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DFT as a theoretical language 

DFT was developed as a theoretical language 
that enables “discoveries”: uncovering laws 
of behavior and of their neural basis… 

in fact, the foundational principles were 
developed in close theory-experiment 
collaboration … and thus reflected 
regularities observed phenomenologically 



Core DFT principles

the core principles of DFT 

continuous, metric spaces that span possible percepts, 
possible actions, and possible mental states 

time continuous evolution of neural activation 
structured by attractor states that are localized 
activation peaks… 

instabilities as the basis for change …



Core DFT principles

give rise to typical experimental signatures 
and hypotheses

metric effects: distances between potential states matter 

effects of timing: time matters, spatio-temporal co-
variation

instabilities: it matters how far a state is from becoming 
unstable… 



Core DFT principles

explaining behavioral signatures in terms of 
the underlying dynamics

so that parameters of the dynamics reflect experimental 
conditions… 



(1) Detection instability

self-stabilized peaks are macroscopic neuronal 
states, capable of impacting on down-stream 
neuronal systems

detection: peaks emerge from bistable regime… 
which stabilizes detection decisions 

[as contrasted to accounts for detection in Signal 
Detection Theory in which microscopic differences 
in neuronal activation around a threshold make the 
decision]



Predict: hysteresis

detection depends on the 
prior state of activation

and thus on the history of 
activation/stimulation 

time, t

u(t)

detection 
instability

reverse
detection 
instability



in psychophysics, there is a wealth of hysteresis 
phenomena..

these have not always been taken seriously… 

e.g. ascribed to response bias/decision inertia in the 
face of uncertainty 

Predict: hysteresis



Apparent motion

Korte’s laws: distance/
time relationships 
supporting motion

perceptual uncertainty: 
issues of judgement… 

[Hock Schöner: Seeing and Perceiving 2010]
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hood�of�a�switch�for�the�motion�quartet�but�that�random
fluctuations�in�activation�are�the�agent�for�the�switch.
Hence,�differential�adaptation�of�the�perceptual�alterna-
tives�is�not�necessary�for�perceptual�switching.2 It�can�be
concluded�from�these�studies�that�adaptation�contributes
to�but�does�not�provide�a�sufficient�account�of�perceptual
switching�for�bistable�stimuli.

Random�Noise�and�Switching
In�signal�detection�theory�(Green�&�Swets,�1966),�the

presence�of�random�noise�is�treated�as�a�problem�in�the�de-
tection�of�monostable�stimuli�that�produce�activation�lev-
els�of�the�same�order�of�magnitude�as�the�random�fluctu-
ations�in�activation�in�which�they�are�embedded.�Such
approaches,�however,�do�not�address�random�influences
on�the�perception�of�bistable�stimuli,�which�typically�en-
tail�stimulus-initiated�activation�levels�that�are�much
greater�in�magnitude�than�the�noise.�(At�issue�is�which�of
two�possible�patterns�is�formed�for�a�bistable�stimulus,�not
the�detectability�of�the�patterns’�attributes.)�The�signifi-

cance�of�random�influences�on�activation�is�particularly
evident�for�the�bistable�motion�quartet�when�stimulus-
initiated�activation�is�very�similar�for�both�horizontal�and
vertical�motions�(at�an�aspect�ratio�slightly�greater�than
1.0;�Chaudhuri�&�Glaser,�1991).�Then,�even�very�small
random�perturbations�would�change�the�relative�activation
of�the�two�alternatives�from�one�moment�to�the�next.�

At�first�glance,�representing�the�activation�of�a�detector
(u)�by�the�additive�combination�of�a�deterministic�contri-
bution�from�the�stimulus�(S )�and�a�stochastic�contribution
from�random�perturbations�(N )�might�seem�sufficient�to
account�for�the�bistability�of�pattern�formation�when�the
horizontal�and�the�vertical�motions�of�the�motion�quartet
are�equally�stimulated.�However,�it�can�be�seen�in�Figure�2A
that�if�this�were�the�case,�switches�based�on�whether�hor-
izontal�or�vertical�is�more�activated�would�be�too�rapid�to
account�for�the�persistence�of�horizontal�or�vertical�mo-
tion�that�characterizes�perception�during�the�extended�in-
tervals�during�which�there�are�no�switches.�This�would�be
the�case�even�if�there�was�mutual�inhibition�between�the

Figure�1.�(A)�Two�frames�of�a�monostable,�translational�apparent�mo-
tion�stimulus�for�which�only�one�percept�is�possible.�(B)�Two�frames�of
a�bistable,�motion�quartet�stimulus�for�which�two�percepts�are�possible.

elements of 
contrast 

alternate in 
location

motion arises if 
distance/timing 

is right

the basis of movies… sequences of images creates visual 
motion if space-time relations are right.. 

[real motion perception is related due to transient detectors]



Generalized apparent motion

generalized 
apparent motion

motion arises at 
the same 
distance/timing as 
contrast is varied 

Generalized Apparent Motion

(Johansson, 1950)
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Detection as BRLC is varied



Hysteresis as BRLCS is varied

response bias is minimized in the modified method of limits 
[stimulus sequence ends unpredictably at different final BRLC 
levels]

184 H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173–195

Figure 5. Hysteresis effect observed by gradually increasing or gradually decreasing the background
relative luminance contrast (BRLC) for a participant in Hock et al.’s (1997) third experiment. The
proportion of trials with switches from the perception of motion to the perception of nonmotion, and
vice versa, are graphed as a function of the BRLC value at which each ascending or descending
sequence of BRLC values ends. (Note the inversion of the axis on the right.)

which there were switches during trials with a particular end-point BRLC value
was different, depending on whether that aspect ratio was preceded by an ascend-
ing (vertical axis on the left side of the graph) or a descending sequence of BRLC
values (the inverted vertical axis on the right side of the graph). For example, when
the end-point BRLC value was 0.5, motion continued to be perceived without a
switch to non-motion for 90% of the descending trials, and non-motion continued
to be perceived without a switch to motion for 58% of the ascending trials. Percep-
tion therefore was bistable for this BRLC value and other BRLC values near it; both
motion and non-motion could be perceived for the same stimulus, the proportion of
each depending on the direction of parameter change. It was thus confirmed that
the hysteresis effect obtained for single-element apparent motion was indicative of
perceptual hysteresis, and was not an artifact of ‘inferences from trial duration’.

7. Near-Threshold Neural Dynamics

The perceptual hysteresis effect described above indicates that there are two stable
activation states possible for the motion detectors stimulated by generalized ap-
parent motion stimuli, one suprathreshold (motion is perceived) and the other sub-
threshold (motion is not perceived). Because of this stabilization of near-threshold
activation, motion and non-motion percepts both can occur for the same stimu-
lus (bistability), and both can resist random fluctuations and stimulus changes that
would result in frequent switches between them.

