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Perceptually grounding language

human communication, in its simplest form, is 
about objects or events that are perceivable 
or reachable by action in a shared 
environment

“this cup is brown”



Perceptually grounding language

a phrase is perceptually grounded when the 
listener directs attention to the same object 
that the speaker is talking to   

joint attention: speaker and listener attends 
to the same object

“this cup is brown”



Perceptually grounding language

Grounding often engages forms of 
communication beyond language 

e.g., pointing (deictic code)

e.g. context 



Perceptually grounding language
the term “perceptual 
grounding” is not 
universally used in this 
sense, other terms 
include

“targeting” (Talmy)

 “referring’’

“grounding” is 
sometimes used to refer 
to how words come 
about in the evolution 
of a language



Perceptually grounding language

human communication about objects or 
events in a shared environment

generalizes to shared experiences, 
knowledge, intentions, etc



Spatial language

the simplest form of 
phrases entail relations or 
actions

“the cup to the right of the 
green book” directs 
perceptual grounding 
through spatial language

“he reaches for the cup” 
directs perceptual 
grounding through action 
language 



Spatial language

such phrases entail grammatical roles

in which a target object is related to a 
reference object

reference

target
the cup to the right of the 

green book



Spatial language

the speaker presupposes that the reference 
object can perceptually grounded by the 
listener (Grice)

reference

target
the cup to the right of the 

green book
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Fig. 1. The two directions of linking language to visual cognition: perceptual grounding (orange arrows) and
description generation (blue arrows). The language phrase that the model is representing here is “the red object
above the green object.” See text for description.

when in the activation field representing target locations (middle left) an activation peak is
positioned over the location of the red object that is above the green object. The activation
field representing reference object locations (middle right) has a peak at the location of that
green object. The activation pattern in the relational field (middle center) reflects the same tar-
get location now centered on the location of the reference object (the areas marked by white
ellipses correspond).

In description generation (blue arrows on the right of Fig. 1), the attentional selection of
objects in the scene is based on their salience and their match to spatial or movement relations.
In the figure, the red object on the right of the scene is brought into attention by salience. This

conceptual
structure

grounded 
representation

world

ground describe

“red above green”

“red above green”
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Representing conceptual structure
nodes stand for concepts by virtue of their (bi-
directional) connectivity to features spaces

property concepts, object concepts etc

[Tekülve, Schöner Cog Sci 2024 (in press)]



Representing conceptual structure

object categories represented by nodes may receive 
input from complex FF networks including DNN 

[Grieben, Schöner CogSci 2022]
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Representing relations

relational and action concepts are similarly 
perceptually grounded through reciprocal 
connectivity to relevant spaces

referencetarget

spatial relation match

ABOVE

BELOW

LEFT

RIGHT

[Sabinasz, Schöner Cog Neurodyn 2023]



Representing the arguments of 
relational/action concepts



Representing the arguments of 
relational/action concepts

in relations, object 
concepts play 
(grammatical) roles

here: reference, target

similar: agent, tool, … 

targetreference

“green to the right of red’’

3.3 Spatial transformations

(a) camera input

(b) spatial relation CoS field

(c) spatial relation CoD field

F .: Activation of the (b) spatial rela-
tion CoS field and the (c) spatial relation CoD
field. Both fields receive input representing
the relative spatial position of two objects, visi-
ble as bumps of activation to the left and right
of the center of the plots. Only the object on
the left overlaps with the spatial template 
   in the spatial relation CoS field.
If this objects was not in the scene, the bump
on the right would form a peak in the spatial
relation CoD field.

dimensions x and y.
Both fields match the input against spatial templates that repre-

sent relational concepts such as  or     (Fig-
ure 3.9). If the spatial relation CoS field forms a peak during such
a match, the model converged on a combination of target and ref-
erence object that fits a given or existing relation. e field is se-
lective and thus only allows for a single object to match any of the
relational templates. If the spatial relation CoD field forms a peak,
on the other hand, the current combination of target object and ref-
erence object candidates does not fit the relation. is triggers that
the process of matching objects against spatial relations is repeated
with a new target object. is mechanism is part of the process
organization system and will be explained in Section 3.5.

e spatial relation CoS field with activation uScs follows the
differential equation
τ Scsu̇Scs(x, y, t) =− uScs(x, y, t) + hScs + wξ · ξScs(x, y, t)

+ [kScs,Scs ∗ g(uScs)](x, y, t)

+

∫∫
dφ′dr′ ARD(φ′, r′, t)

