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Inverting a model of neuromuscular control to estimate descending activation
patterns that generate fast-reaching movements

Cora Hummert, Lei Zhang, and Gregor Sch€oner
Institute for Neural Computation, Ruhr-University, Bochum, Germany

Abstract

Reaching movements generally show smooth kinematic profiles that are invariant across varying movement speeds even as interaction
torques and muscle properties vary nonlinearly with speed. How the brain brings about these invariant profiles is an open question.
We developed an analytical inverse dynamics method to estimate descending activation patterns directly from observed joint angle tra-
jectories based on a simple model of the stretch reflex, and of muscle and biomechanical dynamics. We estimated descending activa-
tion patterns for experimental data from eight different planar two-joint movements performed at two movement times (fast: 400 ms;
slow: 800 ms). The temporal structure of descending activation differed qualitatively across speeds, consistent with the idea that the
nervous system uses an internal model to generate anticipatory torques during fast movement. This temporal structure also depended
on the cocontraction level of antagonistic muscle groups. Comparing estimated muscle activation and descending activation revealed
the contribution of the stretch reflex to movement generation that was found to set in after about 20% of movement time.

NEW & NOTEWORTHY By estimating descending activation patterns directly from observed movement kinematics based on a
model of the dynamics of the stretch reflex, of muscle force generation, and of the biomechanics of the limb, we observed how
brain signals must be temporally structured to enable fast movement.

inverse model; motor control; reaching movements; reflex system

INTRODUCTION

Humans move their hands toward objects on gently
curved paths that have a temporal profile that is smooth and
largely invariant across workspace and movement speeds (1,
2). To achieve such invariant kinematics, muscles must be
activated at the right time and to the right extent in ways
that vary across workspace. The forces generated by muscles
evolve in time in a way that depends on the rate of change of
muscle activation and muscle length. The active torques
generated by muscle forces at each joint perturb other joints
through interaction torques that through inertial, centrifu-
gal, and Coriolis coupling vary nonlinearly with joint veloc-
ity (3). What kind of neural activation patterns does the
brain need to generate to bring about the invariant and
smooth kinematic profiles given the variant and rate-de-
pendentmuscular andmechanical constraints? This is a cen-
tral question in the field of motor control often framed as the
problem of the “internal model,” that is, the problem of how

the brain “computes” the required neural signals that will
bring about the right set of muscle forces that take into
account all these complexities of the muscle-joint system (4).
The methods of computational motor control have been
used to characterize the performance of the nervous system
with respect to such questions (5) and extensive empirical
work has been aimed at understanding the adaptive mecha-
nisms through which such internal models may adapt to
changing properties of the plant or of its mechanical envi-
ronment (6).

The argument has been made that spinal reflex circuitry
may simplify this control problem (7), in effect relieving the
brain to some extent of the task of computing specific neural
signals that compensate for the muscle properties and me-
chanical coupling. In the limited case of perfect peripheral
control, the brain would need to planmovement only at a ki-
nematic level in very simple and invariant ways and leave all
the detailed control to spinal reflexes (8). In recent work
from our group, we explored this issue by using the
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bimechanical dynamics, a model of the dynamics of mus-
cle force generation, and a simple model of the stretch
reflex to estimate the minimal change in descending acti-
vation that is needed to bring about smooth movements of
the hand to a target location (9). We found that such mini-
mally changing descending activation patterns are not
invariant across the workspace and do not scale in a sim-
ple way when the speed of movement is varied. This
refuted the hypothesis that the stretch reflex and muscle
properties alone render superfluous the temporal structur-
ing of descending activation patterns postulated in the in-
ternal model framework. Only in the limited case of slow
movements was the minimally changing descending acti-
vation pattern ramp-like consistent with the equilibrium
point hypothesis (10).

The nervous system does not necessarily use a “minimally
changing” descending activation pattern to generate move-
ment. In fact, in this earlier work, we found discrepancies
between the predicted and observed kinematics that stem
from the fact that more change in descending activation is
needed to accelerate than to slow down joint motion (a fact
that comes from the larger forces generated by muscles
when they lengthen than when they shorten). If we were
able to directly estimate the descending activation pattern
needed to generate any particular movement, we could
directly observe how the brain solves the internal model
problem. We could also determine the extent to which
reflexes support or hindermovement.

In this paper, we make a first attempt at such a direct esti-
mation. We use the same set of models of mechanical, mus-
cle, and reflex dynamics as earlier, but now analytically
invert that model. This enables us to directly determine
from experimentally observedmovement trajectories the de-
scending activation patterns that the modeled system would
need as input to generate the observed movements. This
inversion requires further simplifications, whose validity we
assess in part by testing if the forward simulations of the
model are consistent with the initial data. We perform this
analysis for a set of experimental trajectories obtained at two
different overall movement speeds and observe how de-
scending activation is reshaped with movement speed. We
also assess when and how strongly the stretch reflex contrib-
utes to the joint torques that accelerate and decelerate joint
motion.

METHODS

Estimation Method

The estimation approach was developed around an experi-
mental data set that probed the targeted movement of the
hand at two overall movement speeds. Movement of the arm
was limited to the shoulder and elbow joint operating within
a horizontal plane (Fig. 1). Planarmovement was obtained by
instruction, avoiding the isometric forces that may arise
when pushing against amanipulandum (11). The table height
was adjusted to the height of the shoulder of the sitting par-
ticipant. Additionally, participants were strapped to the
chair with a belt near their right shoulder to limit trunk
movement. To limit wrist movement, the wrist was strapped
into a splint.

Participants.
We tested 12 participants (8 female; 4 male; mean age ¼
25.67 yr; SD ¼ 3.80; age range: 22–35, mean height ¼ 1.72 m;
and mean weight ¼ 65.2 kg) who self-reported to be right-
handed and who performed the task with their right arm
(Fig. 1). One participant’s data were excluded due to failure
to successfully complete sufficiently many trials (see
Analysis). The experiment was approved by the institutional
ethics committee, and participants gave written consent.
Participants were compensated with 10 euros for the 1-h ex-
perimental session.