7.1. Why Stabilization Is Necessary

Whether an individual detector is activated by a stimulus or not, a random per-
turbation will with equal probability increase or decrease its activation. Assume it



Contrast detection

detection of elements of contrast 

different elements of contrast interact 
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The stabilization of visibility for sequentially presented,
low-contrast objects: Experiments and neural field model
Howard S. Hock Department of Psychology and the Center for Complex
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In any environment, events transpire in temporal
sequences. The general principle governing such
sequences is that each instance of the event is
influenced by its predecessors. It is shown here that this
principle is true for a fundamental aspect of visual
perception: visibility. A series of nine psychophysical
experiments and associated neural dynamic simulations
provide evidence that two non-stimulus factors,
self-excitation and short-term memory, stabilize the
visibility of a simple low-contrast object (a line segment)
as it moves over a sequence of unpredictable locations.
Stabilization was indicated by the very low probability of
visible-to-invisible switches, and dependence on
preceding visibility states was indicated by hysteresis as
the contrast of the object was gradually decreased or
increased. The contribution of self-excitation to
stabilization was indicated by increased
visible-to-invisible switching (decreased hysteresis)
following adaptation of the visibility state, and the
contribution of memory to stabilization was indicated by
visibility “bridging” long blank intervals separating each
relocation of the object. Because of the unpredictability
of the relocations of the object, its visibility at one
location pre-shapes visibility at its next location via
persisting subthreshold activation of detectors
surrounding the low-contrast object. All effects were
modeled, including contributions from adaptation and
recurrent inhibition, with a single set of parameter
values.

Introduction
Maintaining the visibility of near-threshold,

low-contrast objects is an ongoing challenge to the
visual system. Small di!erences in background-relative
luminance contrast can determine whether an object
is visible or not, and random "uctuations in detector
activation potentially result in the visibility of

low-contrast objects hovering around the visibility
threshold, stochastically switching back and forth
between visibility and invisibility. Further challenges
to the stabilization of visibility come from sequential
changes in the retinal location of low-contrast objects
(for example, as a result of a series of micro-saccades)
(e.g., Ratli! & Riggs, 1950), momentary interruptions
in stimulation (for example, as a result of the object’s
temporary occlusion by another object), and the
suppressive e!ect of adaptation on visibility (e.g.,
Hammett, Snowden, & Smith, 1994). In order for
stabilization to be fully realized, the visibility of a
low-contrast object must carry-forward in time despite
random "uctuations in detector activation, random
changes in retinal location, and interruptions in
stimulation. Perception at near-threshold contrast levels
would be severely impaired were it not for processes that
stabilize and maintain visibility over time and space.
The current study has identi#ed two such processes:

Self-excitation—When stimulus-initiated activation
approaches the visibility threshold, visibility is stabilized
by excitatory interactions among activated detectors.
Such self-excitation boosts activation su$ciently above
the visibility threshold to minimize the de-stabilizing
e!ect of random "uctuations. Activation remains
below the visibility threshold when random "uctuations
prevent stimulus-initiated activation from reaching
levels at which excitatory interactions are elicited.
The evolution of these alternative activation states is
illustrated in the two panels of Figure 1.

Short-term memory—Low-pass temporal #ltering
of detector activation lays down a memory trace that
increases detector activation after an object has been
presented. This subthreshold memory trace increases
the likelihood that visibility will be restored when the
object reappears. As illustrated in Figure 1B, detector
activation would quickly return to the no-stimulus
resting level if it were not for the memory trace. These
processes, which stabilize suprathreshold detector

Citation: Hock, H. S., & Schöner, G. (2023). The stabilization of visibility for sequentially presented, low-contrast objects: Experi-
ments and neural field model. Journal of Vision, 0(0):08639, 1–28, https://doi.org/10.1167/jov.0.0.08639.

https://doi.org/10.1167/jov.0.0.08639 Received December 31, 2022; published xx 0, 2023 ISSN 1534-7362 Copyright 2023 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.



Base phenomenon

detect a probe element of contrast in the 
absence/presence of a flanker object

A Experiment 1

Object Condition Baseline Condition

Object Probe Marker Probe

or

Object Flanker ProbeFlanker Flanker

or

ProbeMarkerFlanker Flanker Flanker

Frame 2Frame 1 Frame 3
Object Condition
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C Experiment 3
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Base phenomenon
if the flanker object is high in contrast, it 
inhibits probe detection

if the flanker object is low in contrast, it 
facilitates probe detection

A Low contrast objectBHigh contrast object
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ISI
The facilitatory effect is sustained through 
interstimulus intervals (ISI) up to 800 ms (or longer)
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Bistability
near critical contrast, detection is stochastic 
from trial to trial, but persists once established 
over repeated presentations

P = 0.04

P = 0.08

P = 0.12
P = 0.16
P = 0.20

A Experimental Results
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Hysteresis

detection for decreasing vs increasing probe contrast

Frame 4
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Hysteresis

A Experimental Results
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Hysteresis
even stronger for short presentations (frame 
duration 104 ms)

A Experimental Results
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Loss of stability

detection at end of hysteresis is unstable
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Adaptation
exposure to contrast before descending arm of 
hysteresis reduces detection 
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DFT account
2-layer neural 
dynamic field

input with Hebbian 
adaptation

memory trace in 
excitatory field

very slow colored 
noise on resting level

=> fit all 
experiments form 
single parameter set

stimulus input

excitatory field

inhibitory field

self-
excitation

adaptation

inhibition

memory
trace

+



DFT account for 
base phenomenon

within a neural dynamic field 

at low contrast, only the 
excitatory is above threshold, 
leading to excitatory 
interaction=facilitation

at hight contrast, the 
inhibitory layer is  above 
threshold, leading to 
inhibitory 
interaction=suppression
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Base phenomenon
A Low contrast objectBHigh contrast object
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ISI
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Detection in DFT
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P = 0.04

P = 0.08

P = 0.12
P = 0.16
P = 0.20
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Hysteresis
A Experimental Results
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(2) Selection decisions
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Selection decisions are stabilized by bistability 



Behavioral signatures 
of selection decisions

in most experimental situations, the correct selection 
decision is cued by an imperative signal leaving no actual 
freedom of choice to the participant (only the freedom 
of error)

when performance approaches chance level, this 
approximates free choice

reasons are experimental (uncertainty, strategies… )



“free” choice without imperative signal

selecting a new saccadic location

Analysis of the eye movement trace may allow us to understand why
changes are so hard to detect and what is the origin of the difference between
the Central and Marginal Interest cases.

Eye Movement Measures

Figure 2 shows a typical eye movement scanning pattern for a picture. It is seen
that even though the observer was looking at the picture for 48 sec, and search-
ing actively for possible changes that might occur anywhere in the picture, the
eye continued to follow a surprisingly stereotyped, repetitive, scanpath in
which large areas of the picture are never directly fixated. Similar observations
were made by Yarbus (1967) and other authors, who observed that many por-
tions of a picture are never directly fixated, and that the particular scanpath that
is used depends on what the observer is looking for in the picture.

Could this be the reason why some changes are not noticed? Could it be that
those cases when the change is missed correspond to cases where the scanpath
happens not to include the change location? This hypothesis might explain the
difference between the MI and CI changes: Thus, it might be that MI locations,
being less “interesting” to observers, tend to be less likely to be included in the
scanpath than CI locations.

198 O’REGAN ET AL.

FIG. 2. Typical scanpath while a subject searched for changes. The original picture was in colour. The
change that occurred in this picture was a vertical displacement of the railing in the background to the
level of the man’ s eyes. In this record, the change was detected at the moment that the observer blinked
for the fourth time. The positions of the eye when the blinks occurred are shown as white circles. The
last, “effective” blink, marked “E”, occurred when the eye was in the region of the bar.

