Mathematics and Computer Science for Modeling Unit 5: Integration

Stephan Sehring based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

October 1, 2024

Overview

1. Motivation

2. Mathematics

- > Approximating the Area under a Curve
- > Calculating the Area under a curve
- ► Improper Integrals

3. Exercise

You drove 30 km/h for 6 hours. How far did you drive?

You drove 30 km/h for 6 hours. How far did you drive?

You drove 30 km/h for 6 hours. How far did you drive?

Let's say you slowed down for the last 3 hours. How far did you get?

Let's say you slowed down for the last 3 hours. How far did you get?

What if you mixed it up to not get bored?

What if you mixed it up to not get bored?

But how about something realistic?

 Not all areas can be calculated with rectangles

- Not all areas can be calculated with rectangles
- One can however approximate them

- Not all areas can be calculated with rectangles
- One can however approximate them

- Not all areas can be calculated with rectangles
- One can however approximate them
- The more rectangles the better the approximation becomes

- Not all areas can be calculated with rectangles
- One can however approximate them
- The more rectangles the better the approximation becomes

Midpoint Riemann Sum

Calculating Midpoints

The **Midpoint Riemann Sum** is a way of approximating an integral with finite sums.

The are under the curve in a given interval $[x_i, x_{i+1}]$ can be approximated as the area of a rectangle with width $\Delta x = x_{i+1} - x_i$ and height $f(\frac{x_i+x_{i+1}}{2})$:

$$f(\frac{x_i+x_{i+1}}{2})\Delta x$$

The sum over all intervals yields an estimation of the area under the curve

$$I_M = \sum_{i=1}^{n} f(\frac{x_i + x_{i+1}}{2}) \Delta x$$

Midpoint Sums

Midpoint Sums

Midpoint Sums

Exercise1

- 1. Download the exercise_template.py file from the course webpage. Run the script. What does it do?
- 2. Write a function 'midpoint_sum(f, interval, dx)' that calculates the Midpoint Riemann Sum by taking as input any callable function 'f', an integration 'interval' defined as a list [lower_bound, upper_bound] and a step-size dx.
- 3. Test the function by calculating and plotting the Riemann Sum of the function f(x) = x in the interval [0,10] for different dx.
- 4. What should be the area A under f(x) = x for this interval? Compare your result to the Riemann Sum by plotting the absolute difference between the real and approximated area (abs(A sum)) for different dx.
- 5. (optional) What happens for some interval [-a,a]?

From Sums to Integrals

Midpoint Sum: $f(\frac{x_i+x_{i+1}}{2})\Delta x$

The larger the number *n* of intervals, the smaller Δx and the better our approximation.

From Sums to Integrals

Midpoint Sum: $f(\frac{x_i+x_{i+1}}{2})\Delta x$

The larger the number *n* of intervals, the smaller Δx and the better our approximation.

What if *n* becomes infinitely large and Δx becomes infinitely small?

From Sums to Integrals

Midpoint Sum: $f(\frac{x_i+x_{i+1}}{2})\Delta x$

The larger the number *n* of intervals, the smaller Δx and the better our approximation.

What if *n* becomes infinitely large and Δx becomes infinitely small?

Definite Integral

The **definite integral** of a function f(x) between the **lower boundary** a and the **upper boundary** b

$$\int_{a}^{b} f(x) dx$$

is defined as the size of the area between f and the x-axis inside the boundaries. Areas above the x-axis are considered positively and areas below negatively.

Definite Integral

$$f(x) = \cos(x)$$
 $\int_0^x \cos(x') dx' = \int \cos(x') dx'$

The Antiderivative

Definition

If f is a function with domain $[a, b] \to \mathbb{R}$ and there is a function F, which is differentiable in the interval [a, b] with the property that

F'(x)=f(x),

then F is considered an **antiderivative** of f

The Antiderivative

Definition

If f is a function with domain $[a, b] \to \mathbb{R}$ and there is a function F, which is differentiable in the interval [a, b] with the property that

F'(x)=f(x),

then F is considered an **antiderivative** of f

Properties of an antiderivative

- Differentiation removes constants, therefore F(x) + c for any constant c is also an antiderivative
- Unlike with differentiation there are no fixed rules to compute an antiderivative from a given f

