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“dynamics”

® the word “dynamics”
M time-varying measures
M range of a quantity

M forces causing/accounting for movement => dynamical
systems

B dynamical systems are the universal language
of science

B physics, engineering, chemistry, theoretical biology,
economics, quantitative sociology, ...



time-variation and rate of change

A X:position

Mvariable x(t); t: time

M rate of change dx/dt A dx/dt: velocity

t: time




functional relationship between a
variable and its rate of change

=> dynamical system
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(linear) dynamical system

A 1 dx/dt = -x




exponential relaxation to attractors

mrx = — x => x(1) = x(0)exp[—1t/7] (check!)

B => has a well-defined time scale

x> X(T) X(27) time




(nonlinear) dynamical system

dx/dt=f(x)

A




dynamical system

M present determines the future

M siven initial condition

M predict evolution (or predict the past)

dx/dt=f(x)

A
predicts

future initial
evolution condition




dynamical systems

B x: spans the state space (or phase space)
Bf(x): is the “dynamics” of x (or vector-field)

B x(t) is a solution of the dynamical systems to
the initial condition x 0

M if its rate of change = f(x)
M and x(0)=x 0



Dynamical systems

M differential equation X = f(x) in one
dimension

B => an initial value of x determines the future



Dynamical systems

M system of differential equations x = f(x)

B => a vector of initial states,
X = (X[, Xy, . ..,X,) determines the future



Dynamical systems

M partial differential equations

ox(y,
Ky, 1) = f(x(y,t), sl t),...)
0y

Mintegro-differential equations

(. 0) = |dy' f(y,y,x(y, 1))

B => continuously many initial values=initial
function x(y) determine the future



Dynamical systems

M delay differential equations x(7) = f(x(t — 7))

lfunctlonal differential equations

X(1) = dtf (x(2))

B => a past piece of trajectory determines the
future



Dynamical systems

Miteration equation in discrete time (map)
Xn+1 = g(xn)

Mevery dynamical system in continuous time
=> dynamical system in discrete time
(Poincare)

Ma dynamical system in discrete time can be
lifted to a dynamical system in continuous
time (but not uniquely)



Resources

B free online textbook by Scheinermann

M https://github.com/scheinerman/
InvitationToDynamicalSystems

M send him a postcard (as instructed there)
M really nice book for beginners...

M focus on the time-continuous part..


https://github.com/scheinerman/InvitationToDynamicalSystems
https://github.com/scheinerman/InvitationToDynamicalSystems

numerics

Bsample time discretely

Hcompute solution by iterating through
time

Byvalid approximation for small time
steps...



forward Euler

mf, = IAf so that x; = x(¢,)

Bx = dx/dt =~ Ax/At where Ax = x; | — X;
Bx =f(x) =>x,, =x;,+ Af f(x;)

| ... valid for small At

Bis the “worst” approximation scheme
(needs smallest time step to achieve given
precision...)

Bmbut useful for real-time embedded (and
for stochastic systems)



modern numerics

B Runge-Kutte: error scales with step size
to a power (e.g.4)

BMadaptive step size..

Bbuilt-into numerical packages... e.g. ode45
in Matlab



B => simulation



qualitative theory of
dynamical systems

Mgood source:

M Lawrence Perko: Differential Equations and Dynamical
Systems, Springer 2001 (4th edition)



qualitative theory of
dynamical systems

BMthe goals is to characterize the
ensemble of solutions of the dynamical
system (or a family of such)

B = the flow

M. .. use special invariant solutions to do
that... fixed points, their stable/unstable
manifolds...



attractor

B fixed point, to which neighboring initial conditions
converge = attractor

dx/dt=f(x)

A

attractor



fixed point

Bis a constant solution of the dynamical system



stability

B mathematically really: asymptotic stability

M defined: a fixed point is asymptotically sta
when solutions of the dynamical system t

dle,
nat

start nearby converge in time to the fixec
point



stability

M the mathematical concept of stability (which
we do not use) requires only that nearby
solutions stay nearby

M defined: a fixed point is unstable if it is not
stable in that more general sense,

