
Vehicle motion planning:
Survey over approaches

Gregor Schöner
INI RUB Germany

The problem

move about in a
2D world, which
is occupied by
objects/stuff

constraints

reach targets

avoid collisions

via points

orientations

classical planning approaches

potential field approach

compared to attractor dynamics approach

Borenstein & Koren

extending attractor dynamics approach

Dynamic window approach

Approaches to vehicle path planning

Latombe: Robot motion planning, 1991

LaValle: Planning algorithms, 2006, 2010

Kavraki, LaValle: Chapter 7 of Springer Handbook of Robotics 20166 S. M. LaValle: Planning Algorithms

Goal Position

Obstacle Region

Initial Position

A Solution Path

(a) (b)

Figure 1.1: A simple illustration of the two dimensional path planning problem:
a) The obstacles, initial position, and goal positions are specified as input; b) A
path planning algorithm will compute a collision free path from the initial position
to the goal position.

configuration of a robot, the locations of tiles in a puzzle, or the position
and velocity of a helicopter. Both discrete (finite, or countably infinite)
and continuous (uncountably infinite) state spaces will be allowed. One
recurring theme through most of planning is that the state space will usually
be represented implicitly by a planning algorithm. In most applications,
the size of the state space (in terms of number of states or combinatorial
complexity) is much too large to be explicitly represented. Nevertheless, the
definition of the state space is an important component in the formulation
of a planning problem, and in the design and analysis of algorithms that
solve it.

Time: All planning problems involve a sequence of decisions that must be
applied over time. Time might be explicitly modeled, as in a problem such as
driving a car as quickly as possible through an obstacle course. Alternatively,
time may be implicit, by simply reflecting the fact that actions must follow
in succession, as in the case of solving the Rubik’s cube. The particular
time is unimportant, but the proper sequence must be maintained. Another
example is a solution to the Piano Mover’s Problem; the solution to moving
the piano may be converted into an animation over time, but the particular
speed of motions is not specified in the planning problem. Just as in the
case of state, time may be either discrete or continuous. In the latter case,

[LaValle, 2006]

Classical path planning
References

Classical motion planning

based on a model of the environment
(obstacles) and the robot

6 S. M. LaValle: Planning Algorithms

Goal Position

Obstacle Region

Initial Position

A Solution Path

(a) (b)

Figure 1.1: A simple illustration of the two dimensional path planning problem:
a) The obstacles, initial position, and goal positions are specified as input; b) A
path planning algorithm will compute a collision free path from the initial position
to the goal position.

configuration of a robot, the locations of tiles in a puzzle, or the position
and velocity of a helicopter. Both discrete (finite, or countably infinite)
and continuous (uncountably infinite) state spaces will be allowed. One
recurring theme through most of planning is that the state space will usually
be represented implicitly by a planning algorithm. In most applications,
the size of the state space (in terms of number of states or combinatorial
complexity) is much too large to be explicitly represented. Nevertheless, the
definition of the state space is an important component in the formulation
of a planning problem, and in the design and analysis of algorithms that
solve it.

Time: All planning problems involve a sequence of decisions that must be
applied over time. Time might be explicitly modeled, as in a problem such as
driving a car as quickly as possible through an obstacle course. Alternatively,
time may be implicit, by simply reflecting the fact that actions must follow
in succession, as in the case of solving the Rubik’s cube. The particular
time is unimportant, but the proper sequence must be maintained. Another
example is a solution to the Piano Mover’s Problem; the solution to moving
the piano may be converted into an animation over time, but the particular
speed of motions is not specified in the planning problem. Just as in the
case of state, time may be either discrete or continuous. In the latter case,

Classical motion planning

notion of configuration space

Part
A
|7.2

140 Part A Robotics Foundations

a lot of effort has been devoted to extend their ca-
pabilities to more challenging instances. These algo-
rithms have had widespread success in applications
beyond robotics, such as computer animation, vir-

tual prototyping, and computational biology. There
are many available surveys [7.2–4] and books [7.5–
7] that cover modern motion planning techniques and
applications.

7.2 Motion Planning Concepts
This section provides a description of the fundamental
motion planning problem or the geometric path plan-
ning problem. Extensions of this basic formulation to
more complicated instances will be discussed later in
the chapter and will be revisited throughout this book.

