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Sequences

all behavior and thinking consist of sequences 
of physical or mental acts

sometimes in a fixed order as in action 
routines, or highly trained action patterns

but potentially highly flexible … as in language, 
thinking, problem solving … 



Probes of sequence generation

serial order: separate from other aspects of 
memory (Lashley)

implicit sequence learning 

sequential actions: timing  



DFT challenge for sequences

DFT postulates that all neural states underlying 
behavior/mental process are attractors that 
resist change…

but generating sequences of such states require 
change of state! => conflicting constraints! 

answer: instabilities are induced systematically 
to enable switching to a next/new attractor 



Sequence generation

an illustrative example: the CoS

the neural/mathematical mechanism of the CoS

global view of sequence generation

what state next? 

what if the CoS fails? 

a robotic demo 

Roadmap



task: search for objects of a given color in a given order

1 blue

2 red

3 green

vehicle

target 1

target 2

obstacles

target 13

Illustration: sequence of actions

stably couple to 
objects once they 
are detected 

ignore objects 
when their turn 
has not yet come 
(distractors)



yellow-red-green-blue-red yellow-red-green-blue-red

Implementation as an imitation task
learn a serially ordered 
sequence from a single 
demonstration

perform the serially 
ordered sequence with 
new timing

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



Condition of 
Satisfaction

(CoS)

excites the corresponding memory node, which, in its turn,
provides an excitatory input to the ordinal node which is to
be activated next. The active ordinal node also projects onto
a single intention field defined over the dimension of color.
Which color each node activates is learned, or memorized,
in the training phase through a fast Hebbian learning
mechanism. The intention field is reciprocally coupled with
a two-dimensional space-color field, in which the spatial
dimension samples the horizontal axis of the camera
image. The space-color field receives ridge-input localized
along the color dimension, but not along space, from the
intention field. It also receives a two-dimensional space-
color input from the visual array. Where visual input
overlaps with the ridge, a peak is formed, the spatial pro-
jection of which specifies the visual angle under which an
object of the color being sought is located.

The space-color field projects along the spatial dimen-
sion onto the dynamics of heading direction, creating an
attractor that steers the robot to the detected object. As that

object is approached, its image grows in the robot’s visual
array. The condition-of-satisfaction field (top-right on
Fig. 8) is pre-activated by input from the intention field and
is pushed through the detection instability when the object
of the color being sought looms sufficiently large. This
brings about the transition to the next step in the sequence
as described in Section 3.3.

Before an object that matches the current intention has
been found, no peak exists in the space-color field. The
heading direction does not receive input at that time from
the space-color field and the vehicle’s navigation dynamics
is dominated by obstacle avoidance, which is implemented
using a standard dynamic method (Bicho, Mallet, &
Schöner, 2000). This results in the roaming behavior that
helps the robot search for objects of the appropriate color.

During teaching, the visual input from the object shown
to the robot is boosted enough to induce a peak in the space-
color field. This peak projects activation backwards onto the
intention field, where a peak is induced at the location that

Fig. 8. The architecture for a sequential color-search task on a Khepera robot. An active node of the ordinal dynamics projects its activation onto an intention field,
defined over color dimension. The intention field is coupled to the space-color field, which also receives visual input from the robot’s camera. An activation peak
in the space-color field drives the navigation dynamics of the robot, setting an attractor for its heading direction. The condition-of-satisfaction field is also defined
over color dimension and is activated when the object of the currently active color takes up a large portion of the camera image.

Y. Sandamirskaya et al. / New Ideas in Psychology xxx (2013) 1–1814

Please cite this article in press as: Sandamirskaya, Y., et al., Using Dynamic Field Theory to extend the embodiment stance toward
higher cognition, New Ideas in Psychology (2013), http://dx.doi.org/10.1016/j.newideapsych.2013.01.002

[Sandamirskaya, Schöner: Neural 
Networks 23:1163 (2010)]



Visual input

2D visual input 

horizontal space

color

“intensity” of 2D input 
from color histogram at 
each horizontal location 
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Visual search
intention=color cue provides ridge input into space-
color field

when that ridge overlaps with 2D space-color input => 
peak formed
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Learning Production
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Figure 11: One run of the robotic demonstrations. A: Time-courses of activation of five ordinal nodes during
sequence learning and production. B: Time-course of activation in the action field. Positive activation in the
field encodes the color currently searched for. C: Time-course of activation in the condition of satisfaction
field. Arrows mark the times when condition of satisfaction signals were emitted (detection instabilities in
the field). D: The projection of the perceptual color-space field onto the spatial dimension (horizontal axis of
the image plane). The arrows mark times when the object of interest in each ordinal position first appeared
in the visual array of the robot. The “random search” behavior changed to “approach target” behavior at
these points.
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Sequence generation

an illustrative example: the CoS

the neural/mathematical mechanism of the CoS

global view of sequence generation

what state next? 

what if the CoS fails? 