BRD(φ− φ′, r − r′, t)

+
∑

i=1,...,NR

WRi(x, y) · g(uSPi(t))

+ wScs,SRI g(uSRI(t))
− wScs,SR g(uSR(t)),

(3.28)

where the third and fourth line formalize the steerable neural map-
ping, which is implemented as a convolution between

ARD(φ, r, t) = [kRC ∗ g(uRC)](x, y, t), (3.29)
the output of the relational candidates field (uRC), convolved with
a Gaussian kernel (kRC) and converted to polar coordinates and

BRD(φ, r, t) = [kROT ∗ g(uROT)](φ, r, t), (3.30)
the output of the rotation field (uROT), convolved with a Gaussian
kernel (kROT); this field will be explained later in this section. e
fifth line of Equation 3.28 formalizes input from an array of neu-
ral nodes, u⃗SP, that represent discrete relational concepts like 
   or . e meaning of the concepts is encoded
in the connection weights W⃗R(x, y). Please note that dim(W⃗R) =
dim(u⃗SP) = NR. is will be explored in more detail in Section 3.4.
e sixth line is input from the intention node of the ‘spatial rela-
tional field process’, which is part of the process organization system

59

[Sabinasz, Richter, Schöner: 
Cog Neurodyn 2023]



Role-filler binding

need different object 
concepts nodes for the 
different roles

joint representation of 
object and role 

targetreference

“green to the right of red’’

3.3 Spatial transformations

(a) camera input

(b) spatial relation CoS field

(c) spatial relation CoD field

F .: Activation of the (b) spatial rela-
tion CoS field and the (c) spatial relation CoD
field. Both fields receive input representing
the relative spatial position of two objects, visi-
ble as bumps of activation to the left and right
of the center of the plots. Only the object on
the left overlaps with the spatial template 
   in the spatial relation CoS field.
If this objects was not in the scene, the bump
on the right would form a peak in the spatial
relation CoD field.

dimensions x and y.
Both fields match the input against spatial templates that repre-

sent relational concepts such as  or     (Fig-
ure 3.9). If the spatial relation CoS field forms a peak during such
a match, the model converged on a combination of target and ref-
erence object that fits a given or existing relation. e field is se-
lective and thus only allows for a single object to match any of the
relational templates. If the spatial relation CoD field forms a peak,
on the other hand, the current combination of target object and ref-
erence object candidates does not fit the relation. is triggers that
the process of matching objects against spatial relations is repeated
with a new target object. is mechanism is part of the process
organization system and will be explained in Section 3.5.

e spatial relation CoS field with activation uScs follows the
differential equation
τ Scsu̇Scs(x, y, t) =− uScs(x, y, t) + hScs + wξ · ξScs(x, y, t)

+ [kScs,Scs ∗ g(uScs)](x, y, t)

+

∫∫
dφ′dr′ ARD(φ′, r′, t)

BRD(φ− φ′, r − r′, t)

+
∑

i=1,...,NR

WRi(x, y) · g(uSPi(t))

+ wScs,SRI g(uSRI(t))
− wScs,SR g(uSR(t)),

(3.28)

where the third and fourth line formalize the steerable neural map-
ping, which is implemented as a convolution between

ARD(φ, r, t) = [kRC ∗ g(uRC)](x, y, t), (3.29)
the output of the relational candidates field (uRC), convolved with
a Gaussian kernel (kRC) and converted to polar coordinates and

BRD(φ, r, t) = [kROT ∗ g(uROT)](φ, r, t), (3.30)
the output of the rotation field (uROT), convolved with a Gaussian
kernel (kROT); this field will be explained later in this section. e
fifth line of Equation 3.28 formalizes input from an array of neu-
ral nodes, u⃗SP, that represent discrete relational concepts like 
   or . e meaning of the concepts is encoded
in the connection weights W⃗R(x, y). Please note that dim(W⃗R) =
dim(u⃗SP) = NR. is will be explored in more detail in Section 3.4.
e sixth line is input from the intention node of the ‘spatial rela-
tional field process’, which is part of the process organization system
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red target
red reference

greenred
color

feature 
field

green target
green reference

[Sabinasz, Richter, Schöner: 
Cog Neurodyn 2023]
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referencetarget

spatial relation match

ABOVE

BELOW

LEFT

RIGHT

target reference

“green to the right of red’’