Material.
The experiment was controlled and analyzed in Matlab
R2018a making use of the Psychophysics Toolbox Version 2
(PTB-2) for the visual presentation of the movement targets
on the horizontally orientated 110�62mm computer screen.
A VisualEyez Motion Capture system (Phoenix Technologies
Inc.) captured the arm’s configuration based on single chip
LED markers fixed to four locations on the arm (Fig. 1, note
that 2 markers on the splint are represented by a single aster-
isk representing the computed position of the wrist). The
LED markers emit strobe infrared light at a frequency of
4,340 Hz and are detected by two trackers installed on the
wall above the display table, each equipped with three infra-
red cameras. The four markers were sampled at a rate of 250

Figure 1. Top view of the experimental set-up with sampled movements.
The participant is seated in front of a horizontal monitor with the center of
his or her shoulder at a distance of 0.2 m from the monitor. Participants
performed 8 different movements, assigned the number displayed next to
each starting position, with green arrows marking the forward and blue
the backward movements. Infrared markers (illustrated by red asterisks)
were attached to the shoulder, elbow, and wrist joints. The shoulder (hS)
and elbow (hE) joint angles are marked. The arm was held parallel to the
horizontal monitor surface and the hand moved within that horizontal
plane.
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Hz, and their positions were recorded with visualEyez
software.

Task.
Movements were instructed by displaying the initial hand
position as a red circle on the horizontal computer screen
and displaying the target hand position as a green circle
(circle radius of 34 mm). All possible initial and target posi-
tions and the eight possible movements are shown in Fig. 1.
Six movements (3 to 8) had an amplitude of 25 cm, and two
movements (1 and 2) had an amplitude of 40 cm, the latter
chosen tomatch themovement conditions used in Ref. 8.

Movement time was imposed by an auditory metronome.
During training trials, the metronome repeated the start and
end sound (750 and 550 Hz) three times followed by one
tone (620 Hz) that indicated movement initiation. The inter-
val between the tones was the desired movement time (400
ms for the fast condition and 800 ms for the slow condition).
In the test trials, the metronome played the start tone and
the initiation tone once.

Procedure.
The experiment consisted of a calibration block and two
blocks at the two movement speeds. In the calibration block,
the marker positions were registered when the hand was at
each of the seven target locations and when the arm was in
three different joint angle configurations (arm extended for-
ward and sideways, elbow bent at a right angle). The cali-
brated hand position for each target was used to verify that
the participant’s hand was positioned over the correct start-
ing location at the beginning of each trial in the other blocks.
The purpose of the calibration of the three joint configura-
tions was to ensure that the calculated joint angles matched
the real angles.

The second and third blocks were each organized into 5
sessions of 32 trials each. A session began with a repetition of
each movement with the metronome for training. Then,
movements were performed without metronome, in random
order, with 3 repetitions of each movement. In total the par-
ticipants completed 320 movement trials, with 160 trials in
each condition.

Analysis.
Only trials whose movement duration did not exceed the
median movement duration of each participant by more
than one-third were considered successful and analyzed fur-
ther. If more than four trials of one movement had to be thus
discarded, the participant was excluded from the analysis,
which happened for the thirteenth participant.

Movement duration was defined as the time from move-
ment onset to movement offset. Movement onset was
defined as the first point in time at which both hand veloc-
ity was larger than 5% of peak velocity and hand acceler-
ation was larger than 5% of maximal acceleration.
Movement offset was defined analogously. This double
criterion was chosen to better deal with the two different
movement durations.

Trajectories were trimmed to the interval from on- to off-
set, filtered with a third-order low-pass Butterworth filter
with a cut-off frequency of 5 Hz, and time normalized across
all repetitions of eachmovement and speed condition.

Marker positions were shifted so that the shoulder was at
[0,0]. The joint angles (hj, j ¼ {s, e}) were estimated from the
marker positions as illustrated in Fig. 1. Joint angle velocities
and accelerations were computed for the original trajectories
but also represented in time normalized form.

The time-normalized joint angle trajectories were used
to calculate mean trajectories by averaging across trials,
thereby obtaining 16 trajectories (8 movements at 2
speeds) for each participant. These mean trajectories were
used to estimate the descending activation and simulate
the movements.

For one participant, we performed the estimation and vali-
dation procedures (see Estimation Method) for each individ-
ual trial. This served to assess if the potential inconsistency
of the mean trajectories with the kinematic constraints of
the arm’s geometry could lead to discrepancies. We used the
descending activation patterns estimated for each individual
trial to predict the individual trial’s kinematics from the
model. These predictions were averaged across trials and
compared to the predictions obtained from the estimates
that were based on the mean trajectories. We found that the
difference between predicted trajectories was negligibly
small and that the estimated activation patterns do not differ
notably. We concluded that an analysis based on mean tra-
jectories is appropriate.

Estimation Method

Model.
Estimation of descending activation patterns was based on a
model of the biomechanics, muscle dynamics, and the
stretch reflex illustrated in Fig. 2. This model was adapted
from the well-known model of Gribble and colleagues (8),
which is itself a simplification of modern Hill-type muscle
models (12) and more complete reflex models (7). We chose
the Gribble et al. (8) model as a basis for estimation because
it provides benchmark simulations that have previously
been compared to experimental data. Because this model

Figure 2. Sketch of the model used for estimation of descending activa-
tion patterns. Adapted from Ref. 8, the model comprises a reflex, muscle,
biomechanical, and sensor component. The input to the model is de-
scending activation, u(t). The output of the model is the predicted joint tra-
jectories h(t), _h(t).
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was also used in our earlier effort to estimate descending
activation from optimality principles (9), we will be able to
assess the proposed estimation procedure against those ear-
lier results. Moreover, the simplifiedmodel lends itself to an-
alytical inversion, enabling us to take observed movement
trajectories and directly compute estimated descending acti-
vation patterns.

