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Do the concepts of DFT 
potentially reach all processes of 

the mind?

so that DFT would provide a neural 
foundation for understanding the mind? 

… hinges on what we mean by the “mind”



Do the concepts of DFT 
potentially reach all processes of 

the mind?

borrowing terms from the philosophy of 
mind to explore this question 

“intentionality” in two “directions of fit” to 
sample qualitatively different form of mental 
and motor acts 

“psychological modes” to sample the mind 
from the sensory-motor to goal-
achievement and knowledge



Intentionality

Intentionality = the capacity of organisms and 
their nervous systems to generate mental 
states that are about things in the world

things may include an organism’s own body 

things may ultimately also includes the nervous system’s 
own states 



Two directions of fit of intentional 
states (Searle)

world-to-mind: the world must match the 
intentional state to fulfill that state’s 
condition-of-satisfaction (CoS) => the “motor” 
flavor of intentionality

mind-to-world: the intentional state must 
match the state of the world to fulfill the 
CoS => “perceptual” flavor of intentionality



Six psychological modes 
of intentional states (Searle)

mind-to-world

perception

memory

belief 

world-to-mind

intention-in-action

prior intention

desire



The six modes reflect 
the sensory-motor 

grounding of cognition

world-to-mind

motor control

action plans, decisions, sequences

goals, motivations, emotions 

mind-to-world

attention, active perception, 
working memory 

scene and event memory

back-ground knowledge, 
learning from experience, 
communication



Six psychological modes 
of intentional states (Searle)

mind-to-world

perception

memory

belief ~ knowledge

world-to-mind

intention-in-action ~ action

prior intention ~ plans

desire ~ goals



Six psychological modes 
of intentional states (Searle)

mind-to-world

perception

memory

belief 

world-to-mind

intention-in-action

prior intention

desirepropositional

grounded



Six psychological modes 

mind-to-world

perception

memory

belief 

world-to-mind

intention-in-action

prior intention

desire

Hypothesis: these psychological mode reach all 
of the mind



An intentional agent
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-

[Tekülve, Schöner IEEE Trans Cog Dev Sys (2022); 
Tekülve, Schöner Cognitive Science (2024)]

agent

move in space

move arm 

painting device 

vision sensor

proprioceptive sensors 

environment

colored objects (small) 

paint buckets (tall) 



perception

see color/feature 

sense position, arm, paint 
in gripper 

intention in action 

move in 1D

reach to take up paint

reach to apply a coat of 
paint 
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-
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Figure 4: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.

representing the desired goal in the center of the world space,
which does not match the currently perceived position. Once
movement causes a match between desired and perceived po-
sition, a peak emerges in the CoS field causing the termina-
tion of the drive IiA (right column).

The detection instability in the drive CoS leads to an au-
tonomous transition to the visual search IiA, which is released
from inhibition through the precondition node at t4 (left col-
umn). Ridges of searched color and height are induced in the
perception fields causing the emergence of supra-threshold
peaks at overlapping positions. (right column).

A match of height and color is detected through the vi-
sual search CoS (not shown), which leads to an autonomous
transition to the reaching IiA at t5 by forming a peak at the
perceived retinal position in the two dimensional reach IiA
field (left column). The reaching IiA is destabilized after a
successful arm movement leads to detection instability in the
reach CoS-field due to an overlap between proprioception of
the eef and the reach goal position (right column).

Snapshot t6 shows the detection of a color change in the
visual scene by the transient detector after the agent success-
fully collected the color and dispensed it on the purple cube
(left column). Activation of the dispense IiA (not shown)

changes the color of the purple cube to yellow, which forms a
supra-threshold in the transient detector at the conjunction of
left and yellow. The color of the perceived change matches
with the desired color and leads to the emergence of a peak
in the desire CoS which causes a subsequent destabilizing of
the desire to paint a cube yellow (right column).

Discussion
We present a neural dynamic architecture that endows a
robotic agent with the capability to generate intentional states
of the six major psychological modes. Self-stabilized peaks
of activation within neural populations determine the content
of an intentional state while the state’s psychological mode
is determined by how the neural population is positioned
within a neural dynamic architecture. The CoS of intentional
states is modeled through the detection-instability of dynamic
neural fields with the DoF determining under which circum-
stances the instability emerges.

The architecture is demonstrated in a toy scenario, where
the agent seeks particular perceptual states (desires), and uses
beliefs about contingencies of which paint transforms which
color into which new color, to plan sequences of action (prior
intentions) based on its current scene representation (mem-



Neural dynamic architecture



 Mind-to-world intentionality

Perception! Is input driven .. .