[O’Reagan et al., 2000]
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saccadic selection

in reduced visual environment, selections 
become relatively reproducible… 

selection decisions depend on metrics of visual 
stimuli 

averaging vs. selection 



saccadic 
selection

time course of 
saccadic selection:

transition from 
averaging to 
selection 

[Ottes, Van Gisbergen, Eggermont, 1985]
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saccadic selection

understanding the time course of selection 
requires a re-examination of the theory



… so far we assumed

that a single population of activation variable 
mediates both the excitatory and the inhibitory 
coupling required to make peaks attractors 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

σ(u)

u



But: Dale’s law
says: every neuron forms with its axon only one type 
of synapse on the neurons it projects onto

and that is either excitatory or inhibitory 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

σ(u)

u

this is not 
actually possible!



2 layer neural fields

inhibitory coupling is 
mediated by inhibitory 
interneurons that 

are excited by the excitatory layer

and in turn inhibit the inhibitory 
layer 
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excitatory ones have started firing. The delayed 
onset of inhibition means that an external stimu-
lus may produce an initial overshoot of excitation, 
which then decreases as it is balanced by rising inhi-
bition. This gives rise to a phasic-tonic response 
behavior in the excitatory neurons (although it is 
not the only cause of this pattern).

In the DF model, this connectivity and the 
resulting effects on the activation time course 
can be replicated by introducing separate layers 
for the excitatory and inhibitory subpopulations 
(Figure  3.13; see Box 3.5 for the formal descrip-
tion). The basic structure for the two-layer field is 
as follows:  The two layers, excitatory and inhibi-
tory, are defined over the same feature space and are 
both governed by differential equations similar to 
those used in one-layer DFs. In the version consid-
ered here, only the excitatory layer receives direct 
external input. Excitatory interactions are imple-
mented through connections of the excitatory layer 
onto itself, described by an interaction kernel (e.g., 
a Gaussian function). In addition, the excitatory 
layer also projects to and excites the inhibitory 
layer. These projections are topological; that is, a 
projection from any point along the feature space 
on the excitatory layer acts most strongly onto the 
same point in feature space on the inhibitory layer. 
The inhibitory layer, in turn, projects back to the 
excitatory layer in an inhibitory fashion (that is, it 
creates a negative input in that layer’s field equa-
tion). Within the inhibitory layer, there are typi-
cally no lateral interactions.

The projections between the two layers can be 
described by interaction kernels, just like the lateral 

interactions. Note that the effective spread of inhi-
bition is determined by properties of both the pro-
jection from the excitatory to the inhibitory layer 
and of the reverse projection. Let us assume, for 
instance, that all three projections in the two-layer 
field (from excitatory to excitatory, excitatory 
to inhibitory, and inhibitory to excitatory) are 
described by Gaussian kernels of the same width. 
Then the effective range of inhibition in the excit-
atory layer will be wider than the range of lateral 
excitation, because the inhibition is spread by two 
kernels instead of just one. In practice, the two-layer 
field is sometimes set up in such a way that the pro-
jection from the excitatory to the inhibitory field is 
purely local (point-to-point, without an interaction 
kernel). The kernel for the reverse projection is then 
made wider to produce the overall pattern of local 
excitation and surround inhibition. This is a simpli-
fication done to reduce the computational load and 
the number of parameters. It is not meant to ref lect 
any neurophysiological property of the inhibitory 
neurons or the neural connectivity pattern.

The two-layer field shows a delayed onset 
of inhibition according to the same mechanism 
described earlier for the biological neural system. 
In particular, if an external input is applied to the 
system, it drives the activation in the excitatory 
layer, while the inhibitory layer initially remains 
unchanged. When the activation of the excitatory 
layer reaches the threshold of the output function, 
the interactions start to come into effect. The lat-
eral interactions within the excitatory layer drive 
activation further up locally, and at the same time 
the activation of the inhibitory layer is increased. 
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FIGURE  3.13: Architecture of two-layer field. The excitatory layer (top) projects onto itself and onto the inhibitory 
layer (bottom; green arrows). The inhibitory layer projects back onto the excitatory layer (red arrow). All projections are 
spread out and smoothed by Gaussian interaction kernels.
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2 layer Amari fields

BOX 3.5  TWO-LAYER DYNAMIC FIELD

A two-layer field consists of an excitatory and an inhibitory activation distribution over the 
same feature space x, each governed by a differential equation. We designate the activation 
variable for the excitatory layer with the letter u, the one for the inhibitory with v. The basic 
structure for the two-layer field contains three projections: an excitatory projection from layer 
u to itself, a second excitatory projection from layer u  to layer v, and an inhibitory projection 
back from layer u to layer u. Each of them is specified by an interaction kernel k that describes 
the connection weight as a function of distance in feature space. The three kernel functions are 
kuu, kvu, and kuv. Here, the first letter in the index always designates the target of the projection; 
the second, its origin. The field equations are then:

τu u uu uvu x t u x t h s x t k x x g u x t dx k x! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h k x x g u x t dx! , , ,( ) = − ( ) + + −( ) ( )( )′ ′ ′∫
The output function g is again a sigmoid (logistic) function as in the one-layer system. The 

interaction kernels are typically Gaussian functions of the form:

k x x c
x x

uu uu
uu

−( ) = ⋅ −
−( )⎛

⎝
⎜

⎞

⎠
⎟′

′
exp

2

22σ

The parameter cuu specifies the strength of the projection, the parameter σuu the width of 
the Gaussian kernel. The inhibitory kernel may include an additional constant term to produce 
global inhibition.

In this formulation, the effective width of inhibition is determined by both the kernels kuv 
and kvu. It is sometimes desirable to simplify this by omitting one of the kernels and using a 
simpler point-to-point connection for the projection from the layer u to layer v. This yields the 
dynamical system

τu u uu uvu x t u x t h s x t k x x g u x t dx k x! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h c g u x t! , , ,( ) = − ( ) + + ( )( )

If only global inhibition is required in a model, this architecture can be further simplified by 
replacing the continuous inhibitory layer by a single inhibitory node. This node receives input 
from the whole excitatory layer and projects homogeneous inhibition back to it:

τu u uu uvu x t u x t h s x t k x x g u x t dx c g v t! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) −′ ′ ′∫ (( )( )

τv v vuv t v t h c g u x t! ( ) = − ( ) + + ( )( )∫ ,

Note that this formulation with a single inhibitory node shows a somewhat different behav-
ior than the form with a continuous layer and purely global inhibition: In a continuous layer, 
the total output can increase very gradually as an activation peak becomes wider. When only 
a single node is used, the total output is always the sigmoid of the single activation variable. 
It can be useful to choose a sigmoid function with a very shallow slope here to allow a more 
gradual increase of the inhibition.
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Implications

the fact that inhibition arises 
only after excitation has 
been induced has observable 
consequences in the time 
course of decision making: 

initially input-dominated

early excitatory interaction 

late inhibitory interaction

_ +

+

excitatory
layer

inhibitory
layer

inhibitory
kernel

excitatory
kernel

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



time course of selection 

early: input driven

intermediate: dominated by excitatory interaction

late: inhibitory interaction drives 
selection

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



=> early fusion, late selection
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[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