3.3 Spatial transformations

(a) camera input

(b) spatial relation CoS field

(c) spatial relation CoD field

F .: Activation of the (b) spatial rela-
tion CoS field and the (c) spatial relation CoD
field. Both fields receive input representing
the relative spatial position of two objects, visi-
ble as bumps of activation to the left and right
of the center of the plots. Only the object on
the left overlaps with the spatial template 
   in the spatial relation CoS field.
If this objects was not in the scene, the bump
on the right would form a peak in the spatial
relation CoD field.

dimensions x and y.
Both fields match the input against spatial templates that repre-

sent relational concepts such as  or     (Fig-
ure 3.9). If the spatial relation CoS field forms a peak during such
a match, the model converged on a combination of target and ref-
erence object that fits a given or existing relation. e field is se-
lective and thus only allows for a single object to match any of the
relational templates. If the spatial relation CoD field forms a peak,
on the other hand, the current combination of target object and ref-
erence object candidates does not fit the relation. is triggers that
the process of matching objects against spatial relations is repeated
with a new target object. is mechanism is part of the process
organization system and will be explained in Section 3.5.

e spatial relation CoS field with activation uScs follows the
differential equation
τ Scsu̇Scs(x, y, t) =− uScs(x, y, t) + hScs + wξ · ξScs(x, y, t)

+ [kScs,Scs ∗ g(uScs)](x, y, t)

+

∫∫
dφ′dr′ ARD(φ′, r′, t)

BRD(φ− φ′, r − r′, t)

+
∑

i=1,...,NR

WRi(x, y) · g(uSPi(t))

+ wScs,SRI g(uSRI(t))
− wScs,SR g(uSR(t)),

(3.28)

where the third and fourth line formalize the steerable neural map-
ping, which is implemented as a convolution between

ARD(φ, r, t) = [kRC ∗ g(uRC)](x, y, t), (3.29)
the output of the relational candidates field (uRC), convolved with
a Gaussian kernel (kRC) and converted to polar coordinates and

BRD(φ, r, t) = [kROT ∗ g(uROT)](φ, r, t), (3.30)
the output of the rotation field (uROT), convolved with a Gaussian
kernel (kROT); this field will be explained later in this section. e
fifth line of Equation 3.28 formalizes input from an array of neu-
ral nodes, u⃗SP, that represent discrete relational concepts like 
   or . e meaning of the concepts is encoded
in the connection weights W⃗R(x, y). Please note that dim(W⃗R) =
dim(u⃗SP) = NR. is will be explored in more detail in Section 3.4.
e sixth line is input from the intention node of the ‘spatial rela-
tional field process’, which is part of the process organization system
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coordinate frame 
centered on the 
reference object

relational concepts

patterned 
coupling

Core idea 
grounding 

relations in DFT



bring objects into 
foreground

make coordinate 
transformation

apply comparison 
operators
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Core idea for grounding spatial 
relations in DFT
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make coordinate 
transformation

apply comparison 
operators
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Core idea for grounding spatial 
relations in DFT



bring objects into 
foreground

make coordinate 
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Core idea for grounding spatial 
relations in DFT



“where is the 
green  object 
relative to the 
red object?”
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Abstract

How does the human brain link relational concepts to perceptual experience? For example, a speaker
may say “the cup to the left of the computer” to direct the listener’s attention to one of two cups on a
desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts
enable the attentional selection of objects in the visual array, and for the generation of descriptions of
the visual array using relational concepts. In the model, activation in neural populations evolves dynam-
ically under the influence of both inputs and strong interaction as formalized in dynamic field theory.
Relational concepts are modeled as patterns of connectivity to perceptual representations. These gen-
eralize across the visual array through active coordinate transforms that center the representation of
target objects in potential reference objects. How the model perceptually grounds or generates rela-
tional descriptions is probed in 104 simulations that systematically vary the spatial and movement
relations employed, the number of feature dimensions used, and the number of matching and non-
matching objects. We explain how sequences of decisions emerge from the time- and state-continuous
neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed
by the selection of new objects or the generation of new relational hypotheses. Its neural realism dis-
tinguishes the model from information processing accounts, its capacity to autonomously generate
sequences of processing steps distinguishes it from deep neural network accounts. The model points
toward a neural dynamic theory of higher cognition.
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Fig. 1. The two directions of linking language to visual cognition: perceptual grounding (orange arrows) and
description generation (blue arrows). The language phrase that the model is representing here is “the red object
above the green object.” See text for description.

when in the activation field representing target locations (middle left) an activation peak is
positioned over the location of the red object that is above the green object. The activation
field representing reference object locations (middle right) has a peak at the location of that
green object. The activation pattern in the relational field (middle center) reflects the same tar-
get location now centered on the location of the reference object (the areas marked by white
ellipses correspond).