a robotic demo 

Roadmap



Neural dynamic principle
the current neural attractor state = intention 

predicts its condition of satisfaction (CoS)

input matching prediction: CoS activated

CoS inhibits intention… 

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010; 
Sandamirskaya DFT primer 2016]



intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]

sustained



intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]

sustained sub-threshold



=>  sequence generation

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]

detection
instability 

outcome



intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]

reverse detection
instability 



intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]

reverse detection
instability 



Neural dynamic principle

this works also for purely “mental 
 neural processes… 

in which the matching signal is internally 
generated 

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010; 
Sandamirskaya DFT primer 2016]



intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]

Theoretical question
CoS detection instability: requires an excitatory field 
with local excitatory interaction … 

inhibiting the intentional system: requires an 
inhibitory field…

=> violates Dale’s law! 



intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

predict outcome

[Sandamirskaya, Schöner: Neural Networks 2010]

Solution: two layer field
excitatory layer represents the “perceptual” state on 
which CoS builds

inhibitory layer projects to intentional field 

the one field version: adiabatic elimination of 
inhibitory layer… is conservative
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Global view of sequences

globally, the neural dynamics system is NOT 
in an attractor… there is a transient in some 
dimensions along which the CoS arises 

that is typically a small subspace

=> Rabinovich’s heteroclinic chain



Rabinovich’s heteroclinic chain

JID:PLREV AID:229 /REV [m3SC+; v 1.136; Prn:22/11/2011; 16:31] P.9 (1-23)

M.I. Rabinovich et al. / Physics of Life Reviews ••• (••••) •••–••• 9

Fig. 6. Representation of a simple heteroclinic chain (left) and a robust sequence of metastable states (right). In the phase space of a dynamical
model a temporal winner (metastable state) is represented by a saddle fixed point. Based on this landscape metaphor it is easy to see that two
saddles can be connected by an unstable one-dimensional saddle separatrix (see the left panel). This is the simplest heteroclinic sequence. In many-
dimensional phase space (multiple interacting modes) heteroclinic sequences with many connected saddles could exist and form, in a wide area of
control parameter space, a stable heteroclinic channel – a stable heteroclinic flow (see right panel).

predict many dynamical phenomena in neural networks with excitatory and inhibitory synaptic connections including
information transmission and generation. The paradigm is called winnerless competition (WLC).

The study of competitive dynamics has a long tradition. Survival of the fittest is a cliché that is often associated
with the term competition. However, competition is not merely a means of determining the winner, as in a winner-
take-all network with attractor dynamics. It is also a multifunctional instrument that nature uses at all levels of the
neuronal hierarchy. Competition is also a mechanism that maintains the highest level of variability and stability of
neural dynamics, even under transient behaviors. Nonlinear dynamical theory has furnished the concept of stable
transients that are robust against noise, yet sensitive to external signals [48,31,49].

Stable transients, in fact, are a trajectory that is formed in the vicinity of a sequence of metastable states that are
connected by separatrices as we illustrate in Fig. 6. Under proper conditions, all trajectories in the neighborhood of
metastable states that form the chain remain in their vicinity, ensuring robustness and reproducibility over a wide range
of control parameters. This vicinity is called Stable Heteroclinic Channel (SHC). SHC is possibly the only dynamical
object that satisfies the dynamical principles of robustness and sensitivity in competitive world. During the last twenty
years there have been several efforts to explain sequence generation with attractor networks based on synaptic delay
and recurrent synaptic integration [50,51]. Some of such models provide interesting explanations but usually in very
specific contexts.

To understand the conditions of the stability of heteroclinic channels, we have to take into account that an elemen-
tary phase volume in the neighborhood of a saddle is compressed along the stable separatrices and it is stretched along
an unstable separatrix. Let us order the eigenvalues of the Jacobian at the i-th saddle point as:

λ
(i)
1 > 0 > Reλ

(i)
2 ! Reλ

(i)
3 ! · · · ! Reλ

(i)
d (1)

The number νi = −Reλ
(i)
2 /λ

(i)
1 is called the saddle value. If νi > 1 (the compressing is larger than the stretching),

the saddle is named as a dissipative saddle. Intuitively it is clear that the trajectories do not leave the heteroclinic
channel if all saddles in the heteroclinic chain are dissipative. A rigorous analysis of the structural stability of the
heteroclinic channel supports this intuition [20].