Selection decisions in the reaction 
time (RT) paradigm

time

imperative 
signal=
go signal

response

RT

task set



The task set

is the critical factor in such studies of selection: which 
perceptual/action alternative/choices are available… 

e.g., how many choices 

e.g., how likely is each choice

e.g., how “easy” are the choices to recognize/perform 

because the task set is known to the participant prior 
to the presentation of the imperative signal, one may 
think of the task set as a “preshaping” of the 
underlying representation (pre=before the decision)
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weak preshape 
in selection

specific (imperative) 
input dominates and 
drives detection 
instability

[Wilimzig, Schöner, 2006]
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using preshape to account for 
classical RT data 

Hick’s law: RT increases 
with the number of 
choices
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metric effect

predict faster response 
times for metrically close 
than for metrically far 
choices
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experiment:  
metric effect

[McDowell, Jeka, Schöner ]



-4

-3

-2

0

2

4

-4

-3

250 350 450 550
-2

0

2

4

time

-4

-3

0

2

4

250 350 450 550
time

250 350 450 550
time

pr
es

ha
pe

d 
ac

tiv
at

io
n 

fie
ld

m
ai

xm
al

 a
ct

iv
at

io
n 

movement parameter

same metrics, different probability different metrics, same probability

high
probability

high
probability

high
probability

low
probabilitylow

probability

low
probability

movement parameter movement parameter

[from Erlhagen, Schöner: Psych. Rev. 2002]



Wide
Frequent

Wide
Rare

Narrow
Frequent

Narrow
Rare

320

300

280

260

240

220

200

Target

7

6

5

4

3

2

1

0
Wide

Frequent
Wide
Rare

Narrow
Frequent

Narrow
Rare

Target

[from McDowell, Jeka, Schöner, Hatfield, 2002]

wide narrow

Reaction Time P300 Amplitude Fz

T
im

e
 (

m
s
)

A
m

p
li
tu

d
e
 (

m
ic

ro
V

)

rare
rare

frequent

frequent



Time course of selection decisions: 
Behavioral evidence for the graded and 

continuous evolution of decision

time
move on 4th to tone

imperative stimulus

imposed SR interval

timed movement 
initiation paradigm

[Ghez and colleagues, 1988 to 1990’s]



[Favilla et al. 1989]



[Favilla et al. 1989]
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[Erlhagen, Schöner. 2002, Psychological Review 109, 545–572 (2002)] 
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place with minimal changes in the hand paths. Table 1
shows the means and standard errors of curvature and
linearity indices (see Materials and methods) across sub-
jects (n = 5) for predictable targets and for each time in-
terval for unpredictable targets. Small increases in curva-
ture of 1°–2° and reductions in linearity occur among
movements initiated between 80 and 200 ms after target
presentation. However, all values are well within the
range of normal values for linearity in reaching move-
ments (e.g. Atkeson and Hollerbach 1985; Georgopoulos
1988a, b; Georgopoulos and Massey 1988; Gordon et al.
1994b). Moreover, as can be noted among the hand paths
illustrated in Fig. 5, change in direction associated with
curvature did not appreciably reduce the directional error
at the end point. Similarly, the improvement in accuracy
was not achieved through variations in movement time.

Those data will, however, be considered in greater detail
below when the systematic effects of target separation on
movement time are described (see Fig. 10).

Threshold target separation
for discrete directional specification

Figure 7 shows the distributions of initial movement di-
rections in one subject at five target separations and
smoothed for clarity. Data from the same three succes-
sive S-R time interval bins used in earlier figures are
shown in different line types. For the 30° degree target
separation, at S-R intervals ≤ 80 ms (dotted line and his-
togram to show effect of smoothing) initial directions are
distributed unimodally around the midpoint of the range

224

Fig. 7 Experiment 2. Distribu-
tions of movement directions at
the time of peak acceleration in
one subject for five target sepa-
rations. In each plot, distribu-
tions were fitted with a smooth
line using a cosine function
(Chambers et al. 1983). The ar-
rows on the x-axis point to the
required direction for each tar-
get separation. In the top plot,
the actual histogram for re-
sponses with S-R intervals
≤ 80 ms is displayed to demon-
strate the relationship of the fit-
ted line to the actual distribu-
tion. On the right side of each
plot, the actual target locations
are displayed for reference &/fig.c:

[Ghez et al 1997]
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(3) Working memory as sustained 
activation

activation peak induced by input

remains stable after input is removed



Working memory as sustained peaks

WM is marginally stable state: it is not asymptotically 
stable against drift within the low-dimensional space

=> empirically real.. ?



“space ship” task probing spatial 
working memory

Metric�Working�Memory�Tasks
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[Schutte, Spencer, JEP:HPP 2009]
1977; Compte et al., 2000, for neural network models that use
similar dynamics).

Considered together, the layers in Figure 3 capture the real-time
processes that underlie performance on a single spatial recall trial.
At the start of the trial, the only activation in the perceptual field
is at the location associated with the perceived reference axis (see
highlighted reference input in Figure 3a). This is a weak input and
is not strong enough to generate a self-sustaining peak in the
SWM field, though it does create an activation peak in the
perceptual field (PFobj). Note that this input to the model is
assumed to be generated by relatively low-level neural pro-
cesses that extract symmetry using the visible edges of the task
space (for evidence that symmetry axes are perceived as weak
lines, see Li & Westheimer, 1997). We have not included the
visible edges in simulations of the model because they are quite
far from the target locations probed in our experiments. Given
that neural interactions in the DFT depend on metric separation,
these additional inputs far from the targets would have negli-
gible consequences.

The next event in the simulation in Figure 3a is the target
presentation. This event creates a strong peak in PFobj (see target
input in Figure 3a) which drives up activation at associated sites in
the SWM field (SWMobj). When the target turns off, the target
activation in PFobj dies out, but the target-related peak of activation
remains active in SWMobj. In addition, activation from the refer-
ence axis continues to influence PFobj because the reference axis is
supported by readily available perceptual cues (see peak in PFobj

during the delay).
Central to the DFT account of geometric biases is how the

reference-related perceptual input affects neurons in the working
memory field during the delay. Figure 3c shows a time slice of the
SWMobj field at the end of the delay. As can be seen in the figure,
the working memory peak has slightly lower activation on the left
side. This lower activation is due to the strong inhibition around
midline created by the reference-related peak in PFobj (see high-

lighted reference input in Figures 3a & 3c). The greater inhibition
on the left side of the peak in SWM effectively “pushes” the peak
away from midline during the delay, that is, the maximal activity
in SWM at the end of the trial is shifted to the right of the actual
target location (for additional behavioral signatures of these inhib-
itory interactions, see Simmering et al., 2006). Note that working
memory peaks are not always dominated by inhibition as in Figure
3c. For instance, if the working memory peak were positioned very
close to or aligned with midline (location 0), it would be either
attracted toward or stabilized by the excitatory reference input.
This hints at how the DFT accounts for developmental changes in
geometric biases.