In description generation (blue arrows on the right of Fig. 1), the attentional selection of
objects in the scene is based on their salience and their match to spatial or movement relations.
In the figure, the red object on the right of the scene is brought into attention by salience. This
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Figure 4: Grounding the phrase “the red object moving rightward” in a scene with a unique target. ‘Video’
panel: Movement direction of objects is denoted by gray arrows. ‘Target color’ and ‘target motion’ panels:
Activation of production nodes is shown by opaque bars, activation of memory nodes by transparent bars.
‘Color/space attention’ and ‘motion/space attention’ panels: Three-dimensional activation is projected
onto two-dimensional space for plotting.
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Figure 6: Generating a description of an object using a movement relation with respect to a second object.
See Figure 4 for details.
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Abstract

Resolving relational spatial phrases requires that a coherent
mapping emerges between a visual scene and a triad of two
objects and a relational term. We present a theoretical ac-
count that solves this problem based on neural principles. A
neural dynamic architecture represents perceptual information
in activation fields that make detection and selection deci-
sions through neural interaction. Activation nodes and their
connectivity to the perceptual fields represent concepts. Dy-
namic instabilities enable the autonomous sequential organi-
zation of the processing steps needed to resolve relational spa-
tial phrases. These include bringing visual objects into the at-
tentional foreground, performing spatial transformations, and
making matching decisions. We demonstrate how the neural
architecture may autonomously test different hypotheses to re-
solve relational spatial phrases. We discuss how this neural
process account relates to existing theoretical perspectives and
how to move beyond the entry point sketched here.
Keywords: spatial language; sequence generation; autonomy;
hypothesis testing; neural dynamics; Dynamic Field Theory

Introduction

Language enables humans to communicate about shared en-
vironments. For instance, I may use language to direct your
attention to an object in a visual scene. When several simi-
lar objects are visible such as in Fig. 1a, using object iden-
tity (“cup”) or feature (“red”) alone is not sufficient. A rela-
tional spatial phrase, for example “the red cup to the left of
the green cup”, resolves ambiguity in such situations. Even in
the scene in Fig. 1b, in which no object can be singled out by
feature reference, this phrase uniquely specifies one of them.
A typical relational phrase like the one above consists of a

(a) (b)

Fig. 1: Visual scenarios affording the use of spatial language.

target (the red cup) and a reference (the green cup), relative
to which a relational term (to the left) is applied. Interpret-
ing such a phrase may require that different pairs of objects
be examined. Psychophysical evidence from visual search
tasks suggests that this happens in sequence rather than in

parallel (Logan, 1994). Selecting the reference and target ob-
ject of such a pair also appears to happen sequentially. This
is suggested by characteristic shifts of attention found using
EEG measurements (Franconeri, Scimeca, Roth, Helseth, &
Kahn, 2012), eye-tracking (Burigo & Knoeferle, 2011), and
behavioral cuing (Roth & Franconeri, 2012).

The processing steps involved in interpreting a relational
spatial phrase include binding each object to its role, cen-
tering the reference frame on the reference object, mapping
the spatial term onto this reference frame, and assessing the
match of the target object with the spatial term (Logan &
Sadler, 1996). While such discrete processing steps appear
natural in information processing terms, they require an ex-
planation in neural systems. At the population level that is
relevant to behavior, neural activity evolves continuously in
time. The flow of activation is determined by the structure of
neural networks. Flexibility is thus an achievement in neural
processing, not a given. In previous work we have provided
the basis for realizing some of these processing steps in ac-
cordance with neural principles (Lipinski, Schneegans, San-
damirskaya, Spencer, & Schöner, 2012). This work is based
on the framework of Dynamic Field Theory (DFT; Schnee-
gans & Schöner, 2008), in which activation peaks are units of
representation. The model addresses the attentive selection
of target and reference objects and proposes a neural archi-
tecture that transforms the location of the target object into a
frame centered on the reference object. Spatial terms are en-
coded relative to that frame as patterned neural connections.
While the neural processes of bringing objects into the at-
tentional foreground and activating spatial terms unfold au-
tonomously, the sequential order of these different operations
is controlled through signals from outside the system.

