Mathematics and Computer Science for Modeling Unit 6: Differential Equations

Stephan Sehring based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

October 2, 2024

Overview

1. Differential Equations

- > Application: Dynamical Systems
- > Solving Differential Equations
- > Dynamical Systems: Stability
- > Numeric integration

Application: Dynamical Systems

- A dynamical system is a system of one or more variables that change in time
- e.g., the location of a falling ball
- Dynamical systems can often be described with a differential equation that describes the rate of change of the system at each point in time, e.g.,

$$h''(t) = -g$$

Solving this differential equation means finding a function h(t) that describes the location of the ball at each point in time.

$$h(t) = h_0 - \frac{1}{2}gt^2$$

Differential Equations

Generally, a differential equation describes how the rate of change of a system depends on its current state. For example:

$$f'(x) = 4f(x) + 5$$

Differential Equations

Generally, a differential equation describes how the rate of change of a system depends on its current state. For example:

$$f'(x) = 4f(x) + 5$$

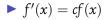
A differential equation describes how a system should change in a given state.

Solving Differential Equations

- ► Given a differential equation of the form f'(x) = g(f(x)) ... the original function f(x) is usually not known.
- Solving a differential equation describes the process of finding an f(x) that satisfies the differential equation for all x
 - Example:

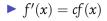
$$f'(x) = 4f(x) + 5 \Rightarrow f(x) = \frac{e^{4x+c}}{4} - \frac{5}{4}$$
 and $f'(x) = e^{4x+c}$

►
$$f'(x) = cx$$

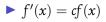


► f'(x) = cx

The rate of change follows a fixed rule depending on x



- ► f'(x) = cx
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$



- ► f'(x) = cx
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- $\blacktriangleright f'(x) = cf(x)$

- ► f'(x) = cx
 - The rate of change follows a fixed rule depending on *x*
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- $\blacktriangleright f'(x) = cf(x)$

The rate of change is a function of its antiderivative

► f'(x) = cx

- The rate of change follows a fixed rule depending on *x*
- The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
- This is not a differential equation as no f(x) is on the right side

$\blacktriangleright f'(x) = cf(x)$

- The rate of change is a function of its antiderivative
- In this case, the only function that stays the same when differentiated is the exponential function e^x

► f'(x) = cx

- The rate of change follows a fixed rule depending on x
- The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
- This is not a differential equation as no f(x) is on the right side
- $\blacktriangleright f'(x) = cf(x)$
 - The rate of change is a function of its antiderivative
 - In this case, the only function that stays the same when differentiated is the exponential function e^x
 - Considering the chain rule, the derivative of e^{cx} is exactly ce^{cx} therefore $f(x) = ce^{cx}$

Solutions and Initial Conditions

• There are infinitely many antiderivatives for any function f(x) since f(x) = (F(x) + c)' = F'(x).

Solutions and Initial Conditions

- There are infinitely many antiderivatives for any function f(x) since f(x) = (F(x) + c)' = F'(x).
- ▶ The same is true for differential equations.

Solutions and Initial Conditions

- There are infinitely many antiderivatives for any function f(x) since f(x) = (F(x) + c)' = F'(x).
- ▶ The same is true for differential equations.
- But: Given some initial condition (f(x₀), x₀) we find a unique solution f(x).

First-order linear differential equations

First-order linear differential equations: f'(x) + a(x)f(x) = b(x)

First-order linear differential equations

- First-order linear differential equations: f'(x) + a(x)f(x) = b(x)
- General solution: $f(x) = (\int b(x)e^{A(x)}dx + c)e^{-A(x)}$ with $A(x) = \int a(x)dx$

$$\blacktriangleright f'(x) + 2f(x) = e^x$$

$$\blacktriangleright f'(x) + 2f(x) = e^x$$

$$a(x) = 2 \Rightarrow A(x) = 2x$$

$$\blacktriangleright f'(x) + 2f(x) = e^x$$

$$\blacktriangleright a(x) = 2 \Rightarrow A(x) = 2x$$

 \blacktriangleright $b(x) = e^x$

 $\blacktriangleright f'(x) + 2f(x) = e^x$

$$\blacktriangleright a(x) = 2 \Rightarrow A(x) = 2x$$

 $\blacktriangleright b(x) = e^x$

$$\blacktriangleright f(x) = (\int e^x e^{2x} dx + c) e^{-2x}$$

For
$$f'(x) + 2f(x) = e^x$$
 we find the general solution: $f(x) = \frac{e^x}{3} + ce^{-2x}$