A simulation of the model with “child” parameters is shown in
Figure 3b. This simulation is the same as the adult simulation in
Figure 3a, except the interaction among neurons within each field
and the projections between the fields have been scaled according
to the spatial precision hypothesis: the neural interactions within
the SWMobj and PFobj fields are weaker (relative to the adult
parameters), the widths of the projections between the fields are
broader, and the excitatory and inhibitory projections are
weaker (for a more detailed discussion see below). As can be
seen in Figure 3b, these changes in interaction result in a
broader peak in the SWMobj field. Additionally, the reference
input is broader and weaker to reflect young children’s diffi-
culty with reference frame calibration, that is, their ability to
stably align and realign egocentric and allocentric reference
frames (see Spencer et al., 2007). The result of these changes is
that neural interactions in PFobj are not strong enough to build
a reference-related peak during the delay. Consequently,
SWMobj is only influenced by the broad excitatory input from
detection of midline in the task space and the SWMobj peak
drifts toward the reference axis instead of away from the axis.

The simulations in Figure 3 demonstrate that the spatial preci-
sion hypothesis and the DFT can capture the general pattern of
geometric biases in early development and later development, but

Figure 4. Apparatus used for spaceship task. Inset shows sample target locations relative to the starting point.
Targets are projected onto the table from beneath and responses are recorded using an Optotrak movement
analysis system. Note that the lights in the room are turned on for the photograph. During the experiment the
lights were dimmed, and the table appeared black.
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memory peaks are not always dominated by inhibition as in Figure
3c. For instance, if the working memory peak were positioned very
close to or aligned with midline (location 0), it would be either
attracted toward or stabilized by the excitatory reference input.
This hints at how the DFT accounts for developmental changes in
geometric biases.

A simulation of the model with “child” parameters is shown in
Figure 3b. This simulation is the same as the adult simulation in
Figure 3a, except the interaction among neurons within each field
and the projections between the fields have been scaled according
to the spatial precision hypothesis: the neural interactions within
the SWMobj and PFobj fields are weaker (relative to the adult
parameters), the widths of the projections between the fields are
broader, and the excitatory and inhibitory projections are
weaker (for a more detailed discussion see below). As can be
seen in Figure 3b, these changes in interaction result in a
broader peak in the SWMobj field. Additionally, the reference
input is broader and weaker to reflect young children’s diffi-
culty with reference frame calibration, that is, their ability to
stably align and realign egocentric and allocentric reference
frames (see Spencer et al., 2007). The result of these changes is
that neural interactions in PFobj are not strong enough to build
a reference-related peak during the delay. Consequently,
SWMobj is only influenced by the broad excitatory input from
detection of midline in the task space and the SWMobj peak
drifts toward the reference axis instead of away from the axis.

The simulations in Figure 3 demonstrate that the spatial preci-
sion hypothesis and the DFT can capture the general pattern of
geometric biases in early development and later development, but
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a source of excitatory input, S n 0, then the resulting stable 

state of the activation dynamics 

!d,(><t)?dt = p,(><t) + h + S(>) 

is ,(>) = h + S(>), the level at which positive and negative 

rates of change balance so that d,?dt = 0. Note that ! is a 

parameter that fixes the time scale of the activation field.  

When the rate of change of activation at a field site, >, 

depends not only on the activation level, ,(><t)< and current 

inputs, S(>), but also on the activation levels, ,(>A< t), at 

other field sites, >A, then the activation dynamics are 

interactive. Locally excitatory interaction is described by a 

kernel, 5(>->A), such that 

!d,(><t)?dt = p,(><t) + h + S(><t) + ! d>A5(>p

>A)!(,(>A<t)) 

Only sufficiently activated sites, >A, contribute to interaction. 

This is expressed by passing activation level through a 

sigmoidal function: 

!(,) = 1/(1 + exp(p",)) 

Such threshold functions are necessarily non-linear and are 

the basis for the bi-stability that structures the activation 

dynamics. Because cortical neurons never project both 

excitatorily and inhibitorily onto targets, the inhibitory 

lateral interaction must be mediated through an ensemble of 

interneurons. A generic formulation (Amari & Arbib, 1977) 

is to introduce a second, inhibitory activation field, v(><t), 

which receives input from the excitatory activation field, 

,(><t), and in turn inhibits that field: 

!, d,(><t)?dt = p,(><t) + h, + S(><t) + ! d>A5(>p

>A)!(,(>A<t)) pc ! d>A5i(>p>A)!(v(>A<t)) 

!v dv(><t)?dt = pv(><t) + hv + ! d>A5(>p>A)!(,(>A<t)) 

Stabilizing the contents of working memory via 

spatial categories. The set of equations above describes a 

neurally-plausible bi-stable network for SWM. Although 

sustained activation peaks in this network are stably in the 

“on” state, they are inherently unstable with respect to the 

metric information they represent. One manifestation of this 

metric instability is the “drift” of sustained peaks under the 

influence of noisy inputs that are common in the nervous 

system (Compte et al., 2000). Peak drift can also be induced 

by small, localized input gradients into the excitatory layer 

of the field which attract sustained peaks if they are 

positioned sufficiently close to the gradient (Amari & Arbib, 

1977). Conversely, small localized inputs into the inhibitory 

layer cause peaks to drift away from the input gradient.  

How might such gradients arise? A specific mechanism 

is through long-term memory traces of activation patterns. 

Whenever and wherever above threshold activation is 

present in WM, traces of activation can be slowly built up. 

This can be modeled through a simple linear activation 

dynamics of an additional set of fields—the LTM fields—

which receive inputs from the corresponding layers of WM. 

Conversely, LTM traces feed back as excitatory inputs into 

the corresponding layers of WM: 

!traced,trace?dt = p,trace + !(,); 

!tracedvtrace?dt = pvtrace + !(v); 

!,d,?dt = s + c,<trace,trace + noise 

!vd,?dt = s + cv<tracevtrace + noise 

A LTM trace of the excitatory layer will generate a 

small source of input that stabilizes WM peaks near the 

locations at which peaks have been activated earlier. Such 

excitatory memory traces form the neural substrate of 

spatial categories. Conversely, LTM traces of the inhibitory 

layer will generate a source of input that repels memory 

items from field sites that have been activated earlier. Such 

traces provide long-term discriminative information, 

amplifying activation differences based on past experiences. 

If excitatory memory traces are the substrate from which 

spatial categories are built, then inhibitory memory traces 

maximize the differences between categories.  

Spdating and re-establishing reference frames. To 

this point, we have described a neural mechanism for SWM 

and spatial categories but have remained vague on the 
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    Figure 1. The DNFT.           Figure 2. Simulations of data from Spencer & Hund (2003) 
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capacity based on the 
number of objects… 

about 4

probed by change 
detection, free recall 

[Luck, Vogel, 1997]

visual working 
memory 

has capacity limits
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observers were instructed to look for an orientation change. In the
third and critical condition, either colour or orientation could vary,
and the observers were required to remember both features of each
object. In this last condition, accurate performance with a set size of
four objects would require the observer to retain eight features (four
colours and four orientations), whereas only four features would be
required for accurate performance in the simple feature conditions.
Performance was essentially identical for the feature and conjunc-
tion conditions despite the greater total number of features that had
to be retained in the conjunction condition (Fig. 1c). This indicates
that visual working memory stores integrated object percepts rather
than individual features, just as verbal working memory can store
higher-order ‘chunks’15. This is also analogous to findings from
visual attention experiments, which have shown that attention is
directed to entire objects rather than to individual features and that,
consequently, two features of a given object can be reported as
accurately as a single feature16.

