecha-

nism, the target field has formed a peak on the spatial
location of the lake in the target field. That peak reflects

that a candidate for object index 3 is present at that loca-
tion. It causes the CoS node of the select target candidate

Fig. 18 Grounding the phrase
‘‘the big tree which is to the left
of the lake and to the right of the
house’’ requires three grounding
processes, where the possibility
to ground the third (c) depends
on having grounded the first
(a) and the second (b) before,
and having remembered their
locations in a working memory

Fig. 19 The model architecture for sentence verification. Adapted from Sabinasz and Schöner (2022b)
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mental 
map

spatial
attention

[Sabinasz, Richter, 
Schöner Cog 

Neurodyn 2023]



the Condition of Satisfaction

global view of sequence generation

what state next? 

what if the CoS fails? 

Sequence generation



Neural dynamic principle
the current neural attractor state = intention 

predicts its condition of satisfaction (CoS)

input matching prediction: CoS activated

CoS inhibits intention… 

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010; 
Sandamirskaya DFT primer 2016]



yellow-red-green-blue-red yellow-red-green-blue-red

Serial order task
learn a serially ordered 
sequence from a single 
demonstration

perform the serially 
ordered sequence with 
new timing

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]
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Learning Production
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Figure 11: One run of the robotic demonstrations. A: Time-courses of activation of five ordinal nodes during
sequence learning and production. B: Time-course of activation in the action field. Positive activation in the
field encodes the color currently searched for. C: Time-course of activation in the condition of satisfaction
field. Arrows mark the times when condition of satisfaction signals were emitted (detection instabilities in
the field). D: The projection of the perceptual color-space field onto the spatial dimension (horizontal axis of
the image plane). The arrows mark times when the object of interest in each ordinal position first appeared
in the visual array of the robot. The “random search” behavior changed to “approach target” behavior at
these points.
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Global view of sequence generation

JID:PLREV AID:229 /REV [m3SC+; v 1.136; Prn:22/11/2011; 16:31] P.9 (1-23)

M.I. Rabinovich et al. / Physics of Life Reviews ••• (••••) •••–••• 9

Fig. 6. Representation of a simple heteroclinic chain (left) and a robust sequence of metastable states (right). In the phase space of a dynamical
model a temporal winner (metastable state) is represented by a saddle fixed point. Based on this landscape metaphor it is easy to see that two
saddles can be connected by an unstable one-dimensional saddle separatrix (see the left panel). This is the simplest heteroclinic sequence. In many-
dimensional phase space (multiple interacting modes) heteroclinic sequences with many connected saddles could exist and form, in a wide area of
control parameter space, a stable heteroclinic channel – a stable heteroclinic flow (see right panel).

predict many dynamical phenomena in neural networks with excitatory and inhibitory synaptic connections including
information transmission and generation. The paradigm is called winnerless competition (WLC).

The study of competitive dynamics has a long tradition. Survival of the fittest is a cliché that is often associated
with the term competition. However, competition is not merely a means of determining the winner, as in a winner-
take-all network with attractor dynamics. It is also a multifunctional instrument that nature uses at all levels of the
neuronal hierarchy. Competition is also a mechanism that maintains the highest level of variability and stability of
neural dynamics, even under transient behaviors. Nonlinear dynamical theory has furnished the concept of stable
transients that are robust against noise, yet sensitive to external signals [48,31,49].

Stable transients, in fact, are a trajectory that is formed in the vicinity of a sequence of metastable states that are
connected by separatrices as we illustrate in Fig. 6. Under proper conditions, all trajectories in the neighborhood of
metastable states that form the chain remain in their vicinity, ensuring robustness and reproducibility over a wide range
of control parameters. This vicinity is called Stable Heteroclinic Channel (SHC). SHC is possibly the only dynamical
object that satisfies the dynamical principles of robustness and sensitivity in competitive world. During the last twenty
years there have been several efforts to explain sequence generation with attractor networks based on synaptic delay
and recurrent synaptic integration [50,51]. Some of such models provide interesting explanations but usually in very
specific contexts.