B that is: if nearby solutions do not necessarily stay nearby (may
diverge)



linear approximation near attractor

\* dx/dt = f(x)
\

B non-linearity as a small
perturbation/
deformation of linear

system

B => non-essential non-
linearity




stability in a linear system

dr/dt=F(L)
Mif the slope of the A

linear system is
negative, the fixed
point is

(asymptotically
stable)




stability in a linear system

dA/dt=Ff(0)
Mif the slope of the 4

linear system is
positive, then the

fixed point is - —>
unstable




stability in a linear system

Bif the slope of the linear :jk/dt_f(K)
system is zero, then the
system is indifferent
(marginally stable: stable -6

but not asymptotically
stable)




stability in linear systems

M generalization to multiple dimensions

B if the real-parts of all Eigenvalues are negative: stable
B if the real-part of any Eigenvalue is positive: unstable

B if the real-part of any Eigenvalue is zero: marginally stable in that
direction (stability depends on other eigenvalues)



stability in nonlinear systems

B stability is a local property of the fixed point

B => linear stability theory

B the eigenvalues of the linearization around the fixed point determine
stability

B all real-parts negative: stable
B any real-part positive: unstable

B any real-part zero: undecided: now nonlinearity decides (non-
hyberpolic fixed point)



stability in nonlinear systems

\* d/dt = f())
\

M all real-parts negative: stable

M any real-part positive: 4 divdt = (1)
unstable




stability in nonlinear systems

4 dwdt = ()) 4 dwdt = 1())
7—_4} —H—T)
B any real-part zero: &
undecided: now
nonlinearity decides R
di/dt = () 4 dwdt = 1())

(non-hyberpolic fixed
point)




bifurcations

B ook now at families of dynamical systems, which
depend (smoothly) on parameters

B ask: as the parameters change (smoothly), how do
the solutions change (smoothly?)

B smoothly: topological equivalence of the dynamical systems at
neighboring parameter values

B bifurcation: dynamical systems NOT topological equivalent as
parameter changes infinitesimally



bifurcation

A dx/dt=f(x)

T I\

attractor 1 attractor 2



bifurcation

B bifurcation=qualitative change of dynamics (change in
number; nature, or stability of fixed points) as the
dynamics changes smoothly

A dx/dt=f(x)

. >

T |

attractor 1 attractor 2




tangent bifurcation

B the simplest bifurcation (co-dimension 0): an attractor collides
with a repellor and the two annihilate

A dx/dt=f(x)

\

T T

attractor 1 attractor 2




local bifurcation

A dx/dt=f(x)

\

| T

attractor 1 attractor 2




reverse bifurcation

B changing the dynamics in the opposite direction

A dx/dt=f(x)

| |

attractor 1 attractor 2



bifurcations are instabilities

B that is, an attractor becomes unstable before
disappearing

B (or the attractor appears with reduced stability)

B formally: a zero-real part is a necessary condition
for a bifurcation to occur



tangent bifurcation

B normal form of tangent bifurcation
T = — x°

B (=simplest polynomial equation whose flow is
topologically equivalent to the bifurcation)

dx/dt fixed point  zy = Vo
A

A

N stable
o posmvg(
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Hopf theorem

B when a single (or pair of complex conjugate)

eigenvalue crosses the imaginary axis, one of four
bifurcations occur

B tangent bifurcation
B transcritical bifurcation

B pitchfork bifurcation

B Hopf bifurcation



transcritical bifurcation

B normal form T = ar — 1

A dx/dt A fixed point

o. negative | o positive

X
»

stable

nstable

o.=0




pitchfork bifurcation

B normal form

dx/dt
A

\ >

anegative =0

r=ar —I

stable

\ o positive

A

fixed point

T = —2xor = —2\/ax
o

unstable



Hopf: need higher dimensions



2D dynamical system:

vector-field
A X2
\ \ \i v r/
. \ \ \ v /
T = fi(xy1, 12)
9 = fo(xq,x9) I NN : rd
_— v V ! ~




1 = fi(z1,22)
To = fo(x1,x9)

vector-field

initial
condition
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fixed point, stability, attractor

1 = fi(z1, 29)
To = fo(x1,x9)

initial
condition
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Hopf bifurcation

3

r=qQr—r

B nhormal form .
¢ =w

A dr/dt
X
A
stable o
nstable

y




forward dynamics

B given known equation, determined fixed points /
limit cycles and their stability

B more generally: determine invariant solutions
(stable, unstable and center manifolds)



inverse dynamics

B given solution, find the equation...

B this is the problem faced in design of behavioral
dynamics...



inverse dynamics: design

Bin the design of behavioral dynamics... you may be
given:

B attractor solutions/stable states

B and how they change as a function of parameters/
conditions

B => identify the class of dynamical systems using the
4 elementary bifurcations

B and use normal form to provide an exemplary
representative of the equivalence class of dynamics