The temporal characteristics of transients are related to the exit problem for small random perturbations of dy-
namical systems with saddle sets. A local stability analysis in the vicinity of a saddle fixed point allows to estimate
the characteristic time that the system spends in the vicinity of the saddle as τ (p) = 1/λ

(i)
1 ln(1/|η|), where τ (p) is

the mean passage time, |η| is the level of noise, and λ
(i)
1 is the maximum eigenvalue corresponding to the unstable

separatrices of the saddle.
To fully understand such structurally stable transient dynamics, we need to further describe the mathematical image

of stable heteroclinic channels. Such dynamical objects are rare in low-dimensional systems, but common in complex
ones. A simple model to describe these objects is a generalized Lotka–Volterra equation, which expresses and predicts
the fate of an ongoing competition between N × M interactive neuronal modes:

[Rabinovich et al., Physics of Life Reviews 2011] 
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the saddle is named as a dissipative saddle. Intuitively it is clear that the trajectories do not leave the heteroclinic
channel if all saddles in the heteroclinic chain are dissipative. A rigorous analysis of the structural stability of the
heteroclinic channel supports this intuition [20].

The temporal characteristics of transients are related to the exit problem for small random perturbations of dy-
namical systems with saddle sets. A local stability analysis in the vicinity of a saddle fixed point allows to estimate
the characteristic time that the system spends in the vicinity of the saddle as τ (p) = 1/λ

(i)
1 ln(1/|η|), where τ (p) is

the mean passage time, |η| is the level of noise, and λ
(i)
1 is the maximum eigenvalue corresponding to the unstable

separatrices of the saddle.
To fully understand such structurally stable transient dynamics, we need to further describe the mathematical image

of stable heteroclinic channels. Such dynamical objects are rare in low-dimensional systems, but common in complex
ones. A simple model to describe these objects is a generalized Lotka–Volterra equation, which expresses and predicts
the fate of an ongoing competition between N × M interactive neuronal modes:

[Rabinovich et al., Physics of Life Reviews 2011] 

many more dimensions are stable then 
unstable… 

the stability of neural attractors is the 
organizing principle!



What happens after a current 
intention state becomes unstable?

Rabinovich: “winnerless competition”

DFT: activation of another intentional state by 
the detection instability with selection



Sequence generation

an illustrative example: the CoS

the neural/mathematical mechanism of the CoS

global view of sequence generation

what state next? 

what if the CoS fails? 

a robotic demo 

Roadmap



Selection of next state: three 
notions in cognitive psychology 

[Henson Burgess 1997]

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates
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[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

positional

stability

1 gradient-based selection 

2 chaining

3 positional representation



Gradient-based + DFT

other possible states may have been in 
competition with the previous intentional state 

once that previous state is deactivated, these 
other states are released from inhibition

=> a new peak/node wins the selective 
competition based on inputs… 

could be the previous inputs.. e.g. salience map for visual 
search

could be new inputs that are a consequence of the previous 
intentional stated



Gradient-based 

e.g. salience map 

e.g. input from guidance fields..

re-activation of the previous intentional state 
may be prevented by inhibition of return

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates

[Grieben, Schöner, CogSci 2021]



Gradient-based 

this is used in many DFT architectures

visual search

relational grounding

mental mapping 

of simple shapes (Huang, 2020). These feature filters gener-
ate inputs that model the responses of feature sensitive neu-
rons characterized by tuning curves. The neural activation
pattern across the entire neural population for each feature
is represented in the respective scene space/feature map (B).
These neural space/feature representations are defined over
the two dimensions of visual space and over one feature di-
mension. Their activation is marginalized along the feature
dimension, using a center-surround filter as the projection
kernel, resulting in a conspicuity map (C) for each feature.
The inhibitory part of the center-surround kernel makes that
the relative bottom-up salience of an object decreases linearly
with the number of features shared with its flankers and also
depends linearly on the number of flankers that share at least
one feature with it. The excitatory part of the center-surround
kernel (which is less strong for the shape feature dimension)
makes that objects that are surrounded by empty space or
by flankers that share no features with them become more
salient.

These conspicuity maps are integrated in a spatial salience
map, scene spatial salience field C (Itti & Koch, 2000). The
output of this field (Figure 5), its activation passed through
a sigmoidal threshold function, is the nonlinear bottom-up
salience map that is responsible for the grouping effect. In our
previous model (Grieben et al., 2020) all objects had the same
bottom-up salience. The bottom-up salience map is low-pass
filtered with a Gaussian filter.

image input field C output field C filtered

Figure 5: Bottom-up salience. See text for an explanation.

Attentional selection
The core cognitive processes of visual cognition require an
attentional selection decision. The scene spatial selection

field (D) plays, therefore, a central role in the model (see Fig-
ure 6). This field operates in the dynamic regime of selection,
so that only one supra-threshold peak can be formed at any
point in time. This provides the neural substrate for feature
binding in the manner of Treisman’s feature integration the-
ory (Treisman & Gelade, 1980).

