Mathematics and Computer Science for Modeling Unit 4: Calculus

Stephan Sehring based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

September 29, 2024

Overview

1. Motivation

Numerical Differentiation

2. Differentiation

- > Graphical Interpretation
- ► Formal Description
- Rules for Differentiation

3. Exercises

Motivation

Estimating Velocity by Differentiation

Numerical Differentiation

Problem: Only function values f(x₀) of f(x) are known, but not the real function f

Numerical Differentiation

Problem: Only function values f(x₀) of f(x) are known, but not the real function f

(Simple) Numerical Differentiation

It is possible to calculate the average slope of f(x) between x_i and x_{i+1} .

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Exercise 1

- 1. Calculate the change of position between time 3 and 4. Next, calculate the rate of change of the position (= velocity) between time 3 and 4.
- 2. Do the same for the time between 3 and 5.
- 3. Now assume that the position is given as $f(t) = t^2$. Plot that function from time 0 to 3. Calculate the velocity between time 0 and 2. Draw a line through the points (0, f(0)) and (2, f(2)). How does the slope of the line relate to the velocity? Why? Next, do the same for the velocity between time 1 and 2, then between time 1.5 and 2.
- 4. Think about what it would mean to calculate the velocity *at* time 2.

Motivation ➤ Numerical Differentiation

2. Differentiation

- > Graphical Interpretation
- ► Formal Description
- Rules for Differentiation

3. Exercises

The derivative of a function f(x), denoted f'(x), measures the degree to which f(x) changes when x changes

 $f(x) = x \qquad f'(x) = 1$

- ► The derivative of a function f(x), denoted f'(x), measures the degree to which f(x) changes when x changes
- f'(x) is the slope of the tangent at x

$$f(x) = 0.5 \qquad f'(x) = 0$$

Derivative as a Tangent

Derivative as a Tangent

Derivative as a Tangent

Differentiable Function

• The **derivative of** f **at position** x_0 , short f'(x), is defined as

х

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

► This denotes the value of $\frac{f(x)-f(x_0)}{x-x_0}$ as x gets closer and closer to x_0 .

Differentiable Function

• The **derivative of** f **at position** x_0 , short f'(x), is defined as

2

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

- ► This denotes the value of $\frac{f(x)-f(x_0)}{x-x_0}$ as x gets closer and closer to x_0 .
- ► *f* is called **differentiable** if and only if this limit exists.

Differentiable Function

• The **derivative of** f **at position** x_0 , short f'(x), is defined as

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

► This denotes the value of $\frac{f(x)-f(x_0)}{x-x_0}$ as x gets closer and closer to x_0 .

- ► *f* is called **differentiable** if and only if this limit exists.
- Alternate notations:

$$f'(x) = \frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Statement: The derivative of $f(x) = x^2$ is f'(x) = 2x

- **Statement:** The derivative of $f(x) = x^2$ is f'(x) = 2x
- Applying the formula

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

- **Statement:** The derivative of $f(x) = x^2$ is f'(x) = 2x
- Applying the formula

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

Simplifying

$$\lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0)$$

- **Statement:** The derivative of $f(x) = x^2$ is f'(x) = 2x
- Applying the formula

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

Simplifying

$$\lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0)$$

Applying the limit:

$$\lim_{x\to x_0}(x+x_0)=2x$$

Differentiation is a linear operator

Rules

Constant Factor	$\frac{d}{dx}(af) = a\frac{d}{dx}(f)$
Sums	$\frac{d}{dx}(f+g) = \frac{d}{dx}(f) + \frac{d}{dx}(g)$

Example:

$$\frac{d}{dx}(4x^2) = 4\frac{d}{dx}(x^2) = 4(2x) = 8x$$

Differentiation is a linear operator

Rules

Constant Factor	$\frac{d}{dx}(af) = a\frac{d}{dx}(f)$
Sums	$\frac{d}{dx}(f+g) = \frac{d}{dx}(f) + \frac{d}{dx}(g)$

Example:

$$\frac{d}{dx}(4x^2) = 4\frac{d}{dx}(x^2) = 4(2x) = 8x$$
$$\frac{d}{dx}(4x^2 + x^2) = 4\frac{d}{dx}(x^2) + \frac{d}{dx}(x^2) = 4(2x) + 2x = 10x$$

Differentiation for Products and Quotients

Rules

Multiplication

$$\frac{d}{dx}(fg) = \frac{d}{dx}(f)g + f\frac{d}{dx}(g)$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{\frac{d}{dx}(f)g - f\frac{d}{dx}(g)}{g^2}$$

Examples

Multiplication

$$\frac{d}{dx}(x^2\sin(x)) = \frac{d}{dx}(x^2)\sin(x) + x^2\frac{d}{dx}(\sin(x)) = 2x\sin(x) + x^2\cos(x)$$

Examples

Multiplication

$$\frac{d}{dx}(x^2\sin(x)) = \frac{d}{dx}(x^2)\sin(x) + x^2\frac{d}{dx}(\sin(x)) = 2x\sin(x) + x^2\cos(x)$$

Division

$$\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{\frac{d}{dx}(1)x - 1\frac{d}{dx}(x)}{x^2} = \frac{0-1}{x^2} = \frac{-1}{x^2}$$

Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$

Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$
$$= 2xx + x^2 = 3x^2$$

Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$
$$= 2xx + x^2 = 3x^2$$

• Example $f'(x^4)$

$$\frac{d}{dx}(x^4) = \frac{d}{dx}(x^2x^2) = \frac{d}{dx}(x^2)x^2 + x^2\frac{d}{dx}(x^2)$$

Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$
$$= 2xx + x^2 = 3x^2$$

• Example $f'(x^4)$

$$\frac{d}{dx}(x^4) = \frac{d}{dx}(x^2x^2) = \frac{d}{dx}(x^2)x^2 + x^2\frac{d}{dx}(x^2)$$
$$= 2xx^2 + x^22x = 2x^3 + 2x^3 = 4x^3$$

Special cases

The derivative of

$$f(x) = e^x \operatorname{is} f'(x) = e^x$$

The derivative of

$$f(x) = \ln(x) \operatorname{is} f'(x) = \frac{1}{x}$$

The derivative of

$$f(x) = sin(x) \text{ is } f'(x) = cos(x)$$

Composite functions

Chain Rule

Function h is a composition of functions g and f

$$h(x) = (g \circ f)(x) = g(f(x))$$

▶ If *f* and *g* are differentiable, *h* is also differentiable

$$\frac{d}{dx}(h(x)) = \frac{d}{dy}(g(y))\frac{d}{dx}(f(x))$$
, with $y = f(x)$

Verbal rule: Inner derivative times outer derivative

▶
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

▶
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

 $g(x) = 5x^4 \wedge f(x) = 7x + 2$
 $g'(x) = 20x^3 \wedge f'(x) = 7$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^3 \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^37 = 140(7x + 2)^3$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^3 \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^37 = 140(7x + 2)^3$$

$$\blacktriangleright h(x) = e^{5x} = g(f(x))$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^3 \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^37 = 140(7x + 2)^3$$

$$h(x) = e^{5x} = g(f(x))$$
$$g(x) = e^x \wedge f(x) = 5x$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^3 \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^37 = 140(7x + 2)^3$$

$$h(x) = e^{5x} = g(f(x))$$

$$g(x) = e^x \wedge f(x) = 5x$$

$$g'(x) = e^x \wedge f'(x) = 5$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^3 \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^37 = 140(7x + 2)^3$$

$$h(x) = e^{5x} = g(f(x))$$

$$g(x) = e^x \wedge f(x) = 5x$$

$$g'(x) = e^x \wedge f'(x) = 5$$

$$h'(x) = e^{5x}5 = 5e^{5x}$$

Finding Local Extrema

Finding Local Extrema

$$\blacktriangleright f(x) = 4x^2 + 6x$$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$
 $\iff x = \frac{-6}{8} = \frac{-3}{4}$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$
 $\iff x = \frac{-6}{8} = \frac{-3}{4}$
► $f(x) = sin(x)$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$
 $\iff x = \frac{-6}{8} = \frac{-3}{4}$
► $f(x) = sin(x)$
 $f'(x) = cos(x)$
 $f'(x) = cos(x) \stackrel{!}{=} 0$
 $\iff x = cos^{-1}(0)$
 $\iff x = 90^\circ = \frac{\pi}{2}, 270^\circ = \frac{3\pi}{2}, ...$

Differentiability is not given

Differentiable Function

• The **derivative of** f **at position** x_0 , short f'(x), is defined as

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

► This denotes the value of $\frac{f(x)-f(x_0)}{x-x_0}$ as x gets closer and closer to x_0 .

- ► *f* is called **differentiable** if and only if this limit exists.
- Alternate notations:

$$f'(x) = \frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Differentiation is a linear operator

Rules

Differentiation for Products and Quotients

Rules

Multiplication

$$\frac{d}{dx}(fg) = \frac{d}{dx}(f)g + f\frac{d}{dx}(g)$$

Exponentiation

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Division

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{\frac{d}{dx}(f)g - f\frac{d}{dx}(g)}{g^2}$$

Exercises

Composite functions

Chain Rule

Function h is a composition of functions g and f

$$h(x) = (g \circ f)(x) = g(f(x))$$

▶ If *f* and *g* are differentiable, *h* is also differentiable

$$\frac{d}{dx}(h(x)) = \frac{d}{dy}(g(y))\frac{d}{dx}(f(x))$$
, with $y = f(x)$

Verbal rule: Inner derivative times outer derivative

Special cases

The derivative of

$$f(x) = e^x \operatorname{is} f'(x) = e^x$$

The derivative of

$$f(x) = \ln(x) \operatorname{is} f'(x) = \frac{1}{x}$$

► The derivative of

$$f(x) = sin(x) \text{ is } f'(x) = cos(x)$$

Exercises

Exercise 2

1. Calculate the derivative of the following functions (on a piece of paper)

1.1
$$f(x) = 7x^4$$

1.2 $g(x) = 2x^4 + 3x^3 + x^2 + 10x + 5$
1.3 $h(x) = 4e^{3x}$
1.4 $i(x) = (12x^2 + 5)3x^3$
1.5 $j(x) = \frac{3x}{\cos(x)}$

- First think about the rule you need to use
- Identify the parts of the rule in the equation
- If possible differentiate individual parts first
- Apply the rule
- **2.** Find the extreme value of the function $k(x) = 6x^2 + 3x + 2$