The reflex model combines descending activation, u(t),
with the sensory signal, s(t), to generate muscle activation,
A(t):

AðtÞ ¼ ½uðtÞ þ sðtÞ�þ for ½x�þ ¼ x if x > 0
0 if x � 0

�
ð1Þ

The model of the sensory feedback signal, s(t), entails a
delay, d¼ 25ms, over the physical muscle length, l(t), and its
rate of change, _l(t):

sðtÞ ¼ lðt� dÞ þ l _lðt� dÞ ð2Þ
where the parameter μ¼ 60ms was chosen to remain overall
close to a critically damped system. In the model, muscle
length, l(t), is determined from the associated joint angle,
h(t), as

lðtÞ ¼ c þ c0hðtÞ ð3Þ
in which the lever arm, c0, is approximated as being
constant.

The muscle model was adapted from Ref. 8 and includes
three serial components. First, a graded measure of muscle
force, M~ (t), reflects the dependence of muscle force on
gradedmotor neuron recruitment:eMðtÞ ¼ q½expðzAðtÞÞ � 1� ð4Þ

Here, the magnitude parameter, r, is estimated by Gribble
et al. (8) from empirical measurements of the physiological
cross-sectional area and is specific to each muscle. The form
parameter, z, is associated with the gradient ofmotor neuron
recruitment and is assumed equal for all muscles.

The second component reflects the calcium kinetics of
force generation, modeled as a critically damped harmonic
oscillator that low-pass filters (at a time scale of s ¼ ms) the
graded muscle force, eM(t), to generate the instantaneous
muscle force,M(t):

s2 €M þ 2s _M þ M ¼ gMðtÞ: ð5Þ
Third, the resulting muscle force F(t) depends on the rate

of change of muscle length, _l(t)

F ¼ M½ f1 þ f2 arctanð f3 þ f4 _lÞ� ð6Þ
with parameter values for f1–4 adopted from Gribble et al. (8)
[which were based on physiological data from the cat soleus
muscle (13)].

To enable analytical inversion, this muscle model is sim-
plified over the model of Gribble et al. (8) in four ways: 1)
muscle lever arms are approximated as constants; 2) muscle
parameters, c, c0, and r, are assumed symmetric across flex-
ors and extensors: c0iF ¼ c0iE, where the index i stands for
elbow (e) and shoulder (s), respectively, and subscripts F and
E refer to flexor and extensor, respectively; 3) passive elastic

contributions to muscle force are neglected; and 4) the con-
tributions of biarticulatorymuscles are neglected.

This last approximation was necessary to reduce redun-
dancy. The original model included six muscles for the pla-
nar elbow-shoulder arm (Fig. 1), two monoarticulatory
muscles for each joint, and two biarticulatory muscles. Joint
torques thus did not uniquely determine muscle forces.
Analytical inversion was not possible for such a redundant
system. Neglecting biarticular muscles implies that esti-
mates from analytical inversion are better for movements to
which biarticulatory muscles contribute little (e.g., move-
ments of the hand toward or away from the body (movements
3 to 8 in Fig. 1). All other simplifications are relatively minor
assumptions.

The biomechanical model

Ts
Te

� �
¼ I11 0

0 I22

� �
€hs
€he

" #
þ C11 C12

C21 0

� �
_hs
_he

" #
ð7Þ

entails the active joint torques at the shoulder, Ts(t), and
elbow, Te(t), computed from the flexor, FiF(t), and extensor,
FiE(t), muscle forces:

TiðtÞ ¼ c0iEðFiFðtÞ � FiEðtÞÞ ð8Þ
where i 2 {shoulder, elbow}. The dependence of the Coriolis
matrix, C(h, _h), and inertial matrix, I(h), on joint angles and
velocities is listed, e.g., in Ref. 11.

Model inversion.
This model thus takes the descending activation, u(t), as
input and returns the joint angle trajectories, h(t), as output.
The goal of our estimation method is to invert the model by
taking measured joint angle trajectories, h(t), as input and
returning descending activation signals, u(t), that would
generate these joint trajectories according to the model. The
estimated descending activation signal, u(t), can be directly
compared to the estimated time course of muscle activation,
A(t), to assess the contribution of reflex-induced muscle
activation.

Even though we are neglecting biarticulatory muscles, we
are still left with descending activation signals for four
muscles based on only two joint angles. This remainingmus-
cle redundancy is due to potential cocontraction of flexor
and extensor muscles around the same joint. We address this
redundancy by making and varying assumptions about the
level of such cocontraction. To enable this approach, it is
convenient to transform descending activation signals, u(t),
into reciprocal, R(t), and cocontraction, C(t), signals:

RiðtÞ ¼ ðuiFðtÞ � uiEðtÞ þ ciF � ciEÞ=ð2c0iÞ ð9Þ

CiðtÞ ¼ ðuiFðtÞ þ uiEðtÞ þ ciF þ ciEÞ=ð2c0iÞ ð10Þ
C captures the mean descending activation signal sent to

extensor and flexor, while R captures the difference between
descending activation signals sent to the two antagonistic
muscles.1

The first step in the inversion is an inverse biomechanical
dynamics, computing from given joint trajectories and their
derivatives the active joint torques, Ti(t), via Eq. 7. These can

1These notions were originally proposed within equilibrium point theory (10), which interprets descending activation as a virtual length, k ¼ �u, at
which the combination of descending activation and sensory feedback reaches threshold: u þ s ¼ �k þ length ¼ 0. This makes it possible to
interpret R and C in spatial terms. Our analysis does not profit from that interpretation, so we do not invoke it here.
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be linked tomuscle forces, FiF and FiE, via Eq. 8. Substituting
muscle forces by instantaneous muscle forces via Eq. 6 leads
to