The scene guidance sub-network (H) consists of three
space/feature overlap fields (H) that receive sub-threshold in-
put from the scene space/feature maps (B) and feature input
from the target search cue (G). At locations at which the cued
features and the scene maps overlap, supra-threshold peaks
form. The activation patterns of these fields are marginal-
ized along the feature dimension to provide spatial input to
the feature guidance field (H1). The resting level of the fea-

ture guidance field (H1) is down-regulated dynamically via
inhibitory connections from the search cue sub-network (G)

Figure 6: The sub-networks engaged in attentional selection
and visual search. See the text for explanation. Green outlines
highlight sub-networks changed with respect to the previous
model.

so that it decreases linearly with the number of cued features.
This dynamical down-regulation is required to compensate
for the linear dependence of the peak amplitude of the inputs
to the field on the number of cued features. The output of this
guidance field (Figure 7), its activation passed through a sig-
moidal threshold function, provides nonlinear top-down bias
for the scene spatial selection field (D), and is responsible for
the sharing effect.

The scene spatial selection field (D) receives weighted
(WS) bottom-up bias from the scene spatial salience field (C),
and additional weighted (WFG) top-down bias from the scene

guidance sub-network (H) (Figure 8).

Visual search
Visual search is initiated automatically as soon as a peak is
formed in the scene spatial selection field (D). It terminates

[Grieben, Schöner, CogSci 2021]



Chaining

for fixed sequences…

e.g. reach-grasp

fixed order of mental operations… e.g. ground reference object 
first, then target object

less flexible (e.g.. when going through the same 
state with different futures)

could be thought to emerge with practice/habit 
from the positional system



Chaining + DFT

i. c.c. c.i. i.

p. p.

Sensorimotor DFs

environment

“intention-CoS” pairs for different actions… 

chained by double inhibition

the CoS of an earlier 
intention inhibits a 
pre-condition node 
that inhibits a later 
intention 

[Richter, Sandamirskaya, Schöner, IROS 2012]



Positional representation

a neural representation of ordinal position is 
organized by chaining 

the contents at each ordinal position is 
determined by neural projections from each 
ordinal node…



Positional representation + DFT

in DFT, the ordinal dimension is spanned by ordinal 
nodes, coupled to enable chaining 

the transition along the ordinal dimension is organized 
by CoS! 
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Positional representation + DFT

such ordinal dynamics can be used as “counters”

generating indices for binding… 
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Frontier

learning and activating multiple difference 
sequences… 



Sequence generation

an illustrative example: the CoS

the neural/mathematical mechanism of the CoS

global view of sequence generation

what state next? 

what if the CoS fails? 

a robotic demo 

Roadmap



What if the CoS does NOT happen? 

two cases… 

a) nothing happens in the CoS field/subspace

b) something happens in the CoS field/
subspace that differs from the prediction 



a) nothing happens in the COS field

example: change detection 

the “same” response

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simmering and Perone Capacity development

In our view, capacity in the classic sense (e.g., the “slots”
metaphor) does not work. In the laboratory, we derive capacity
estimates that are the emergent product of multiple, highly com-
plex, coupled cognitive and behavioral systems operating within
the task context. If we want to understand why capacity estimates
appear limited and why they differ across individuals, develop-
ment, and task contexts we must understand the dynamics of these
systems (i.e., how the components of a system interact through
time). We illustrate this claim below by reviewing two case studies
from our own work. Our proposal stands in contrast to the histor-
ical approach to understanding capacity and its development. For
instance, Cowan et al. (2010) emphasized the role of processing
(e.g., strategy) in explaining cross-task performance differences,
while contending that storage remains relatively constant across
tasks. Though we agree that both processing and storage must be
considered to understand performance across tasks, we disagree
with both the characterization of storage as a separable component
of the system as well as the notion that storage is constant across
tasks. In our view, storage capacity cannot be “tapped.” Storage is
a process in and of itself that cannot be considered in isolation
from the processes that contribute to (e.g., encoding, chunking)
and operate upon (e.g., rehearsal, retrieval) stored information.

Below, we present two case studies illustrating how a systems
approach can be applied to WM capacity development. These
studies have tested specific predictions derived from the imple-
mentation of visual WM into a computational model, which allows
for direct testing of how changes in a given set of processes may
simulate developmental improvements in performance. These
examples demonstrate how the specific details of the behavioral
tasks designed to measure WM capacity influence the processes by
which WM representations are formed and used in service of the
tasks,and reveal that capacity may vary within the same participants

depending on the manner in which information is presented and
capacity is measured. Importantly, we do not consider these differ-
ences across tasks to be “noise” in our estimates, but rather believe
this cross-task variation informs our understanding of how this
dynamic cognitive and behavioral system operates and develops.