=> the intentional state is its own CoS

by virtue of how the state came about 

=> time structure: intention/CoS co-active 



The perception/memory 
sub-architecture





The sensory surface



Visual 
exploration



Visual 
exploration



From perception to scene memory
[memory initially empty, then sequentially built]



 Mind-to-world intentionality
Perception! Is input driven .. .

=> the intentional state is its own CoS

by virtue of how the state came about 

=> time structure: intention/CoS co-active 

Memory as an intentional state is also its 
own CoS… 

and its creation is input driven 

but its activation in recall… has the opposite direction 
of fit … we’ll get to that 
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Learning a new belief
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Learn a new belief
[while exploring: applying blue paint to yellow cube]



 Mind-to-world intentionality
Memory as an intentional state is also its 
own CoS… 

and its creation is input driven 

but its activation in recall… has the opposite direction 
of fit … we’ll get to that 

Beliefs as intentional states are their own 
CoS… 

and their creation is input driven… 

but their (opportunistic) activation… has the opposite 
direction of fit 



World-to-mind intentionality

intentional state persists UNTIL its CoS is 
activated

then both are deactivated 



The motor sub-architecture



The motor sub-architecture









Recall from memory

is a “motor” intention…  (a world-to-mind 
intention)

as it is aimed at achieving a particular state 
of the mind (which is part of the world) 



The motor sub-architecture



chaining to organize the paint behavior

4. An Integrated Field Architecture 4.4. Behavioral Organization

4.4.2 Collect and Apply Color

The painting process can be subdivided into activating a belief, collecting color
from a bucket object, and then applying it on a canvas of a certain color. Collect-
ing color itself can be decomposed in locating the bucket, reaching for it, and then
picking-up color from it. Similarly, can applying color be decomposed in locating
the canvas, reaching for it, and then spraying the color onto it. Both processes are
implemented as composite intentions-in-action through the Collect Coat Intention
node, uclc, and the Apply Color Intention node, uapp, which connect to the inten-
tion nodes of the comprised intentions-in-action (see Figure 4.4.2). Both share the

p

Paint

Paint

Col

Collect

CoS

Collect

Paint

App

Apply

CoS

Apply

Paint Paint

Locate

Coat
Gate Bucket

Concept

Reach

Pick-Up

p

Paint
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Canvas
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Concept

Reach

Spray

CoS
Pick-Up

CoS
Spray

CoS/CoD
Activate
Belief

Figure 4.4.2: The subnetwork responsible for sequencing the agent’s behavior

Intention Locate and the Intention Reach and di↵er only in the last element of
the action sequence, which is either Pick-Up or Spray. Both nodes are activated
through the Paint Intention node and inhibited through their corresponding CoS
and precondition nodes:

⌧clcu̇clc =� uclc + hclc + cpai!clc�(upai)� ccclc!clc�(ucclc)

� cpre�(pacb!clc)

⌧appu̇app =� uapp + happ + cpai!app�(upai)� ccapp!app�(ucapp)

� cpre�(pclc!app)

(4.74)

The precondition node, pacb!clc, connects the CoS Activate Belief node and the
CoD Activate Belief node with the Collect Coat Intention node. It ensures that
color collection is initiated only after it has been attempted to activate a guiding
belief. Similarly does the precondition node, pclc!app connecting the CoS Collect
Coat node to the Apply Color Intention node ensure that color is collected before
it is applied.
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5. Results 5.1. Performing the Painting Task
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Figure 5.1.12: Activation snapshots of selected fields during the Spray Intention.
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5. Results 5.1. Performing the Painting Task
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Figure 5.1.12: Activation snapshots of selected fields during the Spray Intention.
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drive



Recall-drive-search
[based on a desire and an activated belief, 

looking for a tall pink object, which is in memory]



Recall a belief
[triggered by a desire and objects in scene memory]
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Achieving a desire 

Paint Intention
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Instantiating mind-to-world 
intentions are world-to-mind 

intentions!

here: cued recall from memory 

other examples: cued or opportunistic 
activation of knowledge (beliefs), visual 
search

=> time structure: intention active until its 
CoS becomes active, then de-activated



Instantiating mind-to-world 
intentions are world-to-mind 

intentions!

most thinking is of that nature ! 

so the time-structure and mechanism for 
autonomy of the world-to-mind intentions 
is central to cognition! 



