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Space: fields

M activation in neural populations carries
functional meaning

M activation: u(x, ) where x spans low-
dimensional spaces

[Schoner TopiCS 2019]



Where do the spaces come from!
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Neural fields
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M as described by tuning
curves or receptive fields
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Neural fields

B => neural map from
sensory surface to
feature dimension

B neglect the sampling by
individual neurons =>
activation field
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Neural fields
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Distribution of Population
Activation (DPA) <=> neural field

Distribution of population activation =
2 tuning curve * current firing rate
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B nhote: neurons are not
localized within DPA! [Bastian, Riehle, Schéner, 2003]



Hypothesis: mental states are localized in
these low-dimensional spaces
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Time



Neural dynamics

M activation u ~
population level
membrane potential

tu(x,t) = —ulx,t) + h + s(x, 1)

A input, s(x,t)
B defined relative to u(x,)

SlngId /
o(u(x,t
B above threshold: (u(x.1))
transmitted [/ dme.
>

B below threshold: not J ______ resting level, h
transmitted




Neural dynamics

W activation dynamics = 5(x, 1) = — u(x, ) + h + s(x, 1)
neural dynamics

A du(x,t)/dt

M originates from
membrane dynamics input, s
M inputs as “‘forces”
> oo >
B positive: excitatory T T u(x)
resting h+s

B negative: inhibitory level, h



Tutorial : : :
Qualitative dynamics

B dynamical system: the present determines the future
B fixed point = constant solution = stationary state

M stable fixed point = attractor: nearby solutions
converge to the fixed point

A du/dt = f(u)

vector-field
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Neural dynamics

W activation dynamics = 5(x, 1) = — u(x, ) + h + s(x, 1)
neural dynamics

A du(x,t)/dt

M originates from
membrane dynamics input, s
M inputs as “‘forces”
> oo >
B positive: excitatory T T u(x)
resting h+s

B negative: inhibitory level, h



Neural dynamics

tu(x,t) = —ulx,t) + h+ s(x, 1)
M input shifts the

attractor A input, s(x,t)
° . ’t
B => activation —
tracks this shift m(x 9)
n= G(M(f)) // time, t
. >
transmitted to N resting level, h
down-stream ro(w)
4

neurons




Neural dynamics

tu(x,t) = —ulx,t) + h + s(x, 1)

A input, s(x,t)
u(x,t)
M so far: only
transmits and ﬂ,(x )
smooths time [/
courses of input mer,
| resting level, h
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Interaction



...beyond input driven activation

tu(x,t) = —ulx,t) + h + s(x, 1)

B strong recurrent
connectivity within

+ Jw(x — x)o(u(x', t))dx’

populations . .
interaction

M excitatory for neighbors i ,ctivation field

In space
mlocal excitation

M inhibitory for activation inhibitory interaction
at a spatial distance

dimension
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M detection instability

M reverse detection instability

M sustained activation

M selection

M selection instability

M boost driven detection/selection

M events and sequences



M detection instability of sub-threshold state=>

switch to peak

M peak persists below detection instability =>

bistable

activation peak
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M reverse detection instability of peak

activation peak
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M sustained activation

B ~working memory
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A selection

M selection
instability
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M detection and selection induced by homogeneous
boost

B => amplify small inhomogeneities

1.0
0.5+
0.0

-5.0

Legend
= ht 5(z) w——(z) =—g(u(z))




M detection and selection induced by homogeneous
boost

B => peak forms that amplifies small inhomogeneities
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B the detection
instability creates
events at discrete
moments in time

M even in response to
time-continuous input

B => the basis of
sequence generation
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- OXFORD SERIES IN DEVELOPMENTAL COONITIVE NEUROSCIENCE

simulating the
instabilities of the field
dynamics
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Attractors and their instabilities

reverse
detection detection

instability instability

M input driven solution (sub-
threshold) l

M self-stabilized solution
(peak, supra-threshold)

M selection / selection
instability

® working memory /

memory instability
Noise is critical

M boost-driven detection near instabilities

instability



M detection instability

M reverse detection instability

M sustained activation

M selection

M selection instability

M boost driven detection/selection

M events and sequences



Dynamic regimes

B which attractors and instabilities arise as
input patterns are varied

M examples

B “perceptual regime”: mono-stable sub-threshold =>
bistable sub-threshold/peak => mono-table peak..

B “working memory regime” bistable sub-threshold/peak
=> mono-table peak.. without mono-stable sub-threshold

M single (“selective”) vs. multi-peak regime
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