CASE STUDY 1: INFANT VISUAL WORKING MEMORY
Our first case study centers on a series of neural network sim-
ulations reported by Perone et al. (2011). Perone et al. showed
that a single, complex system can produce remarkable variation
in performance across contexts. More specifically, they tested the
prediction that a single neuro-dynamical systems model of infant
looking and memory could produce variation in infants’ capacity
estimates across task conditions. They simulated infants’ perfor-
mance in a change preference task designed by Ross-Sheehy et al.
(2003) to estimate visual WM capacity. Figure 1A shows this task,
in which infants viewed two displays of colored squares blinking
on and off in synchrony. On a “no-change” display, all of the colors
remained the same with each blink/delay. On a “change” display,
one randomly selected color changed to a new color. Infants’ look-
ing time to the two displays was compared, and a robust preference
for the change display was interpreted as memory for the number
of items per display (i.e., set size). Across set sizes, Ross-Sheehy
et al. found that 6-month-olds showed a robust change prefer-
ence only at set size one, whereas 10-month-olds showed change

A B

FIGURE 1 | Schematic illustrations of tasks used to assess visual

working memory in (A) infants versus (B) children and adults; both

present examples of set size three.

preferences up to set size four. They concluded that infants’ visual
WM capacity increases from one to four items between 6 and
10 months.

Perone et al. (2011) simulated infants’ performance in this task
using a model of infant looking and memory. The model con-
sists of a neurocognitive system that encodes object details (e.g.,
color) and a fixation system that is biased to sustain looking during
encoding. Encoding leads to WM formation of the colors in the
displays; once a robust WM is formed, inhibition biases the sys-
tem to look away from remembered items and explore items that
may be novel. The model exhibited a change preference through
recognition of the items on the no-change display and detection
of novelty on the change display. This preference emerged through
real-time interactions between looking, encoding, and WM forma-
tion. Critically, Perone et al. found that a preference for the change
display did not require memory for all items in the display, that is,
the model exhibited a higher capacity estimate (measured through
looking time) than the number of items maintained in WM.

This example highlights how multiple processes working
together give rise to behavioral estimates of capacity. Critically,
the challenge remains to understand how such processes give rise
to variation in performance like that shown in Tables 1–4. Within
systems approaches, such variation is viewed as a signature of a
system that organizes in real-time in response to the current task
context. Perone et al. (2011) illustrated this concept by simulat-
ing a second experiment by Ross-Sheehy et al. (2003) in which
they removed the delay to insure that young infants’ performance
reflected a limitation in memory, not perception or attention.
Indeed, young infants exhibited change preferences for set sizes up
to three in this condition. This manipulation changed the task in
two important ways. First, “blinks” on the change and no-change
displays were no longer present, that is, there were no transient
onsets within each presentation of the items. Second, it introduced
a “flicker” associated only with the changing item on the change
display. Perone et al. showed that these minor manipulations dra-
matically influenced looking behavior. In the DNF model, looking
and memory are reciprocally coupled components of a larger cog-
nitive and behavioral system. Manipulations of looking influenced

Frontiers in Psychology | Developmental Psychology January 2013 | Volume 3 | Article 567 | 12

[Johnson, et al. 2009]



a) nothing happens in the COS field

“same” response as 
the default state

that arises if there 
is no “different” 
response from 
change detection 

[Johnson, et al. 2009]

(1998) on the basis of studies of cortical neurophysiology. The

model consists of an excitatory perceptual field, an excitatory
working memory field (VWM), and a shared inhibitory field. As

its name suggests, the perceptual field is the main target of
afferent input to the network. VWM also receives direct stimulus

input, but its primary excitatory input comes from the perceptual
field. Both the perceptual field and VWM provide excitatory
input to and receive broad inhibitory feedback from the inhib-

itory field. Additionally, nearby neurons within both the per-
ceptual and the working memory fields interact via local

excitatory connections. This pattern of excitatory and inhibitory
connectivity gives rise to a ‘‘Mexican hat’’ form of interaction

common in neural models of cortical function (Durstewitz,
Seamans, & Sejnowski, 2000). With the right balance of exci-
tation and inhibition, multiple peaks of activation can be sus-

tained in the absence of input. (Videos S1 and S2 in the
supporting information available on-line show the three-layer

model operating, respectively, in a self-stabilized mode, in which
peaks of activation form in response to input but die out when

input is removed, and in a self-sustained mode, in which peaks of

activation are sustained in the absence of input; see p. XXX.)
Thus, this form of interaction represents a plausible neural basis

for the sustained activation proposed to underlie working
memory (Compte et al., 2000; Fuster & Alexander, 1971).

Finally, to capture performance in change-detection tasks, we
have added a response layer containing two nodes: a different
node, which receives summed excitatory activation from the

perceptual field, and a same node, which receives summed ex-
citatory activation from VWM (see Fig. 2b). The nodes are

equipped with self-excitatory connections and are mutually
inhibitory, competing for control of response output when a ‘‘go’’

signal arrives (following the presentation of the test display).
Visual comparison is made possible in this architecture

through excitatory and inhibitory interactions among the mod-

el’s layers. Consider the simulations shown in Figure 3, which
capture performance in the one-shot variant of the change-de-

tection task (Fig. 1). We focus on this variant of the task because
of its relative simplicity, which minimizes the impact of factors