To understand the conditions of the stability of heteroclinic channels, we have to take into account that an elemen-
tary phase volume in the neighborhood of a saddle is compressed along the stable separatrices and it is stretched along
an unstable separatrix. Let us order the eigenvalues of the Jacobian at the i-th saddle point as:

λ
(i)
1 > 0 > Reλ

(i)
2 ! Reλ

(i)
3 ! · · · ! Reλ

(i)
d (1)

The number νi = −Reλ
(i)
2 /λ

(i)
1 is called the saddle value. If νi > 1 (the compressing is larger than the stretching),

the saddle is named as a dissipative saddle. Intuitively it is clear that the trajectories do not leave the heteroclinic
channel if all saddles in the heteroclinic chain are dissipative. A rigorous analysis of the structural stability of the
heteroclinic channel supports this intuition [20].

The temporal characteristics of transients are related to the exit problem for small random perturbations of dy-
namical systems with saddle sets. A local stability analysis in the vicinity of a saddle fixed point allows to estimate
the characteristic time that the system spends in the vicinity of the saddle as τ (p) = 1/λ

(i)
1 ln(1/|η|), where τ (p) is

the mean passage time, |η| is the level of noise, and λ
(i)
1 is the maximum eigenvalue corresponding to the unstable

separatrices of the saddle.
To fully understand such structurally stable transient dynamics, we need to further describe the mathematical image

of stable heteroclinic channels. Such dynamical objects are rare in low-dimensional systems, but common in complex
ones. A simple model to describe these objects is a generalized Lotka–Volterra equation, which expresses and predicts
the fate of an ongoing competition between N × M interactive neuronal modes:

[Rabinovich et al., Physics of Life Reviews 2011] 

Rabinovich’s heteroclinic chain: many more 
dimensions are stable then unstable… 

the stability of neural attractors is the 
organizing principle!



What state next?

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates
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[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

positional

stability

1 gradient-based selection 

2 chaining

3 positional representation

[Henson Burgess 1997]



What if CoS is not reached?

Condition of 
Dissatisfaction 
(CoD) is the default 
answer after a time 
out of a “clock”

may be interrupted 
by the CoS

[Johnson, et al. 2009]

contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold

Feature-Specific
Suppression via
Inhibitory Layer
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Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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intentionality

direction of fit: “action” (W2M) and “perception” 
(M2W)

psychological mode 

thinking is “action”

Intentional agent



Intentionality

Intentionality = the capacity of organisms and 
their nervous systems to generate mental 
states that are about things in the world

things may include an organism’s own body 

things may ultimately also includes the nervous system’s 
own states 



Two directions of fit of intentional 
states (Searle)

world-to-mind: the world must match the 
intentional state to fulfill that state’s condition-
of-satisfaction (CoS) => the “motor” flavor of 
intentionality

mind-to-world: the intentional state must match 
the state of the world to fulfill the CoS => 
“perceptual” flavor of intentionality



Six psychological modes 
of intentional states (Searle)

mind-to-world

perception

memory

belief ~ knowledge

world-to-mind

intention-in-action ~ action

prior intention ~ plans

desire ~ goals



An intentional agent
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-

[Tekülve, Schöner IEEE Trans Cog Dev Sys (2022); 
Tekülve, Schöner Cognitive Science (2024)]

agent

environment

perception

intention in action 

memory

prior intentions 

beliefs (propositional)

desires



Neural dynamic architecture



Recall-visual search-drive
[based on a desire and an activated belief, 

looking for a tall pink object, which is in memory]



Instantiating a “perception” intention is 
an “action” intention

e.g. cued recall from memory, visual search, 
opportunistic activation of knowledge 

=> time structure: intention active until its 
CoS becomes active, then de-activated

most thinking is of that nature ! 



Achieving a desire 
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1 activation = state of neural networks 

2 sigmoidal threshold function

3 functional significance of activation comes 
from its connectivity … 

1, 2, 3 = connectionism

Key principles



4 autonomy 

conceptually, connectionist networks are input driven (M2W)

thought and action are driven by the inner state of the mind 
= autonomy (W2M)

=> neural dynamics with strong interaction

Key principles



5 higher cognition: binding 

joint representations

expansion/contraction coupling 

binding through space/index

coordinate transforms

Key principles



What skills have you learned?

academic skills
read and understand scientific texts 

write technical texts, using mathematical concepts and 
illustrations 

Skills



What skills have you learned?

mathematical skills
conceptual understanding of dynamical systems

capacity to read differential equations and illustrate them 

perform “mental simulation” of differential equations

use numerical simulation to test ideas about an equation



What skills have learned?

interdisciplinary skills
handle concepts from a different discipline

handle things that you don’t understand 

sharpen sense of what you understand and what not 