TiðtÞ
c0iE

¼ MiFðtÞaiFðtÞ �MiEðtÞaiEðtÞ ð11Þ

with the abbreviations

aiFðtÞ ¼ f1 þ f2 arctanð f3 þ f4 _liFðtÞÞ ð12Þ

aiEðtÞ ¼ f1 þ f2 arctanð f3 þ f4 _liEðtÞÞ ð13Þ
To replace instantaneous muscle forces, M(t), by graded

muscle forces, eM(t), we need to solve the Calcium dynamics
Eq. 5:

MðtÞ ¼ 1
s2

ðt
ðt� t0Þe�ðt�t0Þ=s eMðt0Þdt0 ð14Þ

This is the stationary solution. As in all previous uses of
this model, transients are assumed to have decayed. This so-
lution can be well approximated by a pure delay:

MðtÞ � eMðt� sÞ ð15Þ
To understand this, it is useful to note that for s!0, the in-

tegral kernel in Eq. 14 approaches the Dirac Delta-function,
d(t � s). Figure 3 illustrates that at relevant parameters set-
tings, M(t) obtained from Eq. 5 is essentially just delayed by

s ¼ 15 ms over eM(t). This approximation makes it possible to
substituteM(t) and then eM bymuscle activation, A, via Eq. 4

TjðtÞ
c0iEqi

þ aiFðtÞ � aiEðtÞ ¼ aiFðtÞexp zAiFðetÞ� �� aiEðtÞexp zAiEðetÞ� � ð16Þ

whereet ¼ t� s.
The last step is to use the reflex model, Eq. 1, to replace

the muscle activation, A, by descending activation, u, and
sensory signals, s:

TjðtÞ
c0iEqi

þ aiFðtÞ � aiEðtÞ ¼ aiFðtÞexp z½uiFðetÞ þ siFðetÞ�þ� �
�aiEðtÞexp z ½uiEðetÞ þ siEðetÞ�þ� � ð17Þ

These two equations (i 2 {shoulder, elbow}) determine
only two of the four descending activation signals, uiF and
uiE. We use Eqs. 9 and 10 to reduce these four variables to
the two reciprocal signals, Ri(t), while selecting fixed values
or fixed time courses for the cocontraction signals, Ci.

Analyzing the semilinear threshold function, [·]þ , sepa-
rately for positive and negative arguments leads to four
cases. When both arguments are negative, the equations do
not depend on R and no estimate is possible. Straight-for-
ward algebra delivers solutions for the three other cases,
leading to

RiðtÞ ¼

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

undefined
if uiFðetÞ > sðetÞ
and uiEðetÞ > sðetÞ

(

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðtÞ2 þ 4diFðtÞdiEðtÞ

q
þ gðtÞ

2aiFðtÞdiFðtÞ

0@ 1A 1
zc0iE

if uiFðetÞ < sðetÞ
and uiEðetÞ < sðetÞ

(

Ci þ hiðtÞ � log 1� TiðtÞ
c0iEqiaiEðtÞ

 !
1

zc0iE

if uiFðetÞ < sðetÞ
and uiEðetÞ > sðetÞ

(

�Ci þ hiðtÞ þ log 1 þ TiðtÞ
c0iEqiaiFðtÞ

 !
1

zc0iE

if uiFðetÞ > sðetÞ
and uiEðetÞ < sðetÞ (18)

(

The following abbreviations are used:

gðtÞ ¼ TjðtÞ
c0iEqi

þ aiFðtÞ � aiEðtÞ ð19Þ

hiðtÞ ¼ hiðt̂Þ þ l _hiðt̂Þ ð20Þ

diFðtÞ ¼ aiFðtÞexpðzc0iEðCi � hiðtÞÞÞ ð21Þ

diEðtÞ ¼ aiEðtÞexpðzc0iEðCi þ hiðtÞÞÞ ð22Þ

where t̂ ¼ et � d ¼ t � s � d. Note that the case conditions
themselves depend on the to be estimated descending acti-
vation signals, uiF and uiE. To address this, the algorithm of

estimation computes Ri(t) for all three cases at every
moment in time. The resultant values are combined with the
assumed values for Ci to determine uiF and uiE via Eqs. 9 and
10. We then do a consistency test by comparing the values of
s and u and checking whether the estimated u values indeed
lie within the range of their respective case. Only the self-
consistent estimates where u falls within that range are
retained. Empirically, at almost every moment in time, only
one estimate is found that is self-consistent, leading to a
unique estimate (see below). The transition of estimates
from one case to another is also continuous, which leads to
the smooth trajectories for u (see Figs. 8 and 9).

Validation methods.
We applied the estimation method for a set of different
cocontraction signals, Ci(t) (i 2 {shoulder, elbow}). To probe

ESTIMATING DESCENDING ACTIVATION

J Neurophysiol � doi:10.1152/jn.00179.2023 � www.jn.org 1275
Downloaded from journals.physiology.org/journal/jn (2A02:0908:0A67:7800:B590:5411:4D92:A302) on September 4, 2024.

http://www.jn.org


the extent to which higher levels of cocontraction enable fast
movements (8), we tested time invariant levels of Ci from 0.2
to 1.0 rad. The time-varying stiffness measures reported in
Ref. 14 motivated a set of different ramp-like time courses
for cocontraction that we also tested. For each set of Ci values
or trajectories, we estimated the Ri(t) trajectories and com-
puted the descending activation signals, uiF(t) and uiE(t), for
the ensemble of data sets obtained in the behavioral experi-
ments (seeModel inversion).

We then used these descending activation signals as input
to the model, numerically simulating the sampled move-
ments. The consistency of the estimate was assessed by com-
paring the predicted hand trajectories, ðX̂ ; Ŷ Þ, to the
experimental ones, (X, Y), using the root-mean-square error
(RMSE)

RMSE ¼ 100
TA

XN
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX̂ðtjÞ � XðtjÞÞ2 þ ðŶðtjÞ � YðtjÞÞ2

q
ð23Þ

where both time series are sampled by the same number, T,
of time steps, tj. The error was normalized acrossmovements
by dividing bymovement amplitude,A.

