Evidence for DFT

Gregor Schöner

DFT as a theoretical language

- DFT was developed as a theoretical language that enables "discoveries": uncovering laws of behavior and of their neural basis...
- In fact, the foundational principles were developed in close theory-experiment collaboration ... and thus reflected regularities observed phenomenologically

Core DFT principles

the core principles of DFT

- continuous, metric spaces that span possible percepts, possible actions, and possible mental states
- time continuous evolution of neural activation structured by attractor states that are localized activation peaks...
- instabilities as the basis for change ...

Core DFT principles

- give rise to typical experimental signatures and hypotheses
 - metric effects: distances between potential states matter
 - effects of timing: time matters, spatio-temporal covariation
 - instabilities: it matters how far a state is from becoming unstable...

Core DFT principles

explaining behavioral signatures in terms of the underlying dynamics

so that parameters of the dynamics reflect experimental conditions...

(I) Detection instability

- self-stabilized peaks are macroscopic neuronal states, capable of impacting on down-stream neuronal systems
- detection: peaks emerge from bistable regime...
 which stabilizes detection decisions
- [as contrasted to accounts for detection in Signal Detection Theory in which microscopic differences in neuronal activation around a threshold make the decision]

Predict: hysteresis

- detection depends on the prior state of activation
- and thus on the history of activation/stimulation

Predict: hysteresis

- in psychophysics, there is a wealth of hysteresis phenomena..
- these have not always been taken seriously...
- e.g. ascribed to response bias/decision inertia in the face of uncertainty

Apparent motion

the basis of movies... sequences of images creates visual motion if space-time relations are right..

[real motion perception is related due to transient detectors]

Korte's laws: distance/ time relationships supporting motion

perceptual uncertainty: issues of judgement...

elements of contrast alternate in location

motion arises if distance/timing is right

[Hock Schöner: Seeing and Perceiving 2010]

Generalized apparent motion

generalized apparent motion

motion arises at the same distance/timing as contrast is varied

[Hock Schöner: Seeing and Perceiving 2010]

Detection as BRLC is varied

Frame 1	Lb	L1	L2	
Frame 2	Lb	L2	• L1	
Frame 3	Lb	 L1 I 	L2	

$$Lm = \frac{L1 + L2}{2}$$

Background-Relative		L1	-	L2
Luminance Change	=			
(BRLC)		Lm	-	Lb

Hysteresis as BRLCS is varied

response bias is minimized in the modified method of limits [stimulus sequence ends unpredictably at different final BRLC levels]

H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173–195

Contrast detection

detection of elements of contrastdifferent elements of contrast interact

Journal of Vision (2023) 0(0):08639, 1-28

The stabilization of visibility for sequentially presented, low-contrast objects: Experiments and neural field model

Howard S. Hock

Gregor Schöner

01

Department of Psychology and the Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA

> Institute for Neural Computation, Ruhr-Universität Bochum, Bochum, Germany

Base phenomenon

detect a probe element of contrast in the absence/presence of a flanker object

Base phenomenon

if the flanker object is high in contrast, it inhibits probe detection

if the flanker object is low in contrast, it facilitates probe detection

Experimental Results

ISI

The facilitatory effect is sustained through interstimulus intervals (ISI) up to 800 ms (or longer)

ISI

Bistability

near critical contrast, detection is stochastic from trial to trial, but persists once established over repeated presentations

detection for decreasing vs increasing probe contrast

even stronger for short presentations (frame duration 104 ms)

Loss of stability

detection at end of hysteresis is unstable

repeating final probe contrast level 4 times

Adaptation

exposure to contrast before descending arm of hysteresis reduces detection

repeating initial probe contrast level 4 times

DFT account for base phenomenon

within a neural dynamic field

- at low contrast, only the excitatory is above threshold, leading to excitatory interaction=facilitation
- at hight contrast, the inhibitory layer is above threshold, leading to inhibitory interaction=suppression

Base phenomenon

Experimental Results

ISI

Detection in DFT

A Sub-threshold activation

B Above-threshold activation

Bistability

repeating final probe contrast level 4 times

repeating initial probe contrast level 4 times

(2) Selection decisions

Selection decisions are stabilized by bistability

Behavioral signatures of selection decisions

- in most experimental situations, the correct selection decision is cued by an *imperative signal* leaving no actual freedom of choice to the participant (only the freedom of error)
- when performance approaches chance level, this approximates free choice

reasons are experimental (uncertainty, strategies...)