For
$$f'(x) + 2f(x) = e^x$$
 we find the general solution: $f(x) = \frac{e^x}{3} + ce^{-2x}$

For
$$f'(x) + 2f(x) = e^x$$
 we find the general solution: $f(x) = \frac{e^x}{3} + ce^{-2x}$

For
$$f'(x) + 2f(x) = e^x$$
 we find the general solution: $f(x) = \frac{e^x}{3} + ce^{-2x}$

For
$$f'(x) + 2f(x) = e^x$$
 we find the general solution: $f(x) = \frac{e^x}{3} + ce^{-2x}$

Higher-order and non-linear differential equations

- Differential equations are not always easy to solve or might not even have any analytical solution.
- Higher-order: a(x)f(x) + b(x)f'(x) + c(x)f''(x) + ... = b(x)
- ► Non-linear: eg. $\tau a'(t) = -a(t) h + k\sigma(a(t))$

Stability

- Even if we do not have a the solution to a dynamical system, we can still make statements about the stability of the system.
- Fixed points are of major interest to determine the stability of a dynamical system.

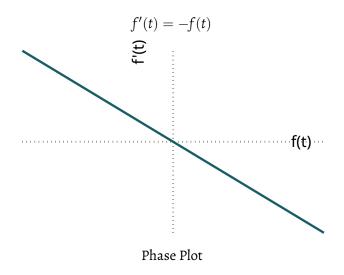
Stability

- Even if we do not have a the solution to a dynamical system, we can still make statements about the stability of the system.
- Fixed points are of major interest to determine the stability of a dynamical system.
- A fixed point f_0 is a point where $f' = 0 \Rightarrow$ no change in time.

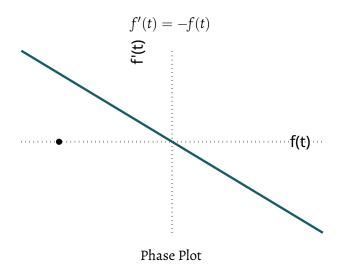
Stability

- Even if we do not have a the solution to a dynamical system, we can still make statements about the stability of the system.
- Fixed points are of major interest to determine the stability of a dynamical system.
- A fixed point f_0 is a point where $f' = 0 \Rightarrow$ no change in time.
- The sign of f' around the fixed point gives us information about the stability of the system.