In this paper we provide a fully autonomous neural dy-
namic architecture that generates sequences of processing
steps to interpret and generate relational spatial language.
Within the framework of DFT, we take inspiration from ear-
lier work on the autonomous generation of behavioral se-
quences (Sandamirskaya & Schöner, 2010; Richter, San-
damirskaya, & Schöner, 2012). The key idea is that elemen-
tary processing steps are characterized by certain aspects that
can be implemented in a neural system: The neural represen-
tation of an intention drives activation in those neural struc-
tures that are relevant for executing the processing step. The
resulting changes in activation states are detected through a
condition of satisfaction, which indicates the successful com-

“the red cup that is to the left 
of the green cup”

[Richter, Lins et al, CogSci 2014]



Fig. 4: Evolution of activation patterns for resolving a spatial phrase on the scene in Fig. 1b. Activation patterns are depicted
analogously to Fig. 3

Testing multiple hypotheses

We now demonstrate how the architecture can autonomously
test hypotheses and discard erroneous ones by resolving the
same phrase as above for the scene in Fig. 1b. Activation plots
are shown in Fig. 3, with additional fields that are relevant for
this more complex scenario.

As in the previous scenario, the spatial template is instan-
tiated and the potential reference objects are brought to the
attentional foreground. Faced with two green objects, the
reference field autonomously performs a selection decision,
forming a single peak for the lower green object (see snap-
shots at t1). Its location is also stored in the reference IoR
field. Note that the spatial template is visible as inhibitory
pattern in the relational CoD field at this time.

In snapshot t2, the positions of the two red objects have
been fed into the target candidates field. Their locations rel-
ative to the reference object are determined by the reference
frame shift and fed into both relational fields (CoS and CoD).

At t3, a peak forms in the relational CoD field but not in the
relational CoS field, since none of the target candidates is to
the left of the chosen reference object. This signals that target
selection has failed. The target candidates field and the ref-
erence field are inhibited, so that peaks in these field vanish.
The target and reference CoS nodes turn off, essentially reac-
tivating the associated intention nodes and restarting the task
from the beginning. However, the reference IoR field still re-
tains the memory of the previously selected reference object
location, and its inhibitory input prevents this location from
being selected again in the reference field.

At t4, the green object in the top right is established as a
new hypothesis for the reference. Subsequently, the architec-
ture identifies the correct target candidate left of that refer-
ence. The activation snapshot of the target response field at t6
shows the position of that selected target in the image.
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target (the red cup) and a reference (the green cup), relative
to which a relational term (to the left) is applied. Interpret-
ing such a phrase may require that different pairs of objects
be examined. Psychophysical evidence from visual search
tasks suggests that this happens in sequence rather than in

parallel (Logan, 1994). Selecting the reference and target ob-
ject of such a pair also appears to happen sequentially. This
is suggested by characteristic shifts of attention found using
EEG measurements (Franconeri, Scimeca, Roth, Helseth, &
Kahn, 2012), eye-tracking (Burigo & Knoeferle, 2011), and
behavioral cuing (Roth & Franconeri, 2012).

The processing steps involved in interpreting a relational
spatial phrase include binding each object to its role, cen-
tering the reference frame on the reference object, mapping
the spatial term onto this reference frame, and assessing the
match of the target object with the spatial term (Logan &
Sadler, 1996). While such discrete processing steps appear
natural in information processing terms, they require an ex-
planation in neural systems. At the population level that is
relevant to behavior, neural activity evolves continuously in
time. The flow of activation is determined by the structure of
neural networks. Flexibility is thus an achievement in neural
processing, not a given. In previous work we have provided
the basis for realizing some of these processing steps in ac-
cordance with neural principles (Lipinski, Schneegans, San-
damirskaya, Spencer, & Schöner, 2012). This work is based
on the framework of Dynamic Field Theory (DFT; Schnee-
gans & Schöner, 2008), in which activation peaks are units of
representation. The model addresses the attentive selection
of target and reference objects and proposes a neural archi-
tecture that transforms the location of the target object into a
frame centered on the reference object. Spatial terms are en-
coded relative to that frame as patterned neural connections.
While the neural processes of bringing objects into the at-
tentional foreground and activating spatial terms unfold au-
tonomously, the sequential order of these different operations
is controlled through signals from outside the system.