7.2.1 Configuration Space

In path planning, a complete description of the geom-
etry of a robot A and of a workspace W is provided.
The workspace W DRN , in which N D 2 or N D 3, is
a static environment populated with obstacles. The goal
is to find a collision-free path for A to move from an
initial position and orientation to a goal position and
orientation.

To achieve this, a complete specification of the
location of every point on the robot geometry, or
a configuration q, must be provided. The configura-
tion space, or C-space (q 2 C), is the space of all
possible configurations. The C-space represents the set
of all transformations that can be applied to a robot
given its kinematics as described in Chap. 2 (Kine-
matics). It was recognized early on in motion planning
research [7.8, 9] that the C-space is a useful way to
abstract planning problems in a unified way. The ad-
vantage of this abstraction is that a robot with a com-
plex geometric shape is mapped to a single point in
the C-space. The number of degrees of freedom of
a robot system is the dimension of the C-space, or
the minimum number of parameters needed to specify
a configuration.

Let the closed setO !W represent the (workspace)
obstacle region, which is usually expressed as a collec-
tion of polyhedra, three-dimensional (3-D) triangles, or
piecewise-algebraic surfaces. Let the closed setA.q/!
W denote the set of points occupied by the robot when
at configuration q 2 C; this set is usually modeled using
the same primitives as used forO. TheC-space obstacle
region, Cobs, is defined as

Cobs D fq 2 C jA.q/\O 6D ;g: (7.1)

Since O and A.q/ are closed sets in W , the obstacle
region is a closed set in C. The set of configurations
that avoid collision is Cfree D C nCobs, and is called the
free space.

Simple Examples of C-spaces
Translating Planar Rigid Bodies. The robot’s con-
figuration can be specified by a reference point .x; y/ on
the planar rigid body relative to some fixed coordinate
frame. Therefore the C-space is equivalent to R2. Fig-
ure 7.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle re-
gion in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints on
all q 2 C. Motion planning for the robot is now equiva-
lent to motion planning for a point in the C-space.

Planar Arms. Figure 7.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so
that they can only rotate around the joints, and there are
no joint limits. For this arm, specifying the rotational
parameters !1 and !2 provides the configuration. Each
joint angle !i corresponds to a point on the unit circle
S1 and the C-space is S1"S1 D T2, the two-dimensional
(2-D) torus shown in Fig. 7.2. For a higher number of

Obstacle

Configuration space obstacle

Robot (x, y)
(x, y)

a) b)

Fig.7.1a,b A robot translating in the plane: (a) a triangu-
lar robot moves in a workspace with a single rectangular
obstacle. (b) The C-space obstacle

θ2

θ2

θ1

θ1

a) b)

Fig. 7.2 (a) A two-joint planar arm in which the links are
pinned and there are no joint limits. (b) The C-space

example:
square obstacle
triangular robot

[Kavraki, LaValle 2016]

Classical motion planning
geometric path planning

“piano mover’s problem”

computational complexity
1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 9

Figure 1.5: Using mobile robots to move a piano [244].

by the phrase Piano Mover’s Problem. Collisions between robots and with other
pieces of furniture must be avoided. The problem is further complicated because
the robots, piano, and floor form closed kinematic chains, which are covered in
Sections 4.4 and 7.4.

Navigating mobile robots A more common task for mobile robots is to request
them to navigate in an indoor environment, as shown in Figure 1.6a. A robot might
be asked to perform tasks such as building a map of the environment, determining
its precise location within a map, or arriving at a particular place. Acquiring
and manipulating information from sensors is quite challenging and is covered in
Chapters 11 and 12. Most robots operate in spite of large uncertainties. At one
extreme, it may appear that having many sensors is beneficial because it could
allow precise estimation of the environment and the robot position and orientation.
This is the premise of many existing systems, as shown for the robot system in
Figure 1.7, which constructs a map of its environment. It may alternatively be
preferable to develop low-cost and reliable robots that achieve specific tasks with
little or no sensing. These trade-offs are carefully considered in Chapters 11 and

[La Valle 2010]

sampling based approaches

road maps

Classical global path planning

Motion Planning 7.3 Sampling-Based Planning 143

Part
A
|7.3

˛.i/ the algorithm attempts to connect them with an
edge.