RESULTS

Kinematics of the Human Movement Data

Movement time approximately matches the duration
specified by the metronome with a mean movement time
across all movements and participants of 779 ms (SD ¼ 32
ms) in the slow and 445ms (SD¼ 22ms) in the fast condition
(Table 1).

The kinematics of the movement data are consistent with
literature data (11). In both the fast and the slow movement
conditions, hand paths are relatively straight (Fig. 4).

Figure 5 shows that hand trajectories are smooth and
hand velocity profiles are approximately bell shaped. The
two movements with larger amplitude (1 and 2) reach a
higher peak velocity. The velocity profiles are slightly asym-
metrical, rising more steeply and falling more slowly, as is
typical of timed and targetedmovements.

Figure 6 gives a sense of the variability of the human
movements by plotting the hand’s velocity (the length of the

hand’s velocity vector) as a function of normalized time for
all trials of one participant.

Validation of Estimation

The self-consistency of the estimation of descending acti-
vation was assessed by comparing observedmovement kine-
matics to the movement kinematics predicted from the
model based on the estimated descending activation pat-
terns. Table 2 shows the mean RMSE for the hand’s trajec-
tory across the eight movements. Overall, the mean RMSE
was 1:3% in the slow condition and 2:3% in the fast condi-
tion, both expressed as a proportion of the amplitude of the
movement. This difference was significant. Note that RMSEs
are larger for the two longer movements 1 and 2, and rela-
tively invariant across the six shorter movements (3 to 8).

Visual inspection of the predicted kinematics shows that
the estimate captures a number of qualitative features of the
human movement kinematics (Figs. 4 and 5). Note that dif-
ferences between different movements (from dark red to or-
ange in Figs. 4 and 5) are captured by the estimates (from
dark blue to light blue). The asymmetry of velocity profiles is
also captured by the estimates.

Figure 6 provides an intuition for how predictions derived
from individual trials match these trial characteristics.
Figure 6 also illustrates the considerable variability of the
human movement data, especially in the fast condition, that
is adequately captured by the estimates.

Temporal Structure of Descending Activation

We first examine the descending activation patterns esti-
mated for a constant C signal of 0.55 rad. We may look at
these descending activation patterns in two ways. The first is
based on the R signal of Eq. 9, which can be directly com-
pared to movement kinematics. To facilitate that compari-
son, we transformed the R signal into hand space by treating
it as a joint angle and applying the geometrical model. The
time course of the hand’s spatial position along a line con-
necting the initial to the target position is shown in Fig. 7 to-
gether with the transformed R signal projected onto that
same line. Time is normalized, so that the scaling of slow
(Fig. 7, left) versus fast (Fig. 7, right) movements is directly
visible. For slow movements, the R signal is monotonic and
similarly shaped as the hand trajectory but advanced in
time. This reflects the delay (or phase shift) between de-
scending activation and movement caused by muscle and
biomechanical dynamics. For fast movements, the R signal

Table 1. Movement time and its standard deviation
across participants for each of the eight movements in
the two movement conditions, slow vs. fast

Movement

Condition 1 2 3 4 5 6 7 8

Slow
MT, ms 798 791 809 755 717 694 809 855
MTSD, ms 25 18 30 23 18 19 19 19

Fast
MT, ms 455 448 460 443 400 495 482 479
MTSD, ms 25 18 30 23 18 19 19 19

MT, movement time; MTSD, movement time standard
deviation.

Figure 3. An example simulation illustrates howM(t) and eM(t) relate. These
time courses were obtained by estimating the descending activation pat-
tern for the third movement and then predicting the time courses of M(t)
and eM(t) by simulating the complete model, using the exact form of Eq. 5.
The shoulder flexor muscle forces [instantaneous force, M(t), in red;
graded muscle force, eM (t), in light red); and the extensor muscle forces (M
(t) in blue; eM(t) in light blue] are shown. The time measurements marked
by the black dots illustrate the time delay between the 2 curves.
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is not simply rescaled but has a qualitatively different tem-
poral structure. It is nonmonotonic and initially is strongly
advanced in time over the hand trajectory, while it falls
below the hand trajectory at the end of the movement for the
two longer movements (1 and 2, rows 1 and 2).

The second way to look at the descending activation pat-
tern is to do so directly in the activation space. This makes it
possible to compare the descending activation pattern to
muscle activation and relevant joint torques. This is done in
Fig. 8 for the shoulder and in Fig. 9 for the elbow joint. Three
observations are useful. First, interaction torques are larger
for fast movements (solid lines) and their time structure

differs in some cases compared to slowmovements (dashed).
Second, muscle activation starts from an initial level and
returns to that same level at the end of the movement, simi-
lar to interaction torques. Muscle activation is larger for fast
(solid lines) than for slow (dashed lines) movements. Its tem-
poral structure differs qualitatively across the two speeds.
For fast movements, there are cases in which muscle activa-
tion drops below the initial and final level during the move-
ment. Third, descending activation signals are initially
aligned with muscle activation (up to �15 to 20% of move-
ment time) but then become qualitatively different from
muscle activation, ending at a level that is different from the

Figure 5. Hand kinematics for the slow (A, C,
and E) and the fast condition (A, D, and F)
shown as functions of normalized time.
Human data averaged over participants and
trials are plotted in different shades of red for
the 8 different movements. Overlaid are the
predictions from the estimated descending
activation signals in different shades of blue
(estimates based on C signal ¼ 0.55). The
ordering of predicted kinematics from dark
blue to light blue is aligned with the ordering
of experimental kinematics from dark red to
orange. A and B: hand position along the
vector pointing from start to target. C and D:
hand position orthogonal to that vector. E
and F: hand velocity along the instantaneous
movement direction.

A B Figure 4. The hand paths are plotted for the
8 different movements in the slow (A) and
fast (B) conditions. Experimental data (aver-
aged across trials and participants) are in
shown red, with the dashed line indicating
the backward movement. Predictions from
the estimated descending activation (based
on C signal¼ 0.55 rad) are shown in blue.
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initial level. The temporal structure of descending activation
for fast movements (solid) is qualitatively different from that
of slow movements (dashed), with a tendency to advance
over the time course estimated for slow movements early in
the movement and then realign with that time course late in
themovement.