In this paper we provide a fully autonomous neural dy-
namic architecture that generates sequences of processing
steps to interpret and generate relational spatial language.
Within the framework of DFT, we take inspiration from ear-
lier work on the autonomous generation of behavioral se-
quences (Sandamirskaya & Schöner, 2010; Richter, San-
damirskaya, & Schöner, 2012). The key idea is that elemen-
tary processing steps are characterized by certain aspects that
can be implemented in a neural system: The neural represen-
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Resolving relational spatial phrases requires that a coherent
mapping emerges between a visual scene and a triad of two
objects and a relational term. We present a theoretical ac-
count that solves this problem based on neural principles. A
neural dynamic architecture represents perceptual information
in activation fields that make detection and selection deci-
sions through neural interaction. Activation nodes and their
connectivity to the perceptual fields represent concepts. Dy-
namic instabilities enable the autonomous sequential organi-
zation of the processing steps needed to resolve relational spa-
tial phrases. These include bringing visual objects into the at-
tentional foreground, performing spatial transformations, and
making matching decisions. We demonstrate how the neural
architecture may autonomously test different hypotheses to re-
solve relational spatial phrases. We discuss how this neural
process account relates to existing theoretical perspectives and
how to move beyond the entry point sketched here.
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hypothesis testing; neural dynamics; Dynamic Field Theory

Introduction

Language enables humans to communicate about shared en-
vironments. For instance, I may use language to direct your
attention to an object in a visual scene. When several simi-
lar objects are visible such as in Fig. 1a, using object iden-
tity (“cup”) or feature (“red”) alone is not sufficient. A rela-
tional spatial phrase, for example “the red cup to the left of
the green cup”, resolves ambiguity in such situations. Even in
the scene in Fig. 1b, in which no object can be singled out by
feature reference, this phrase uniquely specifies one of them.
A typical relational phrase like the one above consists of a
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Fig. 1: Visual scenarios affording the use of spatial language.

target (the red cup) and a reference (the green cup), relative
to which a relational term (to the left) is applied. Interpret-
ing such a phrase may require that different pairs of objects
be examined. Psychophysical evidence from visual search
tasks suggests that this happens in sequence rather than in

parallel (Logan, 1994). Selecting the reference and target ob-
ject of such a pair also appears to happen sequentially. This
is suggested by characteristic shifts of attention found using
EEG measurements (Franconeri, Scimeca, Roth, Helseth, &
Kahn, 2012), eye-tracking (Burigo & Knoeferle, 2011), and
behavioral cuing (Roth & Franconeri, 2012).

The processing steps involved in interpreting a relational
spatial phrase include binding each object to its role, cen-
tering the reference frame on the reference object, mapping
the spatial term onto this reference frame, and assessing the
match of the target object with the spatial term (Logan &
Sadler, 1996). While such discrete processing steps appear
natural in information processing terms, they require an ex-
planation in neural systems. At the population level that is
relevant to behavior, neural activity evolves continuously in
time. The flow of activation is determined by the structure of
neural networks. Flexibility is thus an achievement in neural
processing, not a given. In previous work we have provided
the basis for realizing some of these processing steps in ac-
cordance with neural principles (Lipinski, Schneegans, San-
damirskaya, Spencer, & Schöner, 2012). This work is based
on the framework of Dynamic Field Theory (DFT; Schnee-
gans & Schöner, 2008), in which activation peaks are units of
representation. The model addresses the attentive selection
of target and reference objects and proposes a neural archi-
tecture that transforms the location of the target object into a
frame centered on the reference object. Spatial terms are en-
coded relative to that frame as patterned neural connections.
While the neural processes of bringing objects into the at-
tentional foreground and activating spatial terms unfold au-
tonomously, the sequential order of these different operations
is controlled through signals from outside the system.

In this paper we provide a fully autonomous neural dy-
namic architecture that generates sequences of processing
steps to interpret and generate relational spatial language.
Within the framework of DFT, we take inspiration from ear-
lier work on the autonomous generation of behavioral se-
quences (Sandamirskaya & Schöner, 2010; Richter, San-
damirskaya, & Schöner, 2012). The key idea is that elemen-
tary processing steps are characterized by certain aspects that
can be implemented in a neural system: The neural represen-
tation of an intention drives activation in those neural struc-
tures that are relevant for executing the processing step. The
resulting changes in activation states are detected through a
condition of satisfaction, which indicates the successful com-
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Fig. 4: Evolution of activation patterns for resolving a spatial phrase on the scene in Fig. 1b. Activation patterns are depicted
analogously to Fig. 3

Testing multiple hypotheses

We now demonstrate how the architecture can autonomously
test hypotheses and discard erroneous ones by resolving the
same phrase as above for the scene in Fig. 1b. Activation plots
are shown in Fig. 3, with additional fields that are relevant for
this more complex scenario.