Because the stimulus arrays shown in Fig. 1c always varied in
both colour and orientation, it is possible that the subjects were
unable to avoid encoding both features even when only one feature
was relevant. To rule out this potential explanation of the similar
results obtained for the feature and conjunction conditions, a
second version of this experiment was conducted in which the
irrelevant feature dimension was held constant in the single-feature
conditions (all of the rectangles were black when the subjects
were required to remember orientation and all were vertical
when the subjects were required to remember colour). The results
were virtually identical to those shown in Fig. 1c, with statistically
indistinguishable performance in the feature and conjunction
conditions.

To extend these findings, we conducted an experiment in which

the objects were defined by a conjunction of four features: colour,
orientation, size and the presence or absence of a gap. Performance
was just as good in this quadruple conjunction condition as it was in
the individual feature conditions (Fig. 1d), indicating that 16
features distributed across 4 objects can be retained as accurately
as 4 features distributed across 4 objects.

The surprisingly good performance for conjunctions could be
explained by the use of separate, independent memory systems for
each feature type rather than the storage of integrated object
representations. To rule out this possibility, we examined colour–
colour conjunctions in which each object consisted of a large square
of one colour and a small inner square of a different colour.
Observers were just as accurate with these colour–colour conjunc-
tions as they were with either the large outer squares or the small
inner squares presented alone (Fig. 1e). Thus, eight colours dis-
tributed across four objects can be retained as accurately as four
colours distributed across four objects. Because both features of
each object consisted of colours, the high accuracy observed in the
conjunction condition cannot be explained by the existence of
independent memory systems for different features.

These results indicate that integrated object percepts are stored in
visual working memory, leading to a large capacity for retaining
individual features as long as the features are confined to a small
number of objects. Although there may be limits on the number of
features that can be linked together in a single object representation,
our results indicate that at least four features can be joined in this
manner with no cost in terms of storage capacity.

The present findings have important implications for both the
nature of the input to, as well as the contents of, visual working
memory. Specifically, studies of selective attention indicate that
attentional processes are used to combine the features of an object
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DFT account of WM capacity

fundamentally caused by accumulation of 
inhibitory interaction across peaks

=> generic to DFT 



WM capacity depends on interaction 

capacity increases across development

consistent with “spatial precision hypothesis”… 
interaction becomes more excitatory/local over 
development

this task and higher cognition, suggesting that it could tap the processes of
interest when trying to explain fundamental cognitive skills.

To assess developmental changes in visual working memory capacity,
the change detection task has been modified for use with children between
the ages of 3 and 12 years by reducing the number of trials and extending the
duration of the memory array (Cowan et al., 2005; Cowan, Fristoe, et al., 2006;
Riggs, McTaggart, Simpson, & Freeman, 2006; Simmering, 2012). Figure 2
shows results across these studies, with estimates increasing from about two to
five items during childhood. As this figure shows, capacity increases steadily
across this age range (see Simmering, 2012, for discussionofdiffering estimates
in 5-year-olds). Of the theories described in the working memory section
above, only Cowan’s embedded process model has been applied specifically to
change detection performance. According to that perspective, the controlled
nature of the change detection task leaves only increases in capacity (i.e., the
scope of attention) to account for developmental improvements (Cowan et al.,
2005; see also, Cowan, AuBuchon, Gilchrist, Ricker, & Saults, 2011). However,
as noted above, this model does not include a specific mechanism by which
capacity increases (Cowan, 2013). Riggs, Simpson, and Potts (2006) proposed
that developmental changes in neural synchrony could account for this
capacity increase (discussed further in Chapter 2).

Memory array 
(100-500 ms) 

Delay        
(250-1000 ms) 

Test array  
(until response) Response 

different 

FIGURE 1.—Sample trial of the change detection task in set size three (not drawn to scale).
Different patterns represent different colors.
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Change detection

the standard probe of 
working memory 

[Johnson, et al. 2009]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simmering and Perone Capacity development

In our view, capacity in the classic sense (e.g., the “slots”
metaphor) does not work. In the laboratory, we derive capacity
estimates that are the emergent product of multiple, highly com-
plex, coupled cognitive and behavioral systems operating within
the task context. If we want to understand why capacity estimates
appear limited and why they differ across individuals, develop-
ment, and task contexts we must understand the dynamics of these
systems (i.e., how the components of a system interact through
time). We illustrate this claim below by reviewing two case studies
from our own work. Our proposal stands in contrast to the histor-
ical approach to understanding capacity and its development. For
instance, Cowan et al. (2010) emphasized the role of processing
(e.g., strategy) in explaining cross-task performance differences,
while contending that storage remains relatively constant across
tasks. Though we agree that both processing and storage must be
considered to understand performance across tasks, we disagree
with both the characterization of storage as a separable component
of the system as well as the notion that storage is constant across
tasks. In our view, storage capacity cannot be “tapped.” Storage is
a process in and of itself that cannot be considered in isolation
from the processes that contribute to (e.g., encoding, chunking)
and operate upon (e.g., rehearsal, retrieval) stored information.

Below, we present two case studies illustrating how a systems
approach can be applied to WM capacity development. These
studies have tested specific predictions derived from the imple-
mentation of visual WM into a computational model,which allows
for direct testing of how changes in a given set of processes may
simulate developmental improvements in performance. These
examples demonstrate how the specific details of the behavioral
tasks designed to measure WM capacity influence the processes by
which WM representations are formed and used in service of the
tasks,and reveal that capacity may vary within the same participants

depending on the manner in which information is presented and
capacity is measured. Importantly, we do not consider these differ-
ences across tasks to be “noise” in our estimates, but rather believe
this cross-task variation informs our understanding of how this
dynamic cognitive and behavioral system operates and develops.

CASE STUDY 1: INFANT VISUAL WORKING MEMORY
Our first case study centers on a series of neural network sim-
ulations reported by Perone et al. (2011). Perone et al. showed
that a single, complex system can produce remarkable variation
in performance across contexts. More specifically, they tested the
prediction that a single neuro-dynamical systems model of infant
looking and memory could produce variation in infants’ capacity
estimates across task conditions. They simulated infants’ perfor-
mance in a change preference task designed by Ross-Sheehy et al.
(2003) to estimate visual WM capacity. Figure 1A shows this task,
in which infants viewed two displays of colored squares blinking
on and off in synchrony. On a “no-change” display, all of the colors
remained the same with each blink/delay. On a “change” display,
one randomly selected color changed to a new color. Infants’ look-
ing time to the two displays was compared, and a robust preference
for the change display was interpreted as memory for the number
of items per display (i.e., set size). Across set sizes, Ross-Sheehy
et al. found that 6-month-olds showed a robust change prefer-
ence only at set size one, whereas 10-month-olds showed change

A B

FIGURE 1 | Schematic illustrations of tasks used to assess visual

working memory in (A) infants versus (B) children and adults; both

present examples of set size three.

preferences up to set size four. They concluded that infants’ visual
WM capacity increases from one to four items between 6 and
10 months.

Perone et al. (2011) simulated infants’ performance in this task
using a model of infant looking and memory. The model con-
sists of a neurocognitive system that encodes object details (e.g.,
color) and a fixation system that is biased to sustain looking during
encoding. Encoding leads to WM formation of the colors in the
displays; once a robust WM is formed, inhibition biases the sys-
tem to look away from remembered items and explore items that
may be novel. The model exhibited a change preference through
recognition of the items on the no-change display and detection
of novelty on the change display. This preference emerged through
real-time interactions between looking, encoding, and WM forma-
tion. Critically, Perone et al. found that a preference for the change
display did not require memory for all items in the display, that is,
the model exhibited a higher capacity estimate (measured through
looking time) than the number of items maintained in WM.