Excitatory
Layer

ba

Inhibitory
Layer

0

0

Ac
tiv

at
io

n

Feature Dimension

Activation
Input
Excitation
Inhibition

Feature Dimension

VWM Field

Inhibitory
Field

Perceptual
Field

0

0

0
Ac

tiv
at

io
n

∑

∑

Fig. 2. Two- and three-layer dynamic neural field models of visual working memory (VWM). The thin, solid
horizontal line in each field marks the activation threshold (conventionally set to be 0), the point at which
interactions among neurons within and between layers become engaged. The two-layer model (a) consists of
a single population of feature-selective excitatory neurons coupled to a similarly tuned population of in-
hibitory neurons. This simulation depicts the formation of a peak of activation following localized input to
the excitatory layer. Input takes the form of a Gaussian distribution that is centered at a particular field
location and has a specified strength and width. Once activation goes above threshold (i.e., 0) in the ex-
citatory layer, activation is passed to the inhibitory layer, which, in turn, passes broad inhibition back to the
excitatory layer. Locally excitatory interactions among neurons in the excitatory layer (solid, curved arrow)
keep neurons in a highly active state, whereas inhibitory feedback from the inhibitory layer keeps excitation
localized by preventing the diffusion of activation throughout the field. The three-layer model (b) contains
two populations of excitatory neurons (perceptual and VWM fields) reciprocally coupled to a single pop-
ulation of inhibitory neurons (inhibitory field). Input is applied to both excitatory fields, but input to the
perceptual field is much stronger than input to the VWM field. Once activation in the perceptual field goes
above 0, strong activation is propagated to both the inhibitory and the VWM fields. The VWM field also
projects excitatory activation to the inhibitory field, which projects inhibition to both the perceptual and
the VWM fields. The model also contains a response layer consisting of two nodes: one that receives summed
excitatory input from the perceptual field and is responsible for generating ‘‘different’’ (‘‘Diff’’) responses,
and a second that receives summed excitatory input from VWM and is responsible for generating ‘‘same’’
responses. The nodes in the response layer have self-excitatory connections and are mutually inhibitory.
Note that only above-threshold activation (i.e., activation> 0) in the perceptual field or VWM is propagated
to the response nodes at test.
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a) nothing happens in the COS field

“different” response 
from change 
detection 

stops “same” 
response

[Johnson, et al. 2009]

contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold
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Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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Neural Field Model of Visual Working Memory

contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold
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Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold
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Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold
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Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.

4 Volume ]]]—Number ]]

Neural Field Model of Visual Working Memory

contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold

Feature-Specific
Suppression via
Inhibitory Layer

Sample Display
a b

Perceptual
Field

VWM

Feature Dimension

Time

Peaks in VWM

Activation
Input
Excitation
Inhibition

Self-Sustained

0

0

0

0

0

0

0

0

0

0

0

0

Ac
tiv

at
io

n

Delay

Close Item Tested Far Item Tested

Far Item Tested

“Different” Trial

“Same” Trial

S

D

S

D
No Peak in

Perceptual Field
No Peak in

Perceptual Field

No Peak in
Perceptual Field

Peak in Perceptual Field
Drives “Diff” Node    

Peaks in VWM
Drive “Same” Node

Peaks in VWM
Drive “Same” Node

Peaks in VWM
Drive “Same” Node

Peaks in VWM
Drive “Same” Node

Close
Colors

Far
Color

c

d

e

fClose Item Tested

Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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a) nothing happens in the COS field

“same” is the 
Condition of 
Dissatisfaction 
(CoD) of the 
change detection 
task

[Johnson, et al. 2009]

contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold
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Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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a) nothing happens in the COS field

generally: CoD as a time out…

the “clock” is started by the onset of the 
intention.. 

frontier: how to bridge large temporal gaps … 



b) something happens in the CoS 
field that differs from the prediction 

=> mis-match 
detection… 

instability, if at least one supra-threshold peak exists in the
input field. They remain in the off-state otherwise.

Match and Mismatch detection
For each feature dimension, three fields exist. The expected

and attended feature fields represent, through a single peak
of activation, feature values. They receive input from two
different paths of the network. The mismatch detection field
receives excitatory input from the attended and inhibitory in-
put from the expected feature field. It generates a peak if
expected and attended feature fields have peaks at different
locations along the feature dimension.

For a given attended object location, the feature matching

sub-network (Figure 2) compares (in parallel across feature
dimensions) search cue (expected feature) and attended fea-
ture. A peak in all three fields (attended feature, expected

feature, and mismatch detection) signals a no match, activat-
ing the no-match response node and inhibiting the match re-

sponse node. Absence of a peak in the mismatch detection

field, with peaks in the two other fields, signals a match and
activates the match response node.

Figure 2: The feature matching sub-network. See the text for
an explanation.

Mismatch within a single feature dimension is sufficient
to activate the condition of dissatisfaction (CoD). In contrast,
the condition of satisfaction (CoS) node is only activated if all
attended features match the search cue. Together with the in-

tention node, these two nodes are used to autonomously gen-
erate sequences of neural processing steps (Sandamirskaya &
Schöner, 2010).

