DFT Foundations 1: Space and Time

Gregor Schöner Institute for Neural Computation (INI) <u>dynamicfieldtheory.org</u>

Time:

Roadmap

neural dynamics

interaction

Instabilities

Simulating instabilities

- activation in neural populations carries functional meaning
- activation: u(x, t) where x spans lowdimensional spaces

[Schöner TopiCS 2019]

Where do the spaces come from?

connectivity from sensory surfaces / to motor surfaces

forward connectivity from the sensory surface extracts perceptual feature dimensions

- => neural map from sensory surface to feature dimension
- neglect the sampling by individual neurons => activation field

- analogous for projection onto to motor surfaces...
- which actually involves behavioral dynamics (e.g., through neural oscillators and peripheral reflex loops)

Distribution of Population Activation (DPA) <=> neural field

Distribution of population activation =

note: neurons are not localized within DPA!

[Bastian, Riehle, Schöner, 2003]

Hypothesis: mental states are localized in these low-dimensional spaces

Time:

Roadmap

neural dynamics

interaction

Instabilities

Simulating instabilities

Time

activation u ~ population level membrane potential

- defined relative to sigmoid
 - above threshold: transmitted
 - below threshold: not transmitted

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

- activation dynamics = neural dynamics
- originates from membrane dynamics
- inputs as "forces"
 - positive: excitatory
 - negative: inhibitory

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

Qualitative dynamics

dynamical system: the present determines the future

- **fixed point** = constant solution = stationary state
- stable fixed point = attractor: nearby solutions converge to the fixed point

- activation dynamics = neural dynamics
- originates from membrane dynamics
- inputs as "forces"
 - positive: excitatory
 - negative: inhibitory

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

input shifts the attractor

=> activation tracks this shift

 $=> \sigma(u(t))$ transmitted to down-stream neurons

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

so far: only transmits and smooths time courses of input

Time:

Roadmap

neural dynamics

interaction

Instabilities

Simulating instabilities

Interaction

... beyond input driven activation

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

strong recurrent connectivity within populations

$$+\int w(x-x')\sigma(u(x',t))dx'$$

interaction

excitatory for neighbors in space

inhibitory for activation at a spatial distance

Time:

Roadmap

neural dynamics

interaction

Instabilities

Simulating instabilities

Instabilities

- detection instability
- reverse detection instability
- sustained activation
- selection
- selection instability
- boost driven detection/selection
- events and sequences

detection instability of sub-threshold state=> switch to peak

peak persists below detection instability => bistable

reverse detection instability of peak

sustained activation

~working memory

detection and selection induced by homogeneous boost

=> amplify small inhomogeneities

- u(x)

- q(u(x))

-h + s(x)

detection and selection induced by homogeneous boost

=> peak forms that amplifies small inhomogeneities

- u(x) - q(u(x))

h + s(x)

the detection instability creates events at discrete moments in time

even in response to time-continuous input

the basis of sequence generation

Time:

Roadmap

neural dynamics

interaction

Instabilities

Simulating instabilities

Tutorial

simulating the instabilities of the field dynamics

dynamicfieldtheory.org

SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

Attractors and their instabilities

- input driven solution (subthreshold)
- self-stabilized solution (peak, supra-threshold)
- selection / selection instability
- working memory / memory instability
- boost-driven detection instability

detection instability reverse detection instability

Noise is critical near instabilities

Instabilities

- detection instability
- reverse detection instability
- sustained activation
- selection
- selection instability
- boost driven detection/selection
- events and sequences

Dynamic regimes

which attractors and instabilities arise as input patterns are varied

examples

- "perceptual regime": mono-stable sub-threshold => bistable sub-threshold/peak => mono-table peak..
- "working memory regime" bistable sub-threshold/peak => mono-table peak.. without mono-stable sub-threshold
- single ("selective") vs. multi-peak regime

Time:

Roadmap

neural dynamics

interaction

Instabilities

Simulating instabilities