5. Local planning method: Given ˛.i/ and q 2 Cfree
a module is used that attempts to construct
a path !s W Œ0; 1"! Cfree such that !.0/D ˛.i/ and
!.1/D q. Using collision detection, !s must be
checked to ensure that it does not cause a collision.

6. Edge insertion: Insert !s into E, as an edge from ˛.i/
to q.

7. Termination: The algorithm is typically terminated
when a predefined number of collision-free vertices
N has been added in the roadmap.

The algorithm is incremental in nature. Computa-
tion can be repeated by starting from an already existing
graph. A general sampling-based roadmap is summa-
rized in Algorithm 7.1.

Algorithm 7.1 Sampling-Based Roadmap
N: number of nodes to include in the roadmap
1: G.init(); i 0;
2: while i < N do
3: if ˛.i/ 2 Cfree then
4: G.add_ vertex.˛.i//; i iC 1;
5: for q 2 NEIGHBORHOOD.˛.i/,G/ do
6: if CONNECT .˛.i/; q/ then
7: G.add_ edge .˛.i/; q/;
8: end if
9: end for
10: end if
11: end while

An illustration of the algorithm’s behavior is de-
picted in Fig. 7.3. To solve a query, qI and qG
are connected to the roadmap, and graph search is
performed.

For the original PRM [7.19], the configuration ˛.i/
was produced using random sampling. For the connec-

Cobs

α (i) Cobs

Fig. 7.3 The sampling-based roadmap is constructed in-
crementally by attempting to connect each new sam-
ple, ˛.i/, to nearby vertices in the roadmap

tion step between q and ˛.i/, the algorithm used straight
line paths in the C-space. In some cases a connection
was attempted if q and ˛.i/ were in the same connected
component in order to improve path quality. There have
been many subsequent works that try to improve the
roadmap quality while using fewer samples. Methods
for concentrating samples at or near the boundary of
Cfree are presented in [7.20, 21]. Methods that move
samples as far from the boundary as possible appear
in [7.22, 23]. Deterministic sampling techniques, in-
cluding grids, appear in [7.24]. A method of pruning
vertices based on mutual visibility that leads to a dra-
matic reduction in the number of roadmap vertices
appears in [7.25]. Theoretical analysis of sampling-
based roadmaps appears in [7.24, 26, 27] and is briefly
discussed in Sect. 7.7.2. An experimental comparison
of sampling-based roadmap variants appears in [7.28].
One difficulty in these roadmap approaches is identify-
ing narrow passages. One proposal is to use the bridge
test for identifying these [7.29]. For other PRM-based
works, see [7.30–34]. Extended discussion of the topic
can be found in [7.5, 7].

7.3.2 Single-Query Planners:
Incremental Search

Single-query planning methods focus on a single
initial–goal configuration pair. They probe and search
the continuous C-space by extending tree data struc-
tures initialized at these known configurations and
eventually connecting them. Most single-query meth-
ods conform to the following template:

1. Initialization: Let G.V;E/ represent an undirected
search graph, for which the vertex set V contains
a vertex for one (usually qI) or more configura-
tions in Cfree, and the edge set E is empty. Vertices
of G are collision-free configurations, and edges are
collision-free paths that connect vertices.

2. Vertex selection method: Choose a vertex qcur 2 V
for expansion.

3. Local planning method: For some qnew 2 Cfree,
which may correspond to an existing vertex in V
but on a different tree or a sampled configuration,
attempt to construct a path !s W Œ0; 1"! Cfree such
that !.0/D qcur and !.1/D qnew. Using collision
detection, !s must be checked to ensure that it does
not cause a collision. If this step fails to produce
a collision-free path segment, then go to Step 2.

4. Insert an edge in the graph: Insert !s into E, as an
edge from qcur to qnew. If qnew is not already in V,
then it is inserted.