The neural dynamic process model
To account for the effects of feature sharing and grouping on
the search efficiency of triple conjunction searches (Nordfang
& Wolfe, 2014), we reduced our previous neural dynamic
process model (Grieben et al., 2020) to its visual search com-
ponent (removing sub-networks related to scene memory and
transient detection). The simplified outline of Figure 3 groups
dynamic neural fields into sub-networks (boxes) and their
connectivity (arrows). The model is, however, really just a
system of coupled neural integro-differential equations of the
type shown in Equation 1. All neural activation fields and

Figure 3: An overview of the neural dynamic process model.
Boxes represent sub-networks of fields and arrows their cou-
plings. Green outlines highlight sub-networks changed with
respect to the previous model.

variables evolve continuously in time, dependent on online
visual input. Instabilities create the impression of discrete
events, but these simply emerge from the dynamics. The real-
time numerical solution of the equations was achieved by im-
plementing the model in cedar, a graphical programming in-
terface for DFT models that also supports online visualization
(Lomp, Richter, Zibner, & Schöner, 2016).

Feed-forward feature maps and salience map
The bottom-up pathway of the model (and of human percep-
tion) is a parallel preattentive process purely driven by in-
put. In the model, visual input may come from a live camera
image (A) or, in the current case, from randomly generated
search displays (A1) (Figure 4).

Figure 4: The bottom-up pathway of the model. See text for
explanation. Green outlines highlight sub-networks changed
with respect to the previous model.

Three features are extracted in parallel: color, orientation,
and shape. Color is extracted from hue-space. Orientation
is obtained by filtering the thresholded saturation with four
elongated center-surround filters. To align with the experi-
ments of Nordfang and Wolfe (2014), we swapped the size

feature of our previous model (Grieben et al., 2020) to shape.
Shape was obtained by template matching (normalized cross-
correlation), a simplified account for preattentive recognition

[Grieben, Schöner, CogSci 2021]
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[Tekülve et al., 
Frontiers in 
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(2019)]

Tekülve et al. Autonomous Sequence Generation

3. MODEL

The neural dynamic architecture described here is a network
of neural fields that are coupled to a camera and a robotic
arm. These links enable online connection to a changing visual
scene and online control of the arm. Three sub-networks
(Figure 2) autonomously organize sequences of activation states
to build visual representations, learn or perform serially ordered
sequences, and generate object-oriented movements.

The perceptual sub-network, connected to the camera, creates
a working memory representation of the visual scene through
autonomous shifts of attention. A motor sub-network drives
an oscillator generating velocity commands for the robotic
arm. The cognitive sub-network represents ordinal positions
in a sequence and may autonomously shift from one ordinal
position to the next. The ordinal system may be used in
two different manners, sequence learning and sequence recall,

controlled by the activation of one of two different task
nodes. These task nodes activate behaviors by boosting fields’
resting levels and enabling fields to generate task relevant
attractor states.

The following sections describe for each sub-network the
states that drive behavior and the mechanism for how the system
switches between those states. The last section addresses the
integration of all three sub-networks for the two tasks Learn
and Recall.

3.1. Perception: Scene Representation
The scene representation sub-network is based on Grieben et al.
(2018) and creates three-dimensional (2D space and 1D color)
working memory representations of objects in the visual scene
captured by the camera. Each entry into the representation
is created sequentially as the sub-network autonomously shifts
attention across different objects in the scene.

FIGURE 2 | Sketch of the dynamic field network with its three sub-networks.
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At point t0, the Exploration intention node provides a
homogeneous boost to the Saliency Selection field leading to an
activation peak at the location of the purple object. This causes
the emergence of a three-dimensional peak in the Scene Selection
field, of which the color dimension is shown in the third row. The
WorkingMemory field contains no supra-threshold activation yet
but, at the locations of the non-background objects, the resting
level is increased across the whole color dimension.

Once the peak in the Scene Selection field has fully emerged
at t1, its color component is forwarded as a slice toward the
Working Memory, where it overlaps with the tube originating
from the Saliency Selection field and forms a three-dimensional
peak. Subsequently a peak also forms in the Memory Spatial
Selection field, which shares the same color as the peak in the
Scene Space Selection causing an overlap in the Color Match field.

The peak forming in the Color Match field activates the CoS
Explore node, which inhibits the Explore intention node. Thus
the resting level boost is removed from the Saliency Selection
field, which subsequently falls down to sub-threshold activation

at point t2. Only the self-sustained peak in the Working Memory
field remains.

The absence of a peak in the Color Match field causes the CoS
node to fall below threshold again, bringing the sub-network to
its initial state. The following activation of the Explore intention
node, depicted from t3 until t5, follows the same temporal
activation pattern as the previous one with different feature
values for spatial location and color. The spatial location in the
Saliency Selection field differs due to the inhibitory influence
from theWorking Memory field. See Supplementary Video 3 for
a different example of autonomous build-up of visual working
memory in continuous time.