"free" choice without imperative signal

selecting a new saccadic location

[O'Reagan et al., 2000]

saccadic selection

[after: Ottes et al., Vis. Res. 25:825 (85)]

[after Kopecz, Schöner: Biol Cybern 73:49 (95)]
saccadic selection

- in reduced visual environment, selections become relatively reproducible...
- selection decisions depend on metrics of visual stimuli
 - averaging vs. selection

saccadic selection

time course of saccadic selection:

transition from averaging to selection

[Ottes, Van Gisbergen, Eggermont, 1985]

saccadic selection

understanding the time course of selection requires a re-examination of the theory

... so far we assumed

that a single population of activation variable mediates both the excitatory and the inhibitory coupling required to make peaks attractors

But: Dale's law

says: every neuron forms with its axon only one type of synapse on the neurons it projects onto

and that is either excitatory or inhibitory

2 layer neural fields

- inhibitory coupling is mediated by inhibitory interneurons that
 - are excited by the excitatory layer
 - and in turn inhibit the inhibitory layer

[chapter 3 of the book]

2 layer Amari fields

 σ

 σ

with projection kernels

$$k_{uu}(x-x') = c_{uu} \cdot \exp\left(-\frac{(x-x')^2}{2\sigma_{uu}^2}\right)$$

и

Implications

- the fact that inhibition arises only after excitation has been induced has observable consequences in the time
 a course of decision making:
 - initially input-dominated
 - early excitatory interaction
 - late inhibitory interaction

[figure:Wilimzig, Schneider, Schöner, Neural Networks, 2006]

time course of selection

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]

=> early fusion, late selection

[figure:Wilimzig, Schneider, Schöner, Neural Networks, 2006]

Selection decisions in the reaction time (RT) paradigm

The task set

is the critical factor in such studies of selection: which perceptual/action alternative/choices are available...

e.g., how many choices

e.g., how likely is each choice

e.g., how "easy" are the choices to recognize/perform

because the task set is known to the participant prior to the presentation of the imperative signal, one may think of the task set as a "preshaping" of the underlying representation (pre=before the decision)

notion of preshape

movement parameter

weak preshape in selection

specific (imperative) input dominates and drives detection instability

[Wilimzig, Schöner, 2006]

parameter, x

using preshape to account for classical RT data

metric effect

predict faster response times for metrically close than for metrically far choices

[from Schöner, Kopecz, Erlhagen, 1997]

experiment: metric effect

[McDowell, Jeka, Schöner]

[from Erlhagen, Schöner: Psych. Rev. 2002]

[from McDowell, Jeka, Schöner, Hatfield, 2002]

Time course of selection decisions: Behavioral evidence for the graded and continuous evolution of decision

> timed movement initiation paradigm

[Ghez and colleagues, 1988 to 1990's]

[Favilla et al. 1989]

Experimental results of Henig et al

theoretical account for Henig et al.

Experimental results of Henig et al

[Erlhagen, Schöner. 2002, Psychological Review 109, 545–572 (2002)]

short SR interval: observe preshape

long SR interval: observe stimulus-defined movement plan

(3) Working memory as sustained activation

activation peak induced by input

remains stable after input is removed

Working memory as sustained peaks

WM is marginally stable state: it is not asymptotically stable against drift within the low-dimensional space

=> empirically real..?