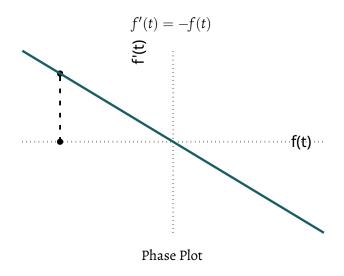
Phase Plots of Dynamical Systems

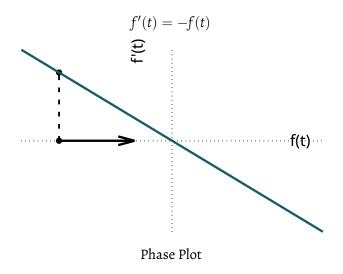


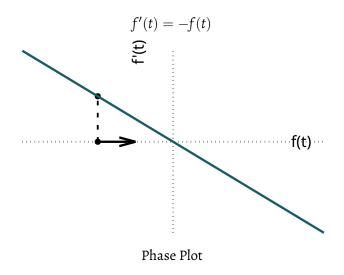
Phase Plots of Dynamical Systems

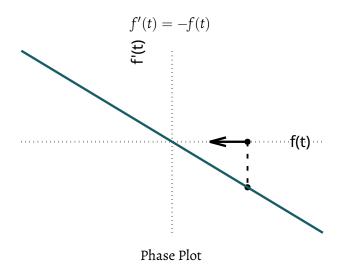


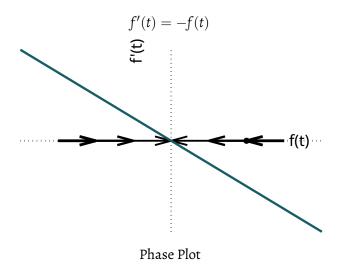
Phase Plots of Dynamical Systems



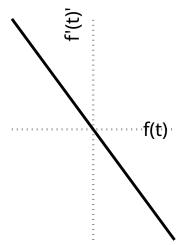




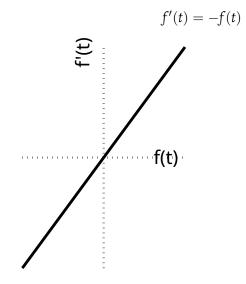




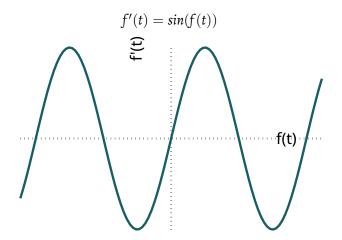
Attractors



Repellors



Initial Condition Matters



Exercise1

- Revisit the example of the falling ball in the first slide of this lecture. We will now include a term to model the air resistance of the ball as it speeds up.
- Let $v'(t) = -\gamma v(t) + mg$ be the differential equation we want to solve, where v is the velocity of the ball, mg models the gravitational force and $-\gamma v(t)$ models the drag force of the air as the ball speeds up.
- Draw the phase plot of this linear differential equation. Is the system stable? How should ν(t) develop for different initial conditions?
- ► Can you find a solution to this differential equation? Start by assuming v(t) = Ae^{-ct} + B and see if you can determine the free parameters (A, B, c). Assume the initial condition to be v(0) = 0. Does the solution behave as expected?

Simplest method for numerically integrating a differential equation.

Simplest method for numerically integrating a differential equation.
 d/dt f(t) = g(f(t)) and f(t₀) = f₀
 f(t₁) = f(t₀) + d/dt f(t₀) Δt = f₀ + g(f₀) Δt

Simplest method for numerically integrating a differential equation.
d/dt f(t) = g(f(t)) and f(t₀) = f₀
f(t₁) = f(t₀) + d/dt f(t₀) Δt = f₀ + g(f₀) Δt
f(t₂) = f(t₁) + d/dt f(t₁) Δt = f(t₁) + g(f(t₁)) Δt

Exercise2

- Write a python program that numerically integrates a differential equation using the Euler method.
- Numerically integrate the differential equation from exercise 1 and compare the result to the analytical solution.
- How could you compute the position of the ball from the known velocities at different points in time?

Advanced Exercise

- Coupled differential equations of multiple variables (X(t), Y(t), Z(t))can be written as $\begin{pmatrix} X'(t) \\ Y'(t) \\ Z'(t) \end{pmatrix} = \begin{pmatrix} f(X, Y, Z) \\ g(X, Y, Z) \\ h(X, Y, Z) \end{pmatrix}$
- ► We can still use the Euler method to solve this equation for some initial condition (X₀, Y₀, Z₀).

$$\begin{pmatrix} X(t_i) \\ Y(t_i) \\ Z(t_i) \end{pmatrix} = \begin{pmatrix} X(t_{i-1}) \\ Y(t_{i-1}) \\ Z(t_{i-1}) \end{pmatrix} + \begin{pmatrix} f(X(t_{i-1}), Y(t_{i-1}), Z(t_{i-1})) \\ g(X(t_{i-1}), Y(t_{i-1}), Z(t_{i-1})) \\ h(X(t_{i-1}), Y(t_{i-1}), Z(t_{i-1})) \end{pmatrix} \Delta t$$

See if you can find the **Lorenz Attractor** by numerically solving the following system $\begin{pmatrix} f(X, Y, Z) \\ g(X, Y, Z) \\ h(X, Y, Z) \end{pmatrix} = \begin{pmatrix} a(Y - X) \\ X(b - Z) - Y \\ XY - cZ \end{pmatrix}$, for a = 10, b = 28 and c = 8/3.