5. Check for a solution: Determine whetherG encodes
a solution path.[Kavraki, LaValle 2016]

invented by Khatib, 1986 (similar earlier
formulation: Neville Hogan's impedance control)

the trajectory of a manipulator or robot vehicle
is generated by moving in a potential field to a
minimum

the manipulator 3D end-position or vehicle 2D
position is updated by descending within that
potential field

obstacles are modeled as hills of potential field;
target states are valleys/minima of the potential
field

Potential field approach

need a mathematical representation
of target and obstacle configuration

make potential minimum at target

make potential maximum at
obstacles

compute downhill gradient descent
for path generation

Potential field approach as a
heuristic planning approach

[Khatib, 1986]

Potential field approach

Part
A
|7.4

146 Part A Robotics Foundations

7.4.2 Roadmaps in Higher Dimensions

It would be convenient if the methods of Sect. 7.4.1
directly extend into higher dimensions. Although this
unfortunately does not occur, some of the general ideas
extend. To consider a cell decomposition in higher di-
mensions, there are two main requirements: (1) each
cell should be simple enough that motion planning
within a cell is trivial; (2) the cells should fit together
nicely. A sufficient condition for the first requirement
is that cells are convex; more general shapes may be
allowed; however, the cells should not contain holes
under any circumstances. For the second requirement,
a sufficient condition is that the cells can be organized
into a singular complex. This means that for any two
d-dimensional cells for d ! n, if the boundaries of the
cells intersect, then the common boundary must itself
be a complete cell (of lower dimension).

In two-dimensional polygonal C-spaces, triangula-
tion methods define nice cell decompositions that are
appropriate for motion planning. Finding good trian-
gulations, which for example means trying to avoid
thin triangles, is given considerable attention in com-
putational geometry [7.55]. Determining the decom-
position of a polygonal obstacle region with holes
that uses the smallest number of convex cells is NP-
hard [7.56]. Therefore, we are willing to tolerate nonop-
timal decompositions.

In three-dimensional C-spaces, if Cobs is polyhedral,
then the vertical decompositionmethod directly extends
by applying the plane sweep recursively, for example,
the critical events may occur at each z coordinate, at
which point changes a 2-D vertical decomposition over
the x and y coordinates are maintained. The polyhe-
dral case is obtained for a translating polyhedral robot
among polyhedral obstacles in R3; however, for most
interesting problems, Cobs becomes nonlinear. Suppose
C DR2 "S1, which corresponds to a robot that can
translate and rotate in the plane. Suppose the robot and
obstacles are polygonal. For the case of a line-segment
robot, an O.n5/ algorithm that is not too difficult to im-
plement is given in [7.57]. The approaches for more
general models and C-spaces are extremely difficult to
use in practice; they are mainly of theoretical interest
and are summarized in Sect. 7.7.3.

7.4.3 Potential Fields

A different approach for motion planning is inspired
from obstacle avoidance techniques [7.58]. It does
not explicitly construct a roadmap, but instead con-
structs a differentiable real-valued function U WRm!
R, called a potential function, that guides the mo-
tion of the moving object. The potential is typically

constructed so that it consists of an attractive compo-
nent Ua.q/, which pulls the robot towards the goal,
and a repulsive component Ur.q/, which pushes the
robot away from the obstacles, as shown in Fig. 7.8.
The gradient of the potential function is the vec-
tor rU.q/D DU.q/T D

!
@U
@q1
.q/; : : : ; @U

@qm
.q/
"T, which

0
10

20
30

40

a)

b)

c)

50
0

0.5

1

1.5

0
10

20
30

40
50

0
10

20
30

40
50

0

0.5

1

1.5

0
10

20
30

40
50

0
10

20
30

40
50

0

0.5

1

1.5

0
10

20
30

40
50

Fig.7.8a–c An attractive and a repulsive component define
a potential function. (a) An attractive potential, (b) a re-
pulsive potential, (c) an attractive and repulsive component
define a potential function

[Kavraki, LaValle 2016]

target component

obstacle component

sum

Potential field approach

heuristic approach:
no guarantee

problem of local
minima

Motion Planning 7.4 Alternative Approaches 147

Part
A
|7.4

points in the direction that locally maximally in-
creases U. After the definition of U, a path can be
computed by starting from qI and applying gradient de-
scent:

1. q.0/D qI; iD 0;
2. while rU.q.i//¤ 0 do
3. q.iC 1/D q.i/CrU.q.i//
4. iD iC 1

However, this gradient-descent approach does not
guarantee a solution to the problem. Gradient de-
scent can only reach a local minimum of U.q/, which
may not correspond to the goal state qG, as shown
in Fig. 7.9.