"space ship" task probing spatial working memory

[Schutte, Spencer, JEP:HPP 2009]

DFT account of repulsion: inhibitory interaction with peak representing landmark

[Simmering, Schutte, Spencer: Brain Research, 2007]

visual working memory has capacity limits

capacity based on the number of objects...

about 4

probed by change detection, free recall

[Luck, Vogel, 1997]

DFT account of WM capacity

fundamentally caused by accumulation of inhibitory interaction across peaks

=> generic to DFT

WM capacity depends on interaction

capacity increases across development

consistent with "spatial precision hypothesis"... interaction becomes more excitatory/local over development

[Simmering 2010]

Change detection

Same/Different

[Johnson, et al. 2009]

DFT account for change detection

separation between perceptual and memory function
3 layer model

3 layer model

$$\begin{aligned} \tau \dot{u}(x,t) &= -u(x,t) + h_u + S(x,t) + \int dx' \ c_{uu}(x-x') \ \sigma(u(x',t)) \\ &- \int dx' \ c_{uv}(x-x') \ \sigma(v(x',t)) + \int dx' \ c_{uw}(x-x') \ \sigma(w(x',t)) \\ \tau \dot{v}(x,t) &= -v(x,t) + h_v \\ &+ \int dx' \ c_{vu}(x-x') \ \sigma(u(x',t)) + \int dx' \ c_{vw}(x-x') \ \sigma(w(x',t)) \\ \tau \dot{w}(x,t) &= -w(x,t) + h_w + \int dx' \ c_{ww}(x-x') \ \sigma(w(x',t)) \\ &- \int dx' \ c_{wv}(x-x') \ \sigma(v(x',t)) + \int dx' \ c_{wu}(x-x') \ \sigma(u(x',t)) \end{aligned}$$

DFT model of change detection

[Johnson, Spencer, Schöner: New Ideas in Psychology 2008]

Experiment: metric effects in VWM

[Johnson, Spencer, Luck, Schöner: Psychological Science 2008]

- generate the categorical "answer" by two competing nodes
- based on the "hidden" go-signal in the task

Feature Dimension

 2) change detection in "same" trial

Close Item Tested Far Item Tested $\parallel \mid$ ≣ 2) change Peak in Perceptual Field No Peak in detection in Drives "Diff" Node Perceptual Field D 0 0 "different" trial Peaks in VWM Peaks in VWM Drive "Same" Node Drive "Same" Node 0 0

predict better change detection when items are metrically closer !

Metric effect

- close metric separation: peaks weakened by overlapping inhibition
- Iess inhibition in perceptual layer
- reduced threshold for change detection

Feature Dimension

[Johnson, Spencer, Luck, Schöner: Psychological Science 2008]

Experimental confirmation

> predict more sensitive change detection for item that are metrically close!

[Johnson, Spencer, Luck, Schöner: Psychological Science 2008]

Piaget's A not B paradigm: "out-of-sight -- out of mind"

Toyless variant of A not B task

[Smith, Thelen et al.: Psychological Review (1999)]

Toyless variant of A not B: essentially a selection decision task!

[Smith, Thelen et al.: Psychological Review (1999)]

[Thelen, et al., BBS (2001)]

Instabilities

- detection: forming and initiating a movement goal
- selection: making sensori-motor decisions
- (learning: memory trace)
- boost-driven detection: initiating the action
- memory instability: old infants sustain during the delay, young infants do not

Instabilities

- detection: forming and initiating a movement goal
- selection: making sensori-motor decisions
- (learning: memory trace)
- boost-driven detection: initiating the action
- memory instability: old infants sustain during the delay, young infants do not

movement parameter

Instabilities

- detection: forming and initiating a movement goal
- selection: making sensori-motor decisions
- (learning: memory trace)
- boost-driven detection: initiating the action
- memory instability: old infants sustain during the delay, young infants do not

in spontaneous errors, activation arises at B on an A trial

 which leads to correct reaching on
B trial

because reaches to B on A trials leave memory trace at B

=> DFT is a neural process model

that makes the decisions in each individual trial, by amplifying small differences into a macroscopic stable state

and that's how decisions leave traces, have consequences

Decisions have consequences

a spontaneous error doubles probability to make the spontaneous error again

[Dineva, Schöner: Connection Science 2018]

Experimental signatures of DFT

- metric effects: distances between potential states matter
- effects of timing: time matters, spatiotemporal co-variation
- instabilities: it matters how far a state is from becoming unstable...