Mathematics and Computer Science for Modeling Unit 1: Introduction to Programming in Python

Stephan Sehring based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

23.09.2024

Why this course?

- Anyone with a Bachelor's degree in any of the cognitive sciences can start this course
- Not all of you will have the same level of background knowledge for all of the lectures
- The preparatory courses are here to help you bridge that gap
- ► Goal: Bring you on a similar level regarding mathematics and computer science skills
- ... which will hopefully make it easier for you to get through the Master programme
- ▶ The course is not mandatory, but recommended

Course concept

▶ The course is split into lecture parts and exercise parts

Exam

- At the end of the course, there will be a written exam (04.10. at 12 am)
- ► The exam is graded, but this is only for your feedback and won't enter into your average grade

Dates

- 1. Mon 23.09. 15-17:30
- 2. Tue 24.09. 15-17:30
- 3. Wed 25.09. 15-17:30
- 4. Thu 26.09. 15-17:30
- 5. Fri 27.09. 15-17:30
- 6. Mon 30.10. 15-17:30
- 7. Tue 01.10. 15-17:30
- 8. Wed 02.10. 15-17:30
- 9. Fri 04.10. 15-17:30

Course Structure

Unit	Title	Topics
1	Intro to Programming in Python	Variables, if Statements, Loops, Func-
		tions, Lists
-	Full-Time Programming Session	Deepen Programming Skills
2	Functions in Math	Function Types and Properties, Plotting
		Functions
3	Linear Algebra	Vectors, Trigonometry, Matrices
4	Calculus	Derivative Definition, Calculating
		Derivatives

Course Structure

Unit	Title	Topics
5	Integration	Geometrical Definition, Calculating In-
		tegrals
6	Differential Equations	Properties of Differential Equations
-	04.10.24: Test	

Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics _and_computer_science_for_modeling_winter_term_2024

Questions

Email me with any questions you might have: stephan.sehring@ini.rub.de

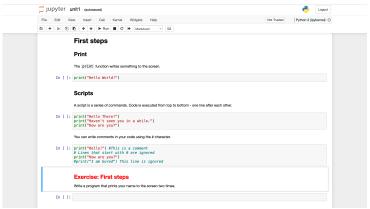
Python

The Python Programming Language

Why Python?

- It is simple
- It is high-level
- It is interpreted "on the fly"
- It is widespread in the scientific community

Helpful Resources


- The Anaconda Distribution contains all necessary software: https://www.anaconda.com/distribution/
- You can find helpful documentation here: https://docs.python.org/3/

Getting Started

- ► Install Anaconda: https://www.anaconda.com/
- Download the document "Jupyter notebook" for Unit 1 (filename "unit1.ipynb") from the course website
- Start the program "Anaconda-Navigator". Find the application "Jupyter Notebook" and click on "launch".
- ► (Alternative: Start the program "Anaconda Prompt". Wait for a prompt to appear and then enter "jupyter notebook" into that prompt)
- Navigate to the directory where you saved the "unit1.ipynb" file and click on that file

Getting Started

You are now presented with a so-called Jupyter Notebook, a document that allows you to execute existing Python code and write your own Python code while being guided by narrative text

Getting Started