A planner that makes uses of potential functions
and attempts to avoid the issue of local minima is
the randomized potential planner [7.59]. The idea is
to combine potential functions with random walks by
employing multiple planning modes. In one mode,
gradient descent is applied until a local minimum is
reached. Another mode uses random walks to try to es-
cape local minima. A third mode performs backtracking
whenever several attempts to escape a local minimum
have failed. In many ways, this approach can be consid-
ered as a sampling-based planner. It also provides the
weaker completeness guarantee but it requires param-
eter tuning. Recent sampling-based methods achieve
better performance by spending more time exploring
the space, rather than focusing heavily on a potential
function.

The gradient of the potential function can be also
used to define a vector field, which assigns a motion

qgoalfatt

frep1

frep2

qgoal

q*

Local minimum

Robot path

a)

b)

Fig.7.9a,b Two examples of the local minimum problem
with potential functions

for the robot at any arbitrary configuration q 2 C. This
is an important advantage of the approach, beyond its
computational efficiency, since it does not only com-
pute a single path, but also a feedback control strategy.
This makes the approach more robust against control
and sensing errors. Most of the techniques in feedback
motion planning are based on the idea of navigation
functions [7.60], which are potential functions properly
constructed so as to have a single minimum. A function
! W Cfree! Œ0; 1" is called a navigation function if it:

! Is smooth (or at least Ck for k " 2),
! Has a unique minimum at qG in the connected com-

ponent of the free space that contains qG,
! Is uniformly maximal on the free-space boundaries,
! and is Morse, which means that all its critical

points, such as saddle points, are isolated and can
be avoided with small random perturbations.

Navigation functions can be constructed for sphere
boundary spaces centered at qI that contain only spher-
ical obstacles, as illustrated in Fig. 7.10. Then they
can be extended to a large family of C-spaces that are
diffeomorphic to sphere spaces, such as star-shaped
spaces, as shown in Fig. 7.10. A more elaborate descrip-
tion of strategies for feedback motion planning will be
presented in Chap. 47.

qI

qG

a)

b)

qI

qG

Fig.7.10a,b Examples of (a) sphere and (b) star spaces

[Kavraki, LaValle 2016]

[Barranquand, Langlois, Latombe, 1989]

generalization
to higher-
dimensional
configuration
spaces

Potential field approach

Comparison to attractor
approach

Fajen/Warren compared the fit of a potential
field approach to the fit of the attractor
dynamics approach of human locomotion
data

Dynamical Model of Steering 25

(a)

(b)

Figure 15. (a) Artificial potential field inside the room and (b) and vector magnitudes.

rotational acceleration, which also acts to smooth the
path. In contrast, the potential field method can gener-
ate rapid changes in the direction of the velocity vector
resulting in frequent sharp turns, depending on the com-
plexity of the artificial potential field (which usually is
composed of many hills and valleys even if there are
only three or four obstacles; see Fig. 15).

The Obstacle Function. A second reason for
smoother, shorter paths stems from another important
difference between the two methods. Whereas the ef-
fect of the target is similar in both, serving to draw
the agent toward the goal, the effect of an obstacle is
very different. In the potential field method, the ob-
stacle function depends only on the shortest distance

Dynamical Model of Steering 25

(a)

(b)

Figure 15. (a) Artificial potential field inside the room and (b) and vector magnitudes.

rotational acceleration, which also acts to smooth the
path. In contrast, the potential field method can gener-
ate rapid changes in the direction of the velocity vector
resulting in frequent sharp turns, depending on the com-
plexity of the artificial potential field (which usually is
composed of many hills and valleys even if there are
only three or four obstacles; see Fig. 15).

The Obstacle Function. A second reason for
smoother, shorter paths stems from another important
difference between the two methods. Whereas the ef-
fect of the target is similar in both, serving to draw
the agent toward the goal, the effect of an obstacle is
very different. In the potential field method, the ob-
stacle function depends only on the shortest distance

24 Fajen et al.

Figure 14. A typical performance example. Large tick marks indi-
cate 1 m intervals.

1984). Potential field methods have been applied to off-
line path planning (Thorpe, 1985) and in mobile robots
with real sensory data (for example by Arkin, 1989).