As in the previous scenario, the spatial template is instan-
tiated and the potential reference objects are brought to the
attentional foreground. Faced with two green objects, the
reference field autonomously performs a selection decision,
forming a single peak for the lower green object (see snap-
shots at t1). Its location is also stored in the reference IoR
field. Note that the spatial template is visible as inhibitory
pattern in the relational CoD field at this time.

In snapshot t2, the positions of the two red objects have
been fed into the target candidates field. Their locations rel-
ative to the reference object are determined by the reference
frame shift and fed into both relational fields (CoS and CoD).

At t3, a peak forms in the relational CoD field but not in the
relational CoS field, since none of the target candidates is to
the left of the chosen reference object. This signals that target
selection has failed. The target candidates field and the ref-
erence field are inhibited, so that peaks in these field vanish.
The target and reference CoS nodes turn off, essentially reac-
tivating the associated intention nodes and restarting the task
from the beginning. However, the reference IoR field still re-
tains the memory of the previously selected reference object
location, and its inhibitory input prevents this location from
being selected again in the reference field.

At t4, the green object in the top right is established as a
new hypothesis for the reference. Subsequently, the architec-
ture identifies the correct target candidate left of that refer-
ence. The activation snapshot of the target response field at t6
shows the position of that selected target in the image.
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coded relative to that frame as patterned neural connections.
While the neural processes of bringing objects into the at-
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tonomously, the sequential order of these different operations
is controlled through signals from outside the system.
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shows the position of that selected target in the image.
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Abstract

Resolving relational spatial phrases requires that a coherent
mapping emerges between a visual scene and a triad of two
objects and a relational term. We present a theoretical ac-
count that solves this problem based on neural principles. A
neural dynamic architecture represents perceptual information
in activation fields that make detection and selection deci-
sions through neural interaction. Activation nodes and their
connectivity to the perceptual fields represent concepts. Dy-
namic instabilities enable the autonomous sequential organi-
zation of the processing steps needed to resolve relational spa-
tial phrases. These include bringing visual objects into the at-
tentional foreground, performing spatial transformations, and
making matching decisions. We demonstrate how the neural
architecture may autonomously test different hypotheses to re-
solve relational spatial phrases. We discuss how this neural
process account relates to existing theoretical perspectives and
how to move beyond the entry point sketched here.
Keywords: spatial language; sequence generation; autonomy;
hypothesis testing; neural dynamics; Dynamic Field Theory

Introduction

Language enables humans to communicate about shared en-
vironments. For instance, I may use language to direct your
attention to an object in a visual scene. When several simi-
lar objects are visible such as in Fig. 1a, using object iden-
tity (“cup”) or feature (“red”) alone is not sufficient. A rela-
tional spatial phrase, for example “the red cup to the left of
the green cup”, resolves ambiguity in such situations. Even in
the scene in Fig. 1b, in which no object can be singled out by
feature reference, this phrase uniquely specifies one of them.
A typical relational phrase like the one above consists of a

(a) (b)

Fig. 1: Visual scenarios affording the use of spatial language.

target (the red cup) and a reference (the green cup), relative
to which a relational term (to the left) is applied. Interpret-
ing such a phrase may require that different pairs of objects
be examined. Psychophysical evidence from visual search
tasks suggests that this happens in sequence rather than in

parallel (Logan, 1994). Selecting the reference and target ob-
ject of such a pair also appears to happen sequentially. This
is suggested by characteristic shifts of attention found using
EEG measurements (Franconeri, Scimeca, Roth, Helseth, &
Kahn, 2012), eye-tracking (Burigo & Knoeferle, 2011), and
behavioral cuing (Roth & Franconeri, 2012).

The processing steps involved in interpreting a relational
spatial phrase include binding each object to its role, cen-
tering the reference frame on the reference object, mapping
the spatial term onto this reference frame, and assessing the
match of the target object with the spatial term (Logan &
Sadler, 1996). While such discrete processing steps appear
natural in information processing terms, they require an ex-
planation in neural systems. At the population level that is
relevant to behavior, neural activity evolves continuously in
time. The flow of activation is determined by the structure of
neural networks. Flexibility is thus an achievement in neural
processing, not a given. In previous work we have provided
the basis for realizing some of these processing steps in ac-
cordance with neural principles (Lipinski, Schneegans, San-
damirskaya, Spencer, & Schöner, 2012). This work is based
on the framework of Dynamic Field Theory (DFT; Schnee-
gans & Schöner, 2008), in which activation peaks are units of
representation. The model addresses the attentive selection
of target and reference objects and proposes a neural archi-
tecture that transforms the location of the target object into a
frame centered on the reference object. Spatial terms are en-
coded relative to that frame as patterned neural connections.
While the neural processes of bringing objects into the at-
tentional foreground and activating spatial terms unfold au-
tonomously, the sequential order of these different operations
is controlled through signals from outside the system.