A function and its antiderivative

The Fundamental Theorem of Calculus

First Fundamental Theorem of Calculus

One of the antiderivatives of a function can be obtained as the indefinite integral:

$$\int f(x')dx' = F(x)$$

• Intuition: The rate of change of the area under f(x) is f(x)

The Fundamental Theorem of Calculus

Second Fundamental Theorem of Calculus

If f is integrable and continuous in [a,b], then the following holds for each antiderivative F of f

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Example:

Area under f(x) = x between values 1 and 2

J

$$\int_{1}^{2} x dx = \left[\frac{1}{2}x^{2}\right]_{1}^{2} = \frac{1}{2}2^{2} - \frac{1}{2}1^{2} = 1.5$$

Definite Integral Example

The Integral is a Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

The Integral is a Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

Scalar Multiplication

$$\int_{a}^{b} cf(x) = c \int_{a}^{b} f(x)$$

The Integral is a Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

Scalar Multiplication

$$\int_{a}^{b} cf(x) = c \int_{a}^{b} f(x)$$

Boundary Transformations

$$\int_a^b f(x) + \int_b^c f(x) = \int_a^c f(x) \qquad \qquad \int_a^b f(x) = -\int_b^a f(x)$$

Non-Linear rules

Integration Rules

Integration by Parts

$$\int f(x)g(x)dx = f(x)\int g(x)dx - \int f'(x)(\int g(x)dx)dx$$

Substitution Rule

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Other rules

Integration Rules

Power Rule

$$\int x^n dx = \frac{x^{n+1}}{n+1}$$

Exponential

$$\int e^x dx = e^x + C$$

log
$$\int ln(x)dx = xln(x) - x + C$$

Improper Integrals

Infinite Intervals

It is possible to calculate the area in infinitely large intervals. Intervals with an infinite boundary are called **Improper Integrals**

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

Example:

Convergent improper integral

$$\int_{1}^{\infty} x^{-2} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-2} dx = \lim_{b \to \infty} \left[-x^{-1} \right]_{1}^{b} = \lim_{b \to \infty} (-b^{-1} + 1) = 1$$

Exercise

Exercise2

Answer the following tasks using a piece of paper and a pocket calculator.

- **1.** Given the Antiderivative $F(x) = 12x^2 + 5x$ of the function f(x), calculate the area between f(x) and the x-axis in the interval of [-3, 5].
- 2. Calculate $\int_{0}^{\pi} \cos(x) dx$. Before applying the formula, look at a plot of $\cos(x)$. What kind of result would you expect?
- 3. Use the midpoint_sum() function from the last exercise to numerically approximate the anti-derivative of an arbitrary function f. Plot the result. Try this out for different functions and compare to the analytic results.
- 4. (optional) Think of the function $f(x) = sin(\frac{1}{x})$. What does this function look like? Is the integral over [-a, a] well defined? Do you expect a numeric Riemann Sum evaluation to yield good results?

Exercise Solutions

Exercise

Exercise Solutions

1. The antiderivative is already given, therefore you only need to plug-in the beginning and the end of the interval.

$$[F(x)]_a^b = F(b) - F(a) = F(5) - F(3)$$

=12 * 5² + 5 * 5 - (12 * (-3)² + 5 * (-3)) = 325 - 93 = 232

Exercise

Exercise Solutions

1. The antiderivative is already given, therefore you only need to plug-in the beginning and the end of the interval.

$$[F(x)]_a^b = F(b) - F(a) = F(5) - F(3)$$

=12 * 5² + 5 * 5 - (12 * (-3)² + 5 * (-3)) = 325 - 93 = 232

2. Looking at the plot of cos(x) you can see that exactly the same area is enclosed above the x-axis as below the x-axis, therefore the total area has to be zero.

To verify this analytically, you need to figure out the antiderivative of $\cos(x)$ first. From the lecture you know that F(x) = sin(x).

$$[F(x)]_a^b = F(b) - F(a) = F(\pi) - F(0) = \sin(\pi) - \sin(0) = 0 - 0 = 0$$