This example highlights how multiple processes working
together give rise to behavioral estimates of capacity. Critically,
the challenge remains to understand how such processes give rise
to variation in performance like that shown in Tables 1–4. Within
systems approaches, such variation is viewed as a signature of a
system that organizes in real-time in response to the current task
context. Perone et al. (2011) illustrated this concept by simulat-
ing a second experiment by Ross-Sheehy et al. (2003) in which
they removed the delay to insure that young infants’ performance
reflected a limitation in memory, not perception or attention.
Indeed, young infants exhibited change preferences for set sizes up
to three in this condition. This manipulation changed the task in
two important ways. First, “blinks” on the change and no-change
displays were no longer present, that is, there were no transient
onsets within each presentation of the items. Second, it introduced
a “flicker” associated only with the changing item on the change
display. Perone et al. showed that these minor manipulations dra-
matically influenced looking behavior. In the DNF model, looking
and memory are reciprocally coupled components of a larger cog-
nitive and behavioral system. Manipulations of looking influenced

Frontiers in Psychology | Developmental Psychology January 2013 | Volume 3 | Article 567 | 12



DFT account for change detection

separation between perceptual and memory 
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DFT model of change detection

[Johnson, Spencer, Schöner: New Ideas in Psychology 2008]
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Figure 6. The generation of “same” and “different” responses in a DFT model of VWM and change 
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Experiment: metric effects in VWM

[Johnson, Spencer, Luck, Schöner: Psychological Science 2008]



DFT account for change detection

generate the 
categorical “answer” 
by two competing 
nodes

based on the “hidden” 
go-signal in the task

(1998) on the basis of studies of cortical neurophysiology. The

model consists of an excitatory perceptual field, an excitatory
working memory field (VWM), and a shared inhibitory field. As

its name suggests, the perceptual field is the main target of
afferent input to the network. VWM also receives direct stimulus

input, but its primary excitatory input comes from the perceptual
field. Both the perceptual field and VWM provide excitatory
input to and receive broad inhibitory feedback from the inhib-

itory field. Additionally, nearby neurons within both the per-
ceptual and the working memory fields interact via local

excitatory connections. This pattern of excitatory and inhibitory
connectivity gives rise to a ‘‘Mexican hat’’ form of interaction

common in neural models of cortical function (Durstewitz,
Seamans, & Sejnowski, 2000). With the right balance of exci-
tation and inhibition, multiple peaks of activation can be sus-

tained in the absence of input. (Videos S1 and S2 in the
supporting information available on-line show the three-layer

model operating, respectively, in a self-stabilized mode, in which
peaks of activation form in response to input but die out when

input is removed, and in a self-sustained mode, in which peaks of

activation are sustained in the absence of input; see p. XXX.)
Thus, this form of interaction represents a plausible neural basis

for the sustained activation proposed to underlie working
memory (Compte et al., 2000; Fuster & Alexander, 1971).

Finally, to capture performance in change-detection tasks, we
have added a response layer containing two nodes: a different
node, which receives summed excitatory activation from the

perceptual field, and a same node, which receives summed ex-
citatory activation from VWM (see Fig. 2b). The nodes are

equipped with self-excitatory connections and are mutually
inhibitory, competing for control of response output when a ‘‘go’’

signal arrives (following the presentation of the test display).
Visual comparison is made possible in this architecture

through excitatory and inhibitory interactions among the mod-

el’s layers. Consider the simulations shown in Figure 3, which
capture performance in the one-shot variant of the change-de-

tection task (Fig. 1). We focus on this variant of the task because
of its relative simplicity, which minimizes the impact of factors
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Fig. 2. Two- and three-layer dynamic neural field models of visual working memory (VWM). The thin, solid
horizontal line in each field marks the activation threshold (conventionally set to be 0), the point at which
interactions among neurons within and between layers become engaged. The two-layer model (a) consists of
a single population of feature-selective excitatory neurons coupled to a similarly tuned population of in-
hibitory neurons. This simulation depicts the formation of a peak of activation following localized input to
the excitatory layer. Input takes the form of a Gaussian distribution that is centered at a particular field
location and has a specified strength and width. Once activation goes above threshold (i.e., 0) in the ex-
citatory layer, activation is passed to the inhibitory layer, which, in turn, passes broad inhibition back to the
excitatory layer. Locally excitatory interactions among neurons in the excitatory layer (solid, curved arrow)
keep neurons in a highly active state, whereas inhibitory feedback from the inhibitory layer keeps excitation
localized by preventing the diffusion of activation throughout the field. The three-layer model (b) contains
two populations of excitatory neurons (perceptual and VWM fields) reciprocally coupled to a single pop-
ulation of inhibitory neurons (inhibitory field). Input is applied to both excitatory fields, but input to the
perceptual field is much stronger than input to the VWM field. Once activation in the perceptual field goes
above 0, strong activation is propagated to both the inhibitory and the VWM fields. The VWM field also
projects excitatory activation to the inhibitory field, which projects inhibition to both the perceptual and
the VWM fields. The model also contains a response layer consisting of two nodes: one that receives summed
excitatory input from the perceptual field and is responsible for generating ‘‘different’’ (‘‘Diff’’) responses,
and a second that receives summed excitatory input from VWM and is responsible for generating ‘‘same’’
responses. The nodes in the response layer have self-excitatory connections and are mutually inhibitory.
Note that only above-threshold activation (i.e., activation> 0) in the perceptual field or VWM is propagated
to the response nodes at test.
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DFT account for 
change detection

1) working 
memory is 
created 

[Johnson, et al. 2009]

contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold

Feature-Specific
Suppression via
Inhibitory Layer

Sample Display
a b

Perceptual
Field

VWM

Feature Dimension

Time

Peaks in VWM

Activation
Input
Excitation
Inhibition

Self-Sustained

0

0

0

0

0

0

0

0

0

0

0

0

Ac
tiv

at
io

n

Delay

Close Item Tested Far Item Tested

Far Item Tested

“Different” Trial

“Same” Trial

S

D

S

D
No Peak in

Perceptual Field
No Peak in

Perceptual Field

No Peak in
Perceptual Field

Peak in Perceptual Field
Drives “Diff” Node    

Peaks in VWM
Drive “Same” Node

Peaks in VWM
Drive “Same” Node

Peaks in VWM
Drive “Same” Node

Peaks in VWM
Drive “Same” Node

Close
Colors

Far
Color

c

d

e

fClose Item Tested

Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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DFT account for 
change detection

2) change 
detection in 
“same” trial

[Johnson, et al. 2009]

contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold

Feature-Specific
Suppression via
Inhibitory Layer

Sample Display
a b

Perceptual
Field

VWM

Feature Dimension

Time

Peaks in VWM

Activation
Input
Excitation
Inhibition

Self-Sustained

0

0

0

0

0

0

0

0

0

0

0

0

Ac
tiv

at
io

n

Delay

Close Item Tested Far Item Tested

Far Item Tested

“Different” Trial

“Same” Trial

S

D

S

D
No Peak in

Perceptual Field
No Peak in

Perceptual Field

No Peak in
Perceptual Field

Peak in Perceptual Field
Drives “Diff” Node    

Peaks in VWM
Drive “Same” Node

Peaks in VWM
Drive “Same” Node

Peaks in VWM
Drive “Same” Node

Peaks in VWM
Drive “Same” Node

Close
Colors

Far
Color

c

d

e

fClose Item Tested

Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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DFT account for 
change detection

2) change 
detection in 
“different” trial

[Johnson, et al. 2009]

contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-
lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the
pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three
inputs: two nearby inputs representing very similar, or ‘‘close,’’
colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the
perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold
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Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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DFT account for 
change detection

predict better 
change 
detection when 
items are 
metrically 
closer !