The dependence of the estimated descending activa-
tion pattern on the assumed levels or time courses of
cocontraction, C, was examined systematically (Figs. 10
and 11). For an exemplary movement and joint, results are
shown in Fig. 10. In Fig. 10, A–D, the level of time-invari-
ant cocontraction is varied within a range that may be
considered physiologically plausible (8). The time struc-
ture of the estimated R signal depends on the assumed
level of cocontraction. It is most strongly modulated for
weak cocontraction (light gray). Even at the strongest
level of cocontraction (dark gray), however, the time
course of the R signal differs qualitatively between slow
and fast movement and includes nonmonotonic compo-
nents. Intermediate levels of cocontraction show the
weakest temporal structure of the R signal for the fast

movement. This is the level we used in our previous anal-
ysis (C ¼ 0.55 rad).

Would a temporal modulation of cocontraction reduce the
temporal complexity of the R signal? We compared four types
of modulation within themidrange of C levels as illustrated in
Fig. 10E: constant (solid), increasing (dashed), maximum in
the middle of the movement (dotted), and a superposition of
increasing with a maximum in the middle of the movement
(dash-dotted). The R estimates vary very little when these dif-
ferent time courses of C are imposed (Fig. 10F). In all cases,
the validity of the estimate is unaffected by the variation of
the C signals as observed (red) and predicted (blue) joint tra-
jectories remain close (Fig. 10, C,D, andG).

We defined a measure, N, of how strongly the R signal is
temporally structured by computing the mean squared
difference between the R signal and a linear ramp from ini-
tial to target level. The linear ramp was assumed to reach
its final position at the point in time when peak hand ve-
locity is reached to be consistent with experimental find-
ings (15). This measure is larger, overall, in the fast versus
the slow condition across all movements and joints (Fig.
11). For the shoulder (Fig. 11, top), the measure decreases
with higher levels of cocontraction. For the elbow (Fig. 11,
bottom), this decrease is only apparent in the fast condi-
tion. This may be a bottom effect, as the measure of tem-
poral modulation is much smaller for the elbow than for
the shoulder.

We tested if the difference between the two speed condi-
tions was significant by conducted t tests for the two joints at
a level of C ¼ 0.55 rad. All tests were significant with a
smaller mean in the slow condition: elbow: Nfast ¼ 0.11 rad,
Nslow ¼ 0.06 rad (P ¼ 2.29, e � 05); shoulder: Nfast ¼ 0.20 rad,
Nslow ¼ 0.10 rad (1.72 e� 05) at a 1% significance level.

Table 2. RMSE is expressed as percentages of movement
amplitude

Movement

Condition 1 2 3 4 5 6 7 8

Slow 2.1 1.7 0.9 1.0 1.3 1.1 1.4 1.0
Fast 3.5 3.2 1.8 2.0 1.9 2.2 2.4 1.9

Root-mean-square error (RMSE) is averaged across participants
and across the different constant C signals used in the estimation.
RMSE across the 8 movements and the 2 movement conditions are
listed, slow vs. fast.

Figure 6. Individual trial hand velocity pro-
files for the slow (left) and fast (right) move-
ment condition. Top: data from 1 participant.
The 8 different movements are indicated
by different colors. Movement time is nor-
malized across all movements and trials.
Bottom: model predictions generated from
estimates of descending activation for each
individual movement of the participant.
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DISCUSSION

In this study, we used a simple model of the stretch reflex
and themuscle and biomechanical dynamics to directly esti-
mate the descending activation patterns that would have
generated observed humanmovements. The classical setting
of planar human arm movements with two degrees of free-
dom was used at two imposed movement times. This pro-
vided the opportunity to examine if descending activation
patterns vary with movement speed in ways that go beyond
mere rescaling.

Three major findings emerged. First, descending activa-
tion begins to deviate from muscle activation after about
20% of movement time, and, unlike muscle activation, does
not return to its initial level. Second, descending activation
is temporally structured in a way that may be nonmonotonic
and that does not simply rescale with movement time.
Third, if the level of cocontraction is kept at different time-
invariant levels within a movement, the estimated descend-
ing activation pattern has a different temporal structure.
Below we discuss these three insights in turn and then assess
the estimation procedure itself.

Descending Activation versus Muscle Activation

When movement is initiated, muscle activation is largely
driven by descending activation. In Figs. 8 and 9, the time
courses of these two signals, if shifted to start from the same
level, develop identically in this first phase. They begin to
deviate when between 15 and 20% of movement time has
passed. This is when the reflex begins to contribute to move-
ment muscle activation. Although we cannot exclude that
the exact time window depends on the specific model, this is
an intriguing way to observe this onset.

The deviation between descending and muscle activation
continues throughout the movement. In fact, descending
activation settles on a final level that is far from the initial
level, while muscle activation returns to its initial level.
Except for changes in cocontraction or changes relative to
gravity not treated here, muscle activation would generally
return to initial levels.

The terminal difference between descending and muscle
activation is natural and reflects the posture-movement
problem: if descending activation did not change over the
movement, the stretch reflex would work against the shift in

Figure 7. The coordinate of the hand’s posi-
tion along the line connecting initial to target
position is plotted as a function of time for all
8 movements (rows 1–8) in the slow (left) and
fast (right) conditions. Human data averaged
over participants and trials are shown in red,
and the data predicted from the estimates
of the descending activation pattern (at aC sig-
nal¼ 0.55 rad) are shown in blue. The R signal
transformed into hand space and projected
onto the same lines is shown in gray.
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posture brought about by the movement (16). Supportive
evidence comes from force-field adaptation studies that
detected shifts in the end state even when force fields were
zero there, which was interpreted as indicative of a path-
integrated component to the motor command (17).