Achieving a desire 
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Conventional NN

e.g. in DNN

support input-driven processes:  perception, 
categorization 

do not have world-to-mind forms of 
intentionality (other than by non-neural 
means) 

=> they do not have a meaningful way to 
autonomously instantiate mind-to-world 
intentions (other than by non-neural means) 



What if the CoS does NOT happen? 

two cases… 

a) nothing happens in the CoS field/subspace

b) something happens in the CoS field/
subspace that differs from the prediction 



a) nothing happens in the COS field

example: change detection 

the “same” response

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simmering and Perone Capacity development

In our view, capacity in the classic sense (e.g., the “slots”
metaphor) does not work. In the laboratory, we derive capacity
estimates that are the emergent product of multiple, highly com-
plex, coupled cognitive and behavioral systems operating within
the task context. If we want to understand why capacity estimates
appear limited and why they differ across individuals, develop-
ment, and task contexts we must understand the dynamics of these
systems (i.e., how the components of a system interact through
time). We illustrate this claim below by reviewing two case studies
from our own work. Our proposal stands in contrast to the histor-
ical approach to understanding capacity and its development. For
instance, Cowan et al. (2010) emphasized the role of processing
(e.g., strategy) in explaining cross-task performance differences,
while contending that storage remains relatively constant across
tasks. Though we agree that both processing and storage must be
considered to understand performance across tasks, we disagree
with both the characterization of storage as a separable component
of the system as well as the notion that storage is constant across
tasks. In our view, storage capacity cannot be “tapped.” Storage is
a process in and of itself that cannot be considered in isolation
from the processes that contribute to (e.g., encoding, chunking)
and operate upon (e.g., rehearsal, retrieval) stored information.

Below, we present two case studies illustrating how a systems
approach can be applied to WM capacity development. These
studies have tested specific predictions derived from the imple-
mentation of visual WM into a computational model, which allows
for direct testing of how changes in a given set of processes may
simulate developmental improvements in performance. These
examples demonstrate how the specific details of the behavioral
tasks designed to measure WM capacity influence the processes by
which WM representations are formed and used in service of the
tasks,and reveal that capacity may vary within the same participants

depending on the manner in which information is presented and
capacity is measured. Importantly, we do not consider these differ-
ences across tasks to be “noise” in our estimates, but rather believe
this cross-task variation informs our understanding of how this
dynamic cognitive and behavioral system operates and develops.

CASE STUDY 1: INFANT VISUAL WORKING MEMORY
Our first case study centers on a series of neural network sim-
ulations reported by Perone et al. (2011). Perone et al. showed
that a single, complex system can produce remarkable variation
in performance across contexts. More specifically, they tested the
prediction that a single neuro-dynamical systems model of infant
looking and memory could produce variation in infants’ capacity
estimates across task conditions. They simulated infants’ perfor-
mance in a change preference task designed by Ross-Sheehy et al.
(2003) to estimate visual WM capacity. Figure 1A shows this task,
in which infants viewed two displays of colored squares blinking
on and off in synchrony. On a “no-change” display, all of the colors
remained the same with each blink/delay. On a “change” display,
one randomly selected color changed to a new color. Infants’ look-
ing time to the two displays was compared, and a robust preference
for the change display was interpreted as memory for the number
of items per display (i.e., set size). Across set sizes, Ross-Sheehy
et al. found that 6-month-olds showed a robust change prefer-
ence only at set size one, whereas 10-month-olds showed change

A B

FIGURE 1 | Schematic illustrations of tasks used to assess visual

working memory in (A) infants versus (B) children and adults; both

present examples of set size three.

preferences up to set size four. They concluded that infants’ visual
WM capacity increases from one to four items between 6 and
10 months.

Perone et al. (2011) simulated infants’ performance in this task
using a model of infant looking and memory. The model con-
sists of a neurocognitive system that encodes object details (e.g.,
color) and a fixation system that is biased to sustain looking during
encoding. Encoding leads to WM formation of the colors in the
displays; once a robust WM is formed, inhibition biases the sys-
tem to look away from remembered items and explore items that
may be novel. The model exhibited a change preference through
recognition of the items on the no-change display and detection
of novelty on the change display. This preference emerged through
real-time interactions between looking, encoding, and WM forma-
tion. Critically, Perone et al. found that a preference for the change
display did not require memory for all items in the display, that is,
the model exhibited a higher capacity estimate (measured through
looking time) than the number of items maintained in WM.

