DFT Foundations I: Space and Time (part 2)

Gregor Schöner Institute for Neural Computation (INI) <u>dynamicfieldtheory.org</u>

Recall...

Spaces arise through connectivity

from sensory surfaces / to motor surfaces

=> mental states are localized in these low-dimensional spaces

Neural dynamics

activation u ~ population level membrane potential

- defined relative to sigmoid
 - above threshold: transmitted
 - below threshold: not transmitted

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

Neural dynamics with strong interaction

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

strong recurrent connectivity within populations

$$+\int w(x-x')\sigma(u(x',t))dx'$$

interaction

excitatory for neighbors in space

inhibitory for activation at a spatial distance

Attractors and their instabilities

- input driven solution (subthreshold)
- self-stabilized solution (peak, supra-threshold)
- selection / selection instability
- working memory / memory instability
- boost-driven detection instability

detection instability reverse detection instability

Noise is critical near instabilities

Goal: understanding the neural dynamics of fields more deeply

Discretization of fields

Self-excitation

Roadmap

Inhibitory interaction

Mathematical formalization

beyond ID fields

Analysis for discrete activation variables

Discretization of fields

Self-excitation

Roadmap

Inhibitory interaction

Mathematical formalization

beyond ID fields

Excitatory interaction = self-excitation

a minimally recurrent network

- illustrates that "time" is conceptually necessary to understand these:
 - some inputs are outputs from the same neuron/population ...
 - => not possible to frame as input-ouput
 systems
 - solution: time: past outputs are current inputs

 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

Neuronal dynamics with self-excitation

nonlinear dynamics!

Neuronal dynamics with self-excitation

- at intermediate input levels: bistable dynamics
- "on" vs "off" state

Neuronal dynamics with self-excitation st

increasing input
strength =>
detection instability

Neuronal dynamics with self-excitation

decreasing input
strength => reverse
detection instability

Neuronal dynamics with self-excitation

the detection and its reverse create events at discrete times from time-continuous changes

simulating discrete activation variables with self-excitation

dynamicfieldtheory.org

SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

Discretization of fields

Self-excitation

Roadmap

Inhibitory interaction

Mathematical formalization

beyond ID fields

Inhibitory interaction: inhibitory recurrent connectivity

coupling/interaction

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

to visualize, assume that u₂ has been activated by input to a positive level

=> it inhibits u_1

 $\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$ $\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$

- symmetry: same logic if u_1 was initially activated it would prevent u_2 from activating
- => bistable selection of either u_1 or u_2

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

simulating inhibitorily coupled activation variables

dynamicfieldtheory.org

DXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

Discretization of fields

Self-excitation

Roadmap

Inhibitory interaction

Mathematical formalization

beyond ID fields

Mathematical formalization

kernel: local excitatory interaction/ global inhibitory interaction

$$w(x - x') = w_{\text{exc}}e^{-\frac{(x - x')^2}{2\sigma^2}} - w_{\text{inh}}$$

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t) + \int dx' \ w(x-x') \ \sigma(u(x'))$$

Mathematical formalization

Amari equation

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + \int w(x-x')\sigma(u(x',t)) \, dx'$$

where

- time scale is τ
- resting level is h < 0
- input is S(x,t)
- interaction kernel is

$$w(x - x') = w_i + w_e \exp\left[-\frac{(x - x')^2}{2\sigma_i^2}\right]$$

• sigmoidal nonlinearity is

$$\sigma(u) = \frac{1}{1 + \exp[-\beta(u - u_0)]}$$

Interaction: convolution

Discretization of fields

Self-excitation

Roadmap

Inhibitory interaction

Mathematical formalization

beyond ID fields

Neural dynamic nodes

- sets of discrete activation variables as "nodes"
 - self-excitatory: "on" vs "off" states, detection instability, sustained activation
 - all nodes coupled inhibitorily: selection
 - => discretely sampled fields

Field dynamics in different dimensions

I, 2, 3, 4... dimensions: peaks/ blobs as attractors 4-dimensional

Discretization of fields

Self-excitation

Roadmap

Inhibitory interaction

Mathematical formalization

beyond ID fields