Time Course of Descending Activation

For slowmovements, the estimated descending activation
has, in most cases, a monotonic “ramp,” like a time course
that terminates near the time of peak velocity. The ramp
shape is broadly consistent with the equilibrium point inter-
pretation of movement generation (10) and the termination
time is consistent with earlier experimental estimates of the
timing of descending activation (15). Not all slowmovements
exhibit this simple shape of descending activation, however.

Purely kinematic conceptions of movement generation
such as the equilibrium point hypothesis predict that de-
scending “motor commands” are merely rescaled in time
whenmovement duration varies. The time course of the esti-
mated descending activation pattern is not consistent with
such rescaling. This is obvious in Figs. 8 and 9, in which time
is normalized across the two duration conditions. For most

movements, descending activation patterns for fast move-
ments deviate from those of slow movements through extra
peaks or troughs early in the movement. This speaks against
a purely kinematic conception ofmovement generation.

Overall, the time courses of the estimated descending activa-
tion patterns are not very complex. They could be construed as
consisting of a rescaled kinematic component that would
reflect the shifting posture in the manner of equilibrium point
thinking and a superposed movement command that does not
rescale and starts and ends at zero. This second component
would then address the nonlinearities ofmovement generation
including interaction torques (shown in Figs. 8 and 9) (18). The
second component would be responsible for generating suffi-
cient initial muscle activation to accelerate the joint, the intu-
ition behind earlier postulates of an “N shape” of descending
signals (19). The time structure of the second componentwould
thus reflect the properties of the motor plant in the manner of
the “internal models” of computational theories of motor con-
trol (4). This observation is also broadly consistent with the ob-
servation that hybrid models that combine control by a
shifting equilibrium point with a feed-forward signal directly
to themuscle are sufficient to explain fastmovements (20).

Figure 8. Time courses of interaction torques,
descending activation, and muscle activation
for the shoulder joint for the 8 different move-
ments (rows 1–8). Left: shoulder interaction tor-
ques for the fast (solid) and the slow (dashed)
condition. Middle: descending activation, u(t)
(blue), and muscle activation, A(t) (red), for the
shoulder flexor muscle (fast condition: solid,
slow condition: dashed). Activations were
shifted to start at 0 to enable visual compari-
son with muscle activation. Right: same for the
shoulder extensor muscle.
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By reinterpreting descending activation as threshold
lengths of the stretch reflex, we were able to transform the
descending activation patterns into hand space, a purely ki-
nematic transformation. The resulting time courses (Fig. 5)
appear more invariant across movements than those in joint
space (Figs. 8 and 9). Decomposing these trajectories into a
postural component (taken to be the time course for the slow
movements) and a movement component suggests that the
internal model may not need to capture the details of the
muscle level. It may be sufficient to capture the effective dy-
namics of the plant at the level of the hand in space. Force-
field studies aimed at characterizing the internal model
have typically applied forces to the hand rather than to
individual joints. In that respect, this conjecture is not
inconsistent with that line of work. Note, however, that
studies applying perturbations at the joint level have
uncovered long-latency reflex contributions that are sensi-
tive to joint configuration (21).

Time Courses of Descending Activation Depend on
Cocontraction

We found that the estimated temporal patterns of de-
scending activation differ when different levels of cocontrac-
tion are assumed, even when these are kept constant during
the movement (Fig. 10). Thus the same movement can be

achieved at different levels of cocontraction by different
time courses of descending activation.

At higher levels of cocontraction, the time courses of de-
scending activation are less complex. Increasing cocontrac-
tion thus provides a strategy to simplify control. This could
be a learning strategy when first exposed to a newmovement
skill and may be behind the idea of “freezing” degrees of
freedom (22).

By varying the level of cocontraction, the effective imped-
ance of a joint can be modulated (23). This plays an impor-
tant role in the human capacity for compliant control (24).
Our finding that different levels of cocontraction require dif-
ferent time courses of descending activation implies that
compliance hinges on the capacity of the motor system to
generate these different time courses.

Comparison to Prior Work

The estimation method is essentially an analytical inver-
sion of the model. The model takes descending activation as
input and generates movement as output. The estimation
takes movement as input and generates descending activa-
tion as output. The consistency of the estimate was checked
by using estimated descending activation as input to the
model to predict the movement. Consistency in that sense
was broadly observed across the data set.

Figure 9. Time courses of interaction tor-
ques, descending activation, and muscle
activation for the elbow joint for the 8 differ-
ent movements (rows 1–8). Left: shoulder
interaction torques for the fast (solid) and the
slow (dashed) condition.Middle: descending
activation, u(t) (blue), and muscle activation,
A(t) (red), for the shoulder flexor muscle (fast
condition: solid, slow condition: dashed).
Activations were shifted to start at 0 to ena-
ble visual comparison with muscle activa-
tion. Right: same for the shoulder extensor
muscle.
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Consistency alone does not establish the validity of the
model. That model is, of course, neither new (8) nor surpris-
ing. Its biomechanical part is exact. The muscle model is a
simplification that is qualitatively consistent with Hill-type
models. The model of the stretch reflex is very simple and
generic. We used this particular model for the estimation
method for three reasons.

First, thismodel is simple enough to enable analytic inver-
sion with only a few further assumptions. Classical Hill-type
muscle models (25) are not in any obvious way analytically
invertible nor are more complex reflexmodels (7).

Second, using this model makes it possible to compare the
results with those of the original study (8) that had demon-
strated that simple, ramp-like descending motor “com-
mands” are sufficient to generate realistic movements.
Gribble and colleagues (8) did not report movement time,
but the published time courses suggest movement times
between 700 and 800 ms consistent with our “slow” condi-
tion for which we did estimate “ramp”-like descending acti-
vation patterns for most movements. Note, that the earlier
study only included movements 1 and 2 of the present study.
The apparent discrepancy between the two studies could
thus be due to the slow movement times in the earlier work
and its limited sampling of workspace.