This example highlights how multiple processes working
together give rise to behavioral estimates of capacity. Critically,
the challenge remains to understand how such processes give rise
to variation in performance like that shown in Tables 1–4. Within
systems approaches, such variation is viewed as a signature of a
system that organizes in real-time in response to the current task
context. Perone et al. (2011) illustrated this concept by simulat-
ing a second experiment by Ross-Sheehy et al. (2003) in which
they removed the delay to insure that young infants’ performance
reflected a limitation in memory, not perception or attention.
Indeed, young infants exhibited change preferences for set sizes up
to three in this condition. This manipulation changed the task in
two important ways. First, “blinks” on the change and no-change
displays were no longer present, that is, there were no transient
onsets within each presentation of the items. Second, it introduced
a “flicker” associated only with the changing item on the change
display. Perone et al. showed that these minor manipulations dra-
matically influenced looking behavior. In the DNF model, looking
and memory are reciprocally coupled components of a larger cog-
nitive and behavioral system. Manipulations of looking influenced

Frontiers in Psychology | Developmental Psychology January 2013 | Volume 3 | Article 567 | 12

[Johnson, et al. 2009]



a) nothing happens in the COS field

“same” response as 
the default state

that arises if there 
is no “different” 
response from 
change detection 

[Johnson, et al. 2009]

(1998) on the basis of studies of cortical neurophysiology. The

model consists of an excitatory perceptual field, an excitatory
working memory field (VWM), and a shared inhibitory field. As

its name suggests, the perceptual field is the main target of
afferent input to the network. VWM also receives direct stimulus

input, but its primary excitatory input comes from the perceptual
field. Both the perceptual field and VWM provide excitatory
input to and receive broad inhibitory feedback from the inhib-

itory field. Additionally, nearby neurons within both the per-
ceptual and the working memory fields interact via local

excitatory connections. This pattern of excitatory and inhibitory
connectivity gives rise to a ‘‘Mexican hat’’ form of interaction

common in neural models of cortical function (Durstewitz,
Seamans, & Sejnowski, 2000). With the right balance of exci-
tation and inhibition, multiple peaks of activation can be sus-

tained in the absence of input. (Videos S1 and S2 in the
supporting information available on-line show the three-layer

model operating, respectively, in a self-stabilized mode, in which
peaks of activation form in response to input but die out when

input is removed, and in a self-sustained mode, in which peaks of

activation are sustained in the absence of input; see p. XXX.)
Thus, this form of interaction represents a plausible neural basis

for the sustained activation proposed to underlie working
memory (Compte et al., 2000; Fuster & Alexander, 1971).

Finally, to capture performance in change-detection tasks, we
have added a response layer containing two nodes: a different
node, which receives summed excitatory activation from the

perceptual field, and a same node, which receives summed ex-
citatory activation from VWM (see Fig. 2b). The nodes are

equipped with self-excitatory connections and are mutually
inhibitory, competing for control of response output when a ‘‘go’’

signal arrives (following the presentation of the test display).
Visual comparison is made possible in this architecture

through excitatory and inhibitory interactions among the mod-

el’s layers. Consider the simulations shown in Figure 3, which
capture performance in the one-shot variant of the change-de-

tection task (Fig. 1). We focus on this variant of the task because
of its relative simplicity, which minimizes the impact of factors
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Fig. 2. Two- and three-layer dynamic neural field models of visual working memory (VWM). The thin, solid
horizontal line in each field marks the activation threshold (conventionally set to be 0), the point at which
interactions among neurons within and between layers become engaged. The two-layer model (a) consists of
a single population of feature-selective excitatory neurons coupled to a similarly tuned population of in-
hibitory neurons. This simulation depicts the formation of a peak of activation following localized input to
the excitatory layer. Input takes the form of a Gaussian distribution that is centered at a particular field
location and has a specified strength and width. Once activation goes above threshold (i.e., 0) in the ex-
citatory layer, activation is passed to the inhibitory layer, which, in turn, passes broad inhibition back to the
excitatory layer. Locally excitatory interactions among neurons in the excitatory layer (solid, curved arrow)
keep neurons in a highly active state, whereas inhibitory feedback from the inhibitory layer keeps excitation
localized by preventing the diffusion of activation throughout the field. The three-layer model (b) contains
two populations of excitatory neurons (perceptual and VWM fields) reciprocally coupled to a single pop-
ulation of inhibitory neurons (inhibitory field). Input is applied to both excitatory fields, but input to the
perceptual field is much stronger than input to the VWM field. Once activation in the perceptual field goes
above 0, strong activation is propagated to both the inhibitory and the VWM fields. The VWM field also
projects excitatory activation to the inhibitory field, which projects inhibition to both the perceptual and
the VWM fields. The model also contains a response layer consisting of two nodes: one that receives summed
excitatory input from the perceptual field and is responsible for generating ‘‘different’’ (‘‘Diff’’) responses,
and a second that receives summed excitatory input from VWM and is responsible for generating ‘‘same’’
responses. The nodes in the response layer have self-excitatory connections and are mutually inhibitory.
Note that only above-threshold activation (i.e., activation> 0) in the perceptual field or VWM is propagated
to the response nodes at test.
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a) nothing happens in the COS field

“same” is the 
Condition of 
Dissatisfaction 
(CoD) of the change 
detection task

generally: CoD as a 
time out of a 
“clock”

that is started by 
the onset of the 
intention.. 