A Typical Performance Example

We tested both methods in a sample environment con-
taining five obstacles (see Fig. 14), using Khatib’s
(1986) original potential field formulation. The envi-
ronment consisted of a 5 m × 6.5 m room with a start-
ing location (indicated by the circle), a target location
(labeled goal), and five randomly positioned obstacles
(shown as dots). The circles around the obstacles in-
dicate the limit distance of repulsive influence for the
potential field model (0.8 m). The agent was assumed to
have a diameter of 0.5 m, similar to a human, and an ini-
tial heading of 0◦ (parallel to the x-axis). Although the
potential field is often used to control the agent’s veloc-
ity (direction and speed), in all our simulations we used
the resultant force vector to control the agent’s direc-
tion only, while holding speed constant, analogous to
the dynamical model. The straightforward application
of the potential field method to mobile robot naviga-
tion treats the robot as a particle; however, most mobile
robots are non-holonomic, which means they cannot
move in arbitrary directions (e.g., without first stop-
ping and turning). In our simulations and robot exper-
iments, we used a controller based on the idea that the
front point of a differential-drive robot can be treated
as holonomic (Temizer, 2001; Temizer and Kaelbling,
2001). An alternative approach, used by Arkin (1989),
for example, is to have the robot repeatedly: stop, turn

in the direction of the local force, traverse a short lin-
ear segment, stop, reorient, etc. The details of the paths
resulting from this method would differ from those we
show here, but will be qualitatively similar.

Path 1 shows the trajectory generated by the potential
field method, and path 2 (which is almost a straight
line) that generated by the dynamical model. In this
simulation, the agent moved with a constant translation
speed of 0.5 m/s for both methods. Path 1 has a length of
7.55 meters and was traversed in 15.1 seconds, whereas
Path 2 was only 6.70 meters long and was traversed in
13.4 seconds. We also implemented the potential field
method in a research robot (RWI B21r indoor robot)
and we note that the software simulations closely reflect
the actual trajectories observed.

The 3D plots in Fig. 15 represent the artificial poten-
tial field and the resultant force vectors for the example
scene. The top graph (Fig. 15(a)) shows the artificial
potential field and the middle graph (Fig. 15(b)) shows
the magnitudes of the resultant force vector at each lo-
cation in the environment, with coordinates that match
those of Fig. 14. The starting point is near the high cor-
ner, the goal is near the low corner, and the obstacles
generate tall cones that extend to infinity, guaranteeing
that the agent will never collide with an obstacle.

Differences Between the Two Methods

In this section we consider high-level conceptual dif-
ferences between the dynamical model and the poten-
tial field method. A low-level quantitative comparison
would not be appropriate since the computational out-
comes of the two methods are quite different: the po-
tential field method produces a resultant vector that
directly controls the agent’s direction, whereas the dy-
namical model produces an angular acceleration that
controls the agent’s rotation.

Angular Acceleration vs. Direction Control. Look-
ing at the example in Fig. 14, it is apparent that the dy-
namical model tends to traverse smoother and shorter
paths than the potential field method. Similarly, the
fluctuations in rotation speed are smooth for the dy-
namical model (Fig. 16), in contrast to sharp, rapid
turns with the potential field method. This is partially
due to an important general difference between the
approaches: the dynamical model explicitly controls
the agent’s angular acceleration and deceleration rather
than the translation direction, and thus tends to generate
smoother trajectories. The damping term constrains the

Dynamical Model of Steering 25

(a)

(b)

Figure 15. (a) Artificial potential field inside the room and (b) and vector magnitudes.

rotational acceleration, which also acts to smooth the
path. In contrast, the potential field method can gener-
ate rapid changes in the direction of the velocity vector
resulting in frequent sharp turns, depending on the com-
plexity of the artificial potential field (which usually is
composed of many hills and valleys even if there are
only three or four obstacles; see Fig. 15).

The Obstacle Function. A second reason for
smoother, shorter paths stems from another important
difference between the two methods. Whereas the ef-
fect of the target is similar in both, serving to draw
the agent toward the goal, the effect of an obstacle is
very different. In the potential field method, the ob-
stacle function depends only on the shortest distance

Typical paths of fitted models

attractor dynamicspotential field

comparison
potential field vs.

attractor
dynamics

if potential is sharper
than distance
dependence of
repellor: path too
strongly curved

28 Fajen et al.

(a)

(b)

Figure 18. Experiment 1: (a) distance parts of both methods and (b) simulation results.

