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Spaces arise through connectivity
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=> mental states are localized in these
low-dimensional spaces
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Neural dynamics

M activation u ~
population level
membrane potential

tu(x,t) = —ulx,t) + h + s(x, 1)

A input, s(x,t)
B defined relative to u(x,)

SlngId /
o(u(x,t
B above threshold: (u(x.1))
transmitted [/ dme.
>

B below threshold: not J ______ resting level, h
transmitted




Neural dynamics with strong
Interaction

tu(x,t) = —ulx,t) + h + s(x, 1)

B strong recurrent
connectivity within

+ Jw(x — x)o(u(x', t))dx’

populations

Interaction

M excitatory for neighbors i ,ctivation field

In space
mlocal excitation

M inhibitory for activation inhibitory interaction
at a spatial distance

dimension



Attractors and their instabilities

reverse
detection detection

instability instability

M input driven solution (sub-
threshold) l

M self-stabilized solution
(peak, supra-threshold)

M selection / selection
instability

® working memory /

memory instability
Noise is critical

M boost-driven detection near instabilities

instability



Goal: understanding the neural
dynamics of fields more deeply
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Analysis for discrete activation

self-
excitation

variables

mutual

Auz

C «__inhibition

self-
) L
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Excitatory interaction =
self-excitation

B a minimally recurrent network

M illustrates that “time” is
conceptually necessary to
understand these:

iS(l‘)

B some inputs are outputs from the same
neuron/population ...

B => not possible to frame as input-ouput c o(u(?))
systems

B solution: time: past outputs are current
inputs o(u(t))

Tu(t) = —u(t) + h+ s(t) + ¢ o(u(t))



Neuronal dynamics

with self-excitation \( :
T u

resting level \

® nonlinear dynamics!

yC

':g\/
level, h

tu(t) = —u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation

A input strength

Evarying input

®=> number of

attractors changes resting

level, h

tu(t) = —u(t) + h + s(t) + ¢ o(u(t))



Neuronal dynamics
with self-excitation

M at intermediate input
levels: bistable
dynamics

M “on’ vs “off’ state

time, t
>

~

_— u(t)<0

tu(t) = —u(t) + h + s(t) + ¢ o(u(t))



. fixed point

unstable
stimulus
N strength
stable

A

Neuronal dynamics
with self-excitation T

strength

: . A du/dt
-IncreaSIng InPUt Ainput strength
strength => N
detection instability N
u
resting N //
level, h

tu(t) = —u(t) + h + s(t) + ¢ o(u(r))



_du/dt N fixed point

stable

Neuronal dynamics

with self-excitation ZEIS:;ET7\§ %ur:stable

. . A du/dt
Bmdecreasing input A input strength

strength => reverse .
detection instability \/

resting
level, h

Tu(t) = —u(t) + h+ s(t) + ¢ o(u(t))



Neuronal dynamics
with self-excitation

Bthe detection and its
reverse create events at
discrete times from
time-continuous changes

u(t)
A
reverse
detection P
instability .~
l 4"'4&‘4‘
:/ time, t
>
A
detection
instability

Tu(t) = —u(t) + h + s(t) + ¢ o(u(t))



OXFORD SERIES IN DEVELOPMENTAL COONITIVE NEUROSCIENCE

simulating discrete
activation variables with
self-excitation
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Inhibitory interaction: inhibitory
recurrent connectivity

A
A UI A U2
mutual
self- C . inhibition D self-

excitation excitation

U(X) \/\ ;

coupling/interaction

T (1) = — u(t) + h + 51(t) — cro(uy(2))
TUy(1) = — uy(1) + h + 5,(1) — ¢y10(u(2))



Inhibitory coupling

v oy

B two possible attractor stats
Bu,>0andu, <0

By, <0andu, >0

B => competition/selection

Tty (1) = — u () + h + 51(2) — ¢1,0(uy(1))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))



Inhibitory coupling

h'IS|
B to visualize, assume that T

. inhibition
U, has been activated by h+s,,.c.2\y\fmmtu2

input to a positive level

B => it inhibits i,

Tty (1) = — u () + h + 51(2) — ¢1,0(uy(1))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))

uj

U2



Inhibitory coupling

B symmetry: same logic if ©; was initially
activated it would prevent u, from
activating

B => bistable selection of either u; or u,

T (1) = —u () + h+ 51() — cyr0(uy(2))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))



Inhibitory coupling

B asymmetric case: e.g. more e
. €¢ ’» |
input to u, (better “match”) => N\ !
faster increase => u, selected 1 f

A 4

inhibition
h+s|-c|3 from uy

B => input advantage => time
advantage => competitive
advantage

T (1) = — u(t) + h + 51(t) — cr0(uy(2))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))

A duy/dt
A\
I x:
h+52




OXFORD SERIES IN DEVELOPMENTAL COONITIVE NEUROSCIENCE

simulating inhibitorily
coupled activation
variables
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Mathematical formalization

global inhibitory interaction

P _/ \

wx —x")=w,.e 222 —w.

w(x-X) /
B kernel: local excitatory interaction/ / \
X-X'

+ activation field

m local excitation

global inhibition

dimension

tu(x,t) = —ulx, )+ h+ s(x, t) + de’ w(x —x') o(u(x’))



Mathematical formalization

Amari equation
ri(z,t) = —u(z,t) + h+ Sz, t) + / w(z — 2)o(u(@, 1)) dr’

where
e time scale is 7
e resting level is h < 0
e input is S(x,1)

e Interaction kernel is




Interaction: convolution
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Neural dynamic nodes

M sets of discrete activation
variables as “nodes”

M self-excitatory:“on” vs “off” states,
detection instability, sustained activation

M all nodes coupled inhibitorily: selection

| N
M => discretely sampled fields 2:
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4-dimensional
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