[Johnson, et al. 2009]

contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold
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Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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b) something happens in the CoS 
field that differs from the prediction 

=> mis-match 
detection… 

instability, if at least one supra-threshold peak exists in the
input field. They remain in the off-state otherwise.

Match and Mismatch detection
For each feature dimension, three fields exist. The expected

and attended feature fields represent, through a single peak
of activation, feature values. They receive input from two
different paths of the network. The mismatch detection field
receives excitatory input from the attended and inhibitory in-
put from the expected feature field. It generates a peak if
expected and attended feature fields have peaks at different
locations along the feature dimension.

For a given attended object location, the feature matching

sub-network (Figure 2) compares (in parallel across feature
dimensions) search cue (expected feature) and attended fea-
ture. A peak in all three fields (attended feature, expected

feature, and mismatch detection) signals a no match, activat-
ing the no-match response node and inhibiting the match re-

sponse node. Absence of a peak in the mismatch detection

field, with peaks in the two other fields, signals a match and
activates the match response node.

Figure 2: The feature matching sub-network. See the text for
an explanation.

Mismatch within a single feature dimension is sufficient
to activate the condition of dissatisfaction (CoD). In contrast,
the condition of satisfaction (CoS) node is only activated if all
attended features match the search cue. Together with the in-

tention node, these two nodes are used to autonomously gen-
erate sequences of neural processing steps (Sandamirskaya &
Schöner, 2010).

The neural dynamic process model
To account for the effects of feature sharing and grouping on
the search efficiency of triple conjunction searches (Nordfang
& Wolfe, 2014), we reduced our previous neural dynamic
process model (Grieben et al., 2020) to its visual search com-
ponent (removing sub-networks related to scene memory and
transient detection). The simplified outline of Figure 3 groups
dynamic neural fields into sub-networks (boxes) and their
connectivity (arrows). The model is, however, really just a
system of coupled neural integro-differential equations of the
type shown in Equation 1. All neural activation fields and

Figure 3: An overview of the neural dynamic process model.
Boxes represent sub-networks of fields and arrows their cou-
plings. Green outlines highlight sub-networks changed with
respect to the previous model.

variables evolve continuously in time, dependent on online
visual input. Instabilities create the impression of discrete
events, but these simply emerge from the dynamics. The real-
time numerical solution of the equations was achieved by im-
plementing the model in cedar, a graphical programming in-
terface for DFT models that also supports online visualization
(Lomp, Richter, Zibner, & Schöner, 2016).

Feed-forward feature maps and salience map
The bottom-up pathway of the model (and of human percep-
tion) is a parallel preattentive process purely driven by in-
put. In the model, visual input may come from a live camera
image (A) or, in the current case, from randomly generated
search displays (A1) (Figure 4).

Figure 4: The bottom-up pathway of the model. See text for
explanation. Green outlines highlight sub-networks changed
with respect to the previous model.

Three features are extracted in parallel: color, orientation,
and shape. Color is extracted from hue-space. Orientation
is obtained by filtering the thresholded saturation with four
elongated center-surround filters. To align with the experi-
ments of Nordfang and Wolfe (2014), we swapped the size

feature of our previous model (Grieben et al., 2020) to shape.
Shape was obtained by template matching (normalized cross-
correlation), a simplified account for preattentive recognition

[Grieben, Schöner, CogSci 2021]



Conclusions

1) Insight that the“world-to-mind” direction 
of fit is fundamental of acting and thinking … 
and is realized in DFT through the CoS 
concept

2) DFT does reach all psychological modes

3) DFT architectures scale.. 

stability => robustness

non-synesthesia principle 



Outlook: beyond action

planning… 

an implied hierarchy… 

goals/desires

goal dynamics… opportunistic activation of goals 

goal habituation 

motivation 



Frontier: world-to-mind 
intentions persisting over long 

times

as evidenced in cognitive control… 

perhaps only intermittently active, then re-
activated? 

timers at different time scales?