In this paper we provide a fully autonomous neural dy-
namic architecture that generates sequences of processing
steps to interpret and generate relational spatial language.
Within the framework of DFT, we take inspiration from ear-
lier work on the autonomous generation of behavioral se-
quences (Sandamirskaya & Schöner, 2010; Richter, San-
damirskaya, & Schöner, 2012). The key idea is that elemen-
tary processing steps are characterized by certain aspects that
can be implemented in a neural system: The neural represen-
tation of an intention drives activation in those neural struc-
tures that are relevant for executing the processing step. The
resulting changes in activation states are detected through a
condition of satisfaction, which indicates the successful com-
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Mental mapping and inference

propositions

“There is a cyan object above a green object.”

“There is a red object to the left of the green object.”

“There is a blue object to the right of the red object.”

“There is an orange object to the left of the blue object.” 

inference

“Where is the blue object relative to the red object?”

[Ragni, Knauff, Psych Rev 2013]



[Kounatidou, Richter, Schöner, CogSci 2018]

Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
are denoted by blue diamonds. See text for details.

orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).



Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
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orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).
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Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
are denoted by blue diamonds. See text for details.

orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).

[Kounatidou, Richter, Schöner, CogSci 2018]
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Grounding nested phrases

“the tree to the right of the tree
that is below the lake and

above the house”

[Sabinasz, Schöner, TopiCS 2023;
Sabinasz, Richter, Schöner Cog Neurodyn 2023]



[Sabinasz, Richter, Schöner Cog Neurodyn 2023]
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[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

relation index

enables multiple 
instances of same 
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Neural representation of 
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[Sabinasz, Richter, Schöner Cog Neurodyn 2023]
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ridge overlaps with the concept. This activates the current
concept in the object concept readout field (d). An analo-

gous mechanism enables reading out property concepts.

The relationships that contain the selected object as a
target are read out through the target/relationship readout
field (f) which receives input from the target/relationship

Fig. 16 Interface between the
conceptual structure and the
grounding system to ‘‘read out’’
the currently selected object and
relations/actions. Adapted from
Sabinasz and Schöner (2022b)

Cognitive Neurodynamics
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[Sabinasz, Richter, Schöner Cog Neurodyn 2023]
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imposed through precondition nodes, which enable the

activation of the next step only when the previous step has
successfully terminated. More details about the individual

processes are laid out in Sabinasz and Schöner (2022b).

Figure 20 shows a time course of activation through
snapshots at discrete moments in time as the architecture

grounds the sentence ‘‘the blue ball approaches the big tree,

which is to the left of the lake and to the right of the house’’
in the scene shown in Fig. 18. Prior to the simulation, the

conceptual structure fields have already been filled, leading
to the activation pattern depicted in Fig. 15. Refer back to

Fig. 13 for looking up the object indices and relationship

indices assigned in this example phrase.
Grounding of object 3 (the lake). At time t2, the object

production field has selected object 3, reflecting a decision

to search for that object (the lake). The readout mechanism
has resulted in a peak on the LAKE concept in the object

concept readout field. By time t3, via the search mecha-

nism, the target field has formed a peak on the spatial
location of the lake in the target field. That peak reflects

that a candidate for object index 3 is present at that loca-
tion. It causes the CoS node of the select target candidate

Fig. 18 Grounding the phrase
‘‘the big tree which is to the left
of the lake and to the right of the
house’’ requires three grounding
processes, where the possibility
to ground the third (c) depends
on having grounded the first
(a) and the second (b) before,
and having remembered their
locations in a working memory

Fig. 19 The model architecture for sentence verification. Adapted from Sabinasz and Schöner (2022b)

Cognitive Neurodynamics
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Architecture for the perceptual 
grounding of conceptual structure
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Why are relations and actions 
important?

Lakoff and Johnson 1980; 1999: Metaphor

Lifting embodied/grounded concepts to language 
and thinking more generally… three basic concepts

spatial relations… 

path.. actions

container relations 



Conclusion

DFT on path to higher cognition 

compositionality 

systematicity

productivity


