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Sequences

M all behavior and thinking consist of sequences
of physical or mental acts

M sometimes in a fixed order as in action
routines, or highly trained action patterns

® but potentially highly flexible ... as in language,
thinking, problem solving ...



Probes of sequence generation

M serial order: separate from other aspects of
memory (Lashley)

M implicit sequence learning

M sequential actions: timing



DFT challenge for sequences

B DFT postulates that all neural states underlying
behavior/mental process are attractors that
resist change...

B but generating sequences of such states require
change of state! => conflicting constraints!

M answer: instabilities are induced systematically
to enable switching to a next/new attractor



Roadmap :
Sequence generation

M an illustrative example: the CoS

B the neural/mathematical mechanism of the CoS
M global view of sequence generation

B what state next?

B what if the CoS fails?

M a2 robotic demo



lllustration: sequence of actions

M task: search for objects of a given color in a given order

B | blue
‘ target 2

B 2 red ‘

M 3 green
target |

obstacles

M stably couple to
objects once they

are detected ‘
M ignhore objects

when their turn target 3

has not yet come
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Implementation as an imitation task

M |earn a serially ord.ered ® perform the serially
sequence from a single ordered sequence with
demonstration new timing
yellow-red-green-blue-red yellow-red-green-blue-red

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]
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Visual input
Camera image

B 2D visual input

B horizontal space
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Visual search

M intention=color cue provides ridge input into space-
color field

® when that ridge overlaps with 2D space-color input =>
peak formed

Color-space DF

search cue
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Neural dynamic principle
B the current neural attractor state = intention
B predicts its condition of satisfaction (CoS)

M input matching prediction: CoS activated

B CoS inhibits intention...
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[Sandamirskaya, Schoner: Neural Networks 2010;
Sandamirskaya DFT primer 201 6]
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=> sequence generation

detection
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[Sandamirskaya, Schoner: Neural Networks 2010]



reverse detection
instability
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[Sandamirskaya, Schoner: Neural Networks 2010]



reverse detection
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Neural dynamic principle

M this works also for purely “mental
neural processes...

B in which the matching signal is internally
generated
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[Sandamirskaya, Schoner: Neural Networks 2010;
Sandamirskaya DFT primer 201 6]



Theoretical question

B CoS detection instability: requires an excitatory field
with local excitatory interaction ...

M inhibiting the intentional system: requires an
inhibitory field...

M => violates Dale’s law!
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[Sandamirskaya, Schoner: Neural Networks 2010]



Solution: two layer field

M excitatory layer represents the “perceptual” state on
which CoS builds

M inhibitory layer projects to intentional field

M the one field version: adiabatic elimination of
inhibitory layer... is conservative
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[Sandamirskaya, Schoner: Neural Networks 2010]



Roadmap :
Sequence generation

M an illustrative example: the CoS

B the neural/mathematical mechanism of the CoS
M global view of sequence generation

B what state next?

B what if the CoS fails?

M a2 robotic demo



Global view of sequences

M globally, the neural dynamics system is NOT
in an attractor... there is a transient in some
dimensions along which the CoS arises

M that is typical

M => Rabinovic

y a small subspace

n’s heteroclinic chain



Rabinovich’s heteroclinic chain

[Rabinovich et al., Physics of Life Reviews 201 1]



Rabinovich’s heteroclinic chain

B many more dimensions are stable then

unstab

e...

M the sta

vility of neural attractors is the

organizing principle!

[Rabinovich et al., Physics of Life Reviews 201 1]



What happens after a current
intention state becomes unstable?

® Rabinovich:“winnerless competition”

B DFT: activation of another intentional state by
the detection instability with selection
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Selection of next state: three
notions in cognitive psychology

® [Henson Burgess 1997]

SR

B | gradient-based selection ; N

B 2 chaining 8 Bl b
A A
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Gradient-based + DFT

B other possible states may have been in
competition with the previous intentional state

B once that previous state is deactivated, these
other states are released from inhibition

B => a new peak/node wins the selective
competition based on inputs...

