DFT coupling among higher-dimensional fields

Gregor Schöner Institute for Neural Computation (INI) <u>dynamicfieldtheory.org</u>

Central idea: DFT reaches higher cognition by combining

- I Space: fields representation lowdimensional features spaces
- 2 Dynamics: inducing selective peaks through the instabilities ...
- 3 Coupling fields that span different lowdimensional feature spaces
- (4 Autonomous sequence generation)

Central idea: DFT reaches higher cognition by combining

- I Space: fields representation lowdimensional features spaces we covered 1+2
- 2 Dynamics: inducing selective peaks through the instabilities
- 3 Coupling fields that span different lowdimensional feature spaces
- (4 Autonomous sequence generation)

we will cover 3 later

Roadmap Foundations 2: Space-time coupling

Background: different notions of binding
Joint representations and coupling patterns
Binding through space/ordinal dimension
Coordinate transforms

Intuition for "binding"

red cutter horizontally aligned

where is the red cutter?

where is the red cutter?

what was here?

the red cutter

Binding

classical notion: features shape, color, orientation, and location are all "bound" together..

- notion that fea an object are bound...
- (could be also simply due to the fact that objects are localized, so features are bound to a location)

the round object is blue

[Faubel, 2008]

Binding to categories

the "S" is green

CUOSL

Such binding is flexible

feature combinations never seen before may be bound

mis-bindings may occur in "illusory conjunctions" (a)

yellow **blue**

I) scene presented, then

removed

- 2) report first the numbers (tosigenerate a delay)
- **X** 3) then report object features (shape, open/ closed, color)

[Treisman, 1998]

Treisman's Feature Integration Theory (FIT)

- "binding through space"
- combines neural notions (attention, feature maps)
- with information processing notions (files store feature combinations)

[Treisman, 1998]

Binding in higher cognition: Vector Symbolic Architectures (VSA)

concepts represented by activation vectors:

 $x_{\text{John}}, x_{\text{Mary}}, \dots$

y_{lover}, y_{beloved}

[Levy, Gayler, 2008]

Binding in VSA

represent "John loves" by binding x_{John} to y_{LOVER}

e.g. as a direct product

[Levy, Gayler, 2008]

Binding in DFT

- we will consider different forms of binding
- and the processes that bring these about, and make use of bindings
- these notions are not perfectly aligned with the classical notions
- but provide, in some cases, a neural process account of classical notions

Roadmap Foundations 2: Space-time coupling

Background: different notions of binding
Joint representations and coupling patterns
Binding through space/ordinal dimension
Coordinate transforms

Joint representations: "anatomical" binding

enables cognitive operations by

- coupling different fields over different low-dimensional spaces
- and using the dynamic instabilities to create peaks/ operate on peaks

Joint representations of different feature dimensions

Based on neurons that are tuned to multiple different feature dimensions

example: receptive field + direction tuning
 => combines visual space and orientation

[Hubel, Wiesel, 1962]

Joint space-feature representation

- In a joint representation, localized peaks represent instances in which the different features dimensions are "anatomical bound"
- fixed: need the neural substrate every possible bound state

[Schneegans et al., Ch 5 of DFT Primer, 2016]

Extract features: unbinding

projecting to lowerdimensional fields by summing along the marginalized dimensions

contraction mapping

[Schneegans et al., Ch 5 of DFT Primer, 2016]

Contraction coupling

[Sabinasz, Richter, Schöner, Cog. Neurodyn. 2023]

Bind features

project lower-dimension field onto higherdimensional field: expansion mapping

Bind features

=> bind individual features into bound (joint) representations

enables the generation of mental maps

[Schneegans et al., Ch 5 of DFT Primer, 2016]

Expansion coupling

[Sabinasz, Richter, Schöner, Cog. Neurodyn. 2023]

Coupling patterns used later

one-to-one mapping

[Sabinasz, Richter, Schöner, Cog. Neurodyn. 2023]

Binding problem

- this binding operation runs into the binding problem
- solution: bind one object at a time
- => attentional bottleneck

[Schneegans et al., Ch 5 of DFT Primer, 2016]

Cued selection

- an operation that uses joint and individual representations
- combining expansion and contraction

[Schneegans et al., Ch 5 of DFT Primer, 2016]

Role-filler binding

in relational/action phrases, concepts appear in roles:

e.g. target, reference, agent, tool, ...

[Sabinasz, Richter, Schöner: Cog Neurodyn 2023]

Role-filler binding

color concepts... grounded in feature fields

- roles: reference, target, agent, tool, ...

 - joint representation of roles and concepts

[Sabinasz, Richter, Schöner: Cog Neurodyn 2023]

Roadmap Foundations 2: Space-time coupling

Background: different notions of binding
Joint representations and coupling patterns
Binding through space/ordinal dimension
Coordinate transforms