Fat Agents and Wide Obstacles. The potential field
method inherently takes account of agent and obsta-
cle width, because distance is measured between the
boundary or envelope of the agent and that of the ob-
stacle. In contrast, the current version of the dynamical
model treats the agent and obstacles as points, and thus
does not incorporate an explicit concept of width. Hu-
mans are very sensitive to the width of openings rela-
tive to their body size (Warren and Whang, 1987). The

dynamical model implicitly expresses this relationship
in the rate of exponential decay with obstacle distance
(c4 parameter). As illustrated in the previous section
(Figs. 18 and 19), this determines how wide a berth the
agent gives to an obstacle, and can thus be adjusted for
body size.

However, the model is not yet designed to deal
with wide obstacles. One possibility is simply to in-
clude the size of each obstacle as a parameter, but in a

attractor dynamics

potential field

local minima vs. spurious attractor
30 Fajen et al.

for physical agents and humans. Combined with the
difference in control variables (translational velocity
vs. angular acceleration), this results in a significant
advantage for the dynamical model, although it also
creates a minor disadvantage.

Advantage. The potential field approach is a local ob-
stacle avoidance method, and local minima are a seri-
ous problem. An agent using the potential field method
alone without a high level path planner can easily get
stuck in local minima, even in the simplest scenes. The
dynamical model, in contrast, has few such problems, at
least in simple scenes. Because it only controls angular
acceleration and not the agent’s speed (never stopping
the agent), local minima are avoided in two ways: the
agent either takes advantage of the canceling effect (de-
scribed below) and passes between the obstacles (if the
distance decay parameter c4 is big), or it takes a path
around the obstacle cluster (if c4 is small). In the latter
case it may overshoot the target, but it easily homes
in from another direction. Thus, with appropriate pa-
rameter settings the dynamical model can avoid local
minima in simple scenes.

Disadvantage. However, if the locations of the ob-
stacles are symmetrical about the agent’s path to the
target, then their contributions to the angular acceler-
ation will have similar magnitudes but opposite signs,
and therefore cancel each other. This canceling effect
creates a spurious attractor in the center of the obsta-
cle array, which may lead the agent into a gap that is
too small, or even to crash into an obstacle at the cen-
ter of a perfectly symmetrical array. As noted above,
one way to avoid the canceling effect is to increase
obstacle repulsion with distance by reducing the ex-
ponential decay term c4, thereby inducing an outside
path around the entire array. In cases with only a few
obstacles, adding a noise term to the model may allow
it to escape unstable fixed points.

These advantages and disadvantages are illustrated
in Fig. 20. In this example the agent starts in the lower
left corner with an initial heading of 0◦, and moves at
a constant translation speed of 1 m/s. Path 1 shows a
sample local minimum for the potential field method.
The agent is stuck in a bowl (a region of small outward-
pointing resultant vectors surrounded by large inward-
pointing vectors) and is reduced to oscillating back and
forth. Another type of local minimum is being frozen in
a location where the attractive and repulsive forces can-
cel each other, producing a resultant force of zero mag-

Figure 20. Example of a local minimum, canceling effect and out-
side path.

nitude. Path 2 is traversed with the dynamical model
(c4 = 1.6). Since there are obstacles on both sides of
the agent, their combined contribution to the angular
acceleration demonstrates the canceling effect along
the path, and the agent passes between them. Path 3 is
also traversed by the dynamical model using a more
gradual exponential decay with distance (c4 = 0.4).
The repulsive regions of the obstacles are larger, and
therefore they force the agent to take an outside path.

Agent Speed. A final difference between the two
methods is that the dynamical model assumes a con-
stant translational speed on the part of the agent. This is
indeed the case in our human data: subjects tend to ac-
celerate from a standstill and then maintain an approx-
imately constant walking speed. However, the model
produces different paths at different constant speeds,
with all other parameters fixed. The reason for this be-
havior is that, when the agent enters a region that pro-
duces a non-zero angular acceleration, the accelerating