Third, using this model makes it possible to also compare
to our own earlier work (9) in which we estimated descend-
ing activation by minimizing its change given movement
amplitude and movement time. Our estimates are qualita-
tively consistent with those earlier estimates. This is signifi-
cant because the earlier estimate was based on an ad hoc
optimality criterion that was recognized as invalid. (The cri-
terion was chosen to make the theoretical point that even
whenminimizing the deviation from a ramp, nonmonotonic
and nonrescaling descending activation profiles result.)

The invalidity of the criterion was visible in a failure to
predict the asymmetry of hand velocity profiles correctly.
Because lengthening muscles generate more force than
shortening muscles at the same level of input and the veloc-
ity-dependent terms always resist movement (26), breaking
can be achieved with less chance of descending activation
than accelerating. A minimally changing descending activa-
tion principle will thus tend to break hard and accelerate
softly, while humans accelerate hard and break softly. The
estimation method proposed in this paper captures, in con-
trast, the asymmetry of human velocity profiles correctly
(Fig. 6).

Limitations of the Estimation Method

The inversion of the model for estimation was achieved by
analytical computation and is thus, within the set of assump-
tions, exact. The only serious assumption that goes beyond
those shared with Gribble et al. (8) is our neglecting biarticu-
latory muscles to minimize muscle redundancy. As this
assumption was not made in our earlier effort (9), the consis-
tency with those earlier results indicates that the assumption
does not cause qualitative error.

A better framing of the assumption is to think of the mod-
eled muscles as “virtual” muscles that lump together the
contributions of mono- and biarticulatory muscles. The limi-
tation of this approximation is then that there are move-
ments in which these two muscle groups covary and
movements in which they do not. The descending activation
patterns would be expected to differ across suchmovements,
reflecting the need to recruit the “virtual” muscles more or
less strongly. Such a contrast is expected between the two
forward-backwardmovements 3 and 4, in which the biarticu-
latory muscle hardly change length, and the lateral move-
ments 1 and 2, in which the biarticulatory muscles covary in

Figure 10. Dependence of estimated R signal
on assumed patterns of cocontraction and C
signal shown for the elbow joint of move-
ment 1. A–D: constant C signals vary from 0.1
(light gray) to 1.0 rad (dark gray) in steps of
0.05 (shades of gray). A and B: R signals esti-
mated for these different C levels in the slow
(A) and fast (B) condition.C and D: elbow joint
angle (red) and its prediction from the esti-
mated R signal (shades of blue). E–G: time-
varying C signals are probed; probed time
courses of C signal (E), estimated R signals
(F) with matching line types, and the pre-
dicted joint trajectories (G) are shown with
matching line type in blue, compared to the
experimental joint trajectory in red.
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length with the monoarticulatory ones. We found no qualita-
tive differences between the time courses obtained for these
two groups of movement, suggesting again that the approxi-
mation does not lead tomajor distortions.

The analytical approach would not scale well when mus-
cle and reflex models are made more complex. For instance,
classical Hill-type models do not appear tractable to analytic
inversion. As a consistency check, we fed the descending
activation profiles as estimated here into a Hill-type model
with the rigid tendon (p. 185 in Ref. 25 using parameters
fromRefs. 27 and 28: see Supplemental Material S1 for details
and results.) We found that such a model generates qualita-
tively reasonablemovements at the two tested speeds.

Including more complex reflex models (29) may not be
tractable to analytical inversion either. Most current work
with such models invokes ad hoc descending signals to gen-
erate qualitatively plausible movement trajectories (7, 30).
Systematic model-based estimation of descending activation
patterns for such more complex models is highly desirable
(31). A numerical approach to model inversion might be fea-
sible, although it may require other assumptions such as reg-
ularization terms. The current results based on analytical
inversionmay provide a useful baseline for such work.

Conclusions

We developed a method to estimate descending activation
patterns from experimental trajectories by inverting a model

of the stretch reflex and muscle and biomechanical dynam-
ics. We applied the method to a set of experimental trajecto-
ries of planar armmovements at twomovement speeds.

We found that the stretch reflex contributes substantially
to movement generation starting as early as 15 to 20% of
movement time. The observed difference between descend-
ing and muscle activation was maximal near the end of the
movement, reflecting the shift of the stable postural state
during movement. Failing to include spinal reflexes in com-
putational models is thus clearly a mistake. For instance, a
“neural” signal estimated from optimal feedback control
without a model of the stretch reflex (32) does not provide
a qualitatively correct estimation of the activation that
descends the spinal cord.

We also found, however, that the stretch reflex does not
eliminate the need to generate specific time courses for the
descending activation patterns. While slow movements
tended to be consistent with “ramp-like” descending activa-
tion patterns that could be interpreted as graded shifts of
equilibrium posture, fast movements do not result from a
mere rescaling of these patterns. Instead, fast movements
contain a second component in addition to this postural
shift that could be thought of as the output of an internal
model that reflects the dynamics of the plant. When cocon-
traction is varied to achieve different levels of compliance,
different time courses must generated by such an internal
model.

Movement NR

Figure 11. The measure, N, of how strongly
the R signal is temporally structured for the
shoulder (top) and elbow (bottom) for all 8
movements, the 2 speeds (slow: blue; fast:
red), and 3 levels of constant C signals (0.4,
0.55, and 0.7 rad, light to dark shades of
blue/red). SDs are indicated by error bars.
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Overall, our direct estimation of the time course of de-
scending activation from observed kinematics revealed
both the qualitative and quantitative importance of the
stretch reflex as well as time courses of descending activa-
tion that are specific to movement speed and levels of
compliance as postulated for internal models. This sug-
gests a research program in which numerical estimation
techniques could be used to establish descending activa-
tion patterns for more realistic muscle models, larger sets
of redundant muscles, and more complex reflex models.
Our data sampling a large part of workspace at different
speeds and our analytical results based on simplified mus-
cle and reflex models may serve as a benchmark for such
advanced estimation efforts.
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