4.2. Learning Demonstration
A particular color sequence is taught to the network in its
learning regime by presenting objects of a certain color one after
another. In Figure 5 activation snapshots of some points in time
during an exemplary learning episode are shown. The top row
depicts the temporal evolution of activation of the ordinal nodes

FIGURE 5 | Time course of learning a three element sequence with varying presentation time.
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and robot armwere simulated usingWEBOTS (Michel, 2004) that
can be coupled into Cedar. The same Cedar code can also link to
real sensors and robots. We did this, driving the model from a
real camera and manipulating the visual scene by placing colored
objects on a white table top. We also controlled a lightweight
KUKA arm from the same Cedar code to verify its capacity to act
out the planned movements. These informal robotic experiments
are not further documented in this paper.

4.1. Scene Representation: Autonomous
Build-up of Visual Working Memory
The build-up of the scene workingmemory is an ongoing process
that provides visual information to the network irrespective of
the currently active task node. In Figure 4 we show activation
snapshots of different points in time during working memory
build-up in an exemplary scene containing three objects and the
arm’s end-effector.

FIGURE 4 | Time course of building a scene memory.
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FIGURE 6 | Time course of recalling a three element sequence through pointing at colored objects.

as a sub-threshold activation blob, and the blue object is entirely
absent. As the first movement is finished at t1 all three objects are
present in working memory as sub-threshold activation blobs.

Thus at t2, the second movement starts closely after the
activation of the second ordinal node with the blue object as
the target on the right side of the camera image. While the arm
is moving the object is moved to the center/top position of the
image, which results in a non-match between arm and target at
the end of the movement, which can be seen at t3. Here working
memory has updated the position of the blue object, which leads
to an extraction of a different target position that does not match
with the current position of the end effector. Only at t4 after a
second movement was generated, the blue object and the end
effector match, which concludes the recall of the second element
of the sequence.

The last movement toward the purple object is then conducted
without any further perturbations and terminates after a single
movement at t6.

4.3.2. Recall With a Missing Object
In this second recall episode demonstrating the robustness of the
field network we start the recall in a scene that lacks the second
object of the sequence. In Figure 8, activation snapshots of the

same sub-set of fields used in the previous perturbation episode
are shown.

At points t0 and t1, the network’s activation develops analog
to the previous two recall examples with a color slice used to
extract the target position and the position match to determine
the successful termination of the movement. However as the
second ordinal node activates at t2 no blue object is present in
the scene, thus no sub-threshold activation blob overlaps with
the blue color slice in the Memory Color Selection field and no
peak forms.

At point t3, the blue object is added to the scene, which
is committed to memory and afterwards extracted as a valid
target position. The movement than concludes at t4 with the
arm occluding the purple object, which is kept in working
memory due to the self-sustaining kernel. The working memory
information is then used in t5, when the third ordinal node
specifies purple as the next sequence color. Thus the sequence
ends at t6 with no further perturbations.

5. DISCUSSION

We have presented a network of dynamic neural fields that
integrates the complete pathway from the sensor surface (vision)
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FIGURE 7 | Online updating of the movement during sequence recall.

to representations of higher cognition (serial order) and to the
motor system (pointing). The network architecture enables a
robotic agent to autonomously learn a sequence of colors from
demonstration and then to act according to the defined serial
order on a scene. Both during learning and while acting out the
sequence, the transitions between elements of the sequence are
detected without the need for an external control signal (The
switch between learning and recall mode is not autonomous,
however, reflecting a similar need for task instructions when a
human operator performs such a task).

In each of the three sub-networks responsible for scene
representation, the representation of serial order, and movement
generation, sequential transitions between neural activation
states are brought about through the mechanism of the condition
of satisfaction. Thus, visual attention shifts only once a currently
attended item has been committed to working memory. A
transition to the next element in the serial order occurs only
once the robot has successfully acted on the current element. And

an arm movement terminates only once the desired movement
target has been reached. The mechanism of the condition of
satisfaction thus reconciles the capacity to autonomously act
according to learned or structurally determined plans with the
capacity to be responsive to sensory or internal information about
the achievement of goals.

5.1. What the Scenario Stands for
The scenario was simple, but meant to demonstrate
the fundamental components of any neurally grounded
autonomous robot.

(1) A representation of the visual surround is the basis for any
intelligent action directed at the world. It is also the basis for
sharing an environment with a human user. We humans are
particularly tuned to building scene representations which
form the basis of much of our visual cognition (Henderson
and Hollingworth, 1999). Scene representations need to
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Conclusion

the principles of DFT

localist representations for stable states

that may become unstable in a controlled way

through the “condition of satisfaction”

enable the autonomous generation of 
sequences of mental states or action

critical step toward higher cognition 



Outlook

are all neural states of the “intentional” 
kind… with a CoS? 

“direction of fit” 

frontier: goals… true autonomy