[Johnson, et al. 2009]

Fig. 6.
Metric interactions in WM leading to enhanced change-detection for close features: (A) time-
slice through the FWM field during the delay interval of a change detection task showing WM
peaks representing two far color targets separated by 160 units. Relatively broad and high-
energy peaks in WM produce correspondingly broad and deep inhibition in PF (B) via
inhibitory feedback. (C) With close colors, peaks are narrower and somewhat lower energy,
which produces narrower and shallower inhibition in PF (D), making it easier for peaks to build
in PF when a new item is presented at test. See text for details.
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Metric effect

close metric separation: 
peaks weakened by 
overlapping inhibition 

=> less inhibition in 
perceptual layer

=> reduced threshold for 
change detection

[Johnson, Spencer, Luck, Schöner: Psychological Science 2008]



Experimental confirmation

=> predict 
more sensitive 
change 
detection for 
item that are 
metrically close!

[Johnson, Spencer, Luck, Schöner: Psychological Science 2008]



Piaget’s A not B paradigm: “out-of-sight 
-- out of mind” 
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Toyless variant of A not B task

toy to be hidden [24]. Directing attention to an in-view
object (A) heightens activation at the location and, in the
experiment, infants reach to that continually in-view
object. Subsequently, when the experimenter directs
attention to a different nearby in-view object (B), infants
watch, but then reach back to the original object (A).

Experimenters have also made the error vanish by
making the reaches on the B trials different in some way
from the A trial reaches. In the model, these differences
decrease the influence of the A trial memories on the
activations in the field. One experiment achieved this by

shifting the posture of the infant [24]. An infant who sat
during the A trials would then be stood up, as shown in
Fig. 3, to watch the hiding event at B, during the delay and
during the search. This posture shift causes even 8- and
10-month-old infants to search correctly, just like
12-month-olds. In another experiment, we changed the
similarity of reaches on A and B trials by putting on and
taking off wrist weights [25]. Infants who reached with
‘heavy’ arms onA trials but ‘light’ ones on B trials (and vice
versa) did not make the error, again performing as if they
were 2–3 months older. These results suggest that the
relevant memories are in the language of the body and
close to the sensory surface. In addition, they underscore
the highly decentralized nature of error: the relevant
causes include the covers on the table, the hiding event,
the delay, the past activity of the infant and the feel of the
body of the infant.

This multicausality demands a rethinking of what is
meant by knowledge and development. Do 10-month-
old infants know something different when they make
the error compared with when they do not? The answer
is ‘yes’ if we conceptualize knowledge and knowing as
emergent, that is, made at a precise moment from
multiple components in relation to the task and to the
immediately preceding activity of the system. What do
12-month-olds know that 10-month-olds do not? There
can be no single cause, no single mechanism and no
one knowledge structure that distinguishes 10-month-
olds from 12-month-olds because there are many
causes that make the error appear and disappear.
Instead, both 10-and 12-month-olds can be regarded as
complex systems that self-organize in the task. How-
ever, just as trial dynamics are nested in task
dynamics, so are task dynamics nested in develop-
mental dynamics.

Developmental dynamics
The A-not-B error has been important to developmental
theory because it is tightly linked to a few months in
infancy. However, the neural field model suggests that the
dynamics that create the error in infants are basic
processes involved in goal-directed actions at all ages.
Indeed, by changing the task, researchers can make
perseverative errors come and go in older children and
adults, just as in infants. Recently, Spencer and colleagues

Fig. 2. (a) The time evolution of activation in the planning field on the first A trial.
The activation rises as the object is hidden and, owing to self-organizing properties
in the field, is sustained during the delay. (b) The time evolution of activation in
the planning field on the first B trial. There is heightened activation at A before the
hiding event, owing to memory for prior reaches. As the object is hidden at B, acti-
vation rises at B, but as this transient event ends, owing to the memory properties
of the field, activation at A declines and that at B rises.
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Fig. 3. An infant sitting for an A trial (left) and standing for a B trial (right). This
change in posture causes younger infants to search as 12-month-old infants do
(see text for details).
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[Smith, Thelen et al.: Psychological Review (1999)]



Toyless variant of A not B: essentially 
a selection decision task!
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[Smith, Thelen et al.: Psychological Review (1999)]
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[Dineva, Schöner, Dev. Science 2007]
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Instabilities

detection: forming and initiating a 
movement goal

selection: making sensori-motor 
decisions

(learning: memory trace)

boost-driven detection: initiating 
the action

memory instability: old infants 
sustain during the delay, young 
infants do not
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DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]

memory trace



DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]

perseverative
errors



in spontaneous 
errors, activation 
arises at B on an A 
trial

which leads to 
correct reaching on 
B trial

because reaches to B 
on A trials leave 
memory trace at B

spontaneous
error correct on B!

DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



=> DFT is a neural process model

that makes the decisions in each individual trial, by amplifying 
small differences into a macroscopic stable state

and that’s how decisions leave traces, have consequences



Decisions have consequences
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Figure 7. Estimates from experiment (solid lines) and DFT simulations (broken lines) of the rate of spon-
taneous errors across A-trials (black lines). The grey lines show the conditional probability that a reach
again goes to B on a given A-trial given that the first spontaneous reach to B has just occurred on the
previous trial.
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Figure 8. Estimates from infant experiments (solid line) and DFT simulations (broken line) for the
probability to make exactly n spontaneous errors as a function of n.

According to this hypothesis, the overall rate of spontaneous errors reflects the distribu-
tion of the side bias across babies and is, therefore, constant across A trials. This hypothesis
predicts that the conditional probability of repeating a spontaneous error after a previous
error should be high (close to one in the limit case of completely deterministic decisions).
In fact, this limit case predicts that babies with a bias to B should repeat spontaneous errors
across the entire A-trials phase of the paradigm.

This prediction is tested in Figure 8 showing the probability that an infant/simulation
makes exactly n spontaneous errors as a function of n (Equation (3)). The deterministic
account predicts that this probability should have a U-shape: Some infants should system-
atically make no spontaneous errors, while the biased babies should make a large number
of spontaneous errors. Intermediate numbers of spontaneous errors should not be fre-
quent, as these reflect stochastic decision making. The data clearly refute this hypothesis.
The monotonic decrease of the probability of n spontaneous errors with the number n is
consistent with a stochastic contribution to sensorimotor decision making.

[Dineva, Schöner: Connection Science 2018]

a spontaneous error doubles probability to make the 
spontaneous error again



Experimental signatures of DFT

metric effects: distances between potential 
states matter 

effects of timing: time matters, spatio-
temporal co-variation

instabilities: it matters how far a state is 
from becoming unstable… 