B could be the previous inputs.. e.g. salience map for visual
search

B could be new inputs that are a consequence of the previous
intentional stated



Gradient-based

M e.g. salience map
M e.g. input from guidance fields..

M re-activation of the previous intentional state
may be prevented by inhibition of return

--------------------------------------------------
.

Pawsgds W vk

[Grieben, Schoner, CogSci 2021 ] §scene spatial selecuon; " PFEFP!E!QE.QEI.‘PEE‘}‘.I}.....‘5
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Gradient-based

B this is used in many DFT architectures

B visual search
M relational grounding

B mental mapping

--------------------------------------------------
.

[Grieben, Schoner, CogSci 202 I]

------------------------------------------------




Chaining

® for fixed sequences...

B e.g. reach-grasp

I fixed order of mental operations... e.g. ground reference object
first, then target object

M |ess flexible (e.g.. when going through the same
state with different futures)

M could be thought to emerge with practice/habit
from the positional system



Chaining + DFT

B “intention-CoS” pairs for different actions...

® chained by double inhibition

P.

f T

B the CoS of an earlier

intention inhibits a

pre-condition node Sensorimotor DFs

that inhibits a later ¢

intention .
environment

[Richter, Sandamirskaya, Schoner, IROS 2012]



Positional representation

M a neural representation of ordinal position is
organized by chaining

B the contents at each ordinal position is
determined by neural projections from each
ordinal node...



Positional representation + DFT

M in DFT, the ordinal dimension is spanned by ordinal
nodes, coupled to enable chaining

B the transition along the ordinal dimension is organized

by CoS!
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Positional representation + DFT

® such ordinal dynamics can be used as “counters”

M generating indices for binding...
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Frontier

M learning and activating multiple difference
sequences...
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What if the CoS does NOT happen!?

M two cases...
® 3) nothing happens in the CoS field/subspace

® b) something happens in the CoS field/
subspace that differs from the prediction



a) nothing happens in the COS field

B example: change detection

M the “same” response

Memory Array

Delay

(500 ms)

(1s)

Test Array

(until
response)

Same/Different

[Johnson, et al. 2009]



a) nothing happens in the COS field

M “same” response as y Perceptual
the default state 0 ; = 2\
B that arises if there § l Eg:gltow
is no “different” % 0 JAN
response from < At '
change detection 0 w /

Feature Dimension

[Johnson, et al. 2009]



a) nothing happens in the COS field

M “different” response
from change
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[Johnson, et al. 2009]
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a) nothing happens in the COS field
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[Johnson, et al. 2009]



a) nothing happens in the COS field

M “same” is the
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[Johnson, et al. 2009]



a) nothing happens in the COS field

M generally: CoD as a time out...

M the “clock” is started by the onset of the
Intention..

B frontier: how to bridge large temporal gaps ...



b) something happens in the CoS
field that differs from the prediction

M => mis-match
detection... (__coD c°33

Attended Feature Mismatch Detection Expected Feature 3
A 2
ce =7 = _/A; P
A A B
scene inputI I I search cue inputl I I

[Grieben, Schoner, CogSci 2021]



b) something happens in the CoS
field that differs from the prediction

B [we
whic
for t

nave discarded the earlier CoD notion in
n we postulated an explicit neural network

ne “non” condition (e.g. Richter, Lins,

Schoner 2021)]
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Serial order demonstrated/enacted
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Conclusion

Mthe principles of DFT

M localist representations for stable states
M that may become unstable in a controlled way

M through the “condition of satisfaction”

M enable the autonomous generation of
sequences of mental states or action

B critical step toward higher cognition



Outlook

I”

Mare all neural states of the “intentiona
kind... with a CoS?

B “direction of fit”

Bfrontier: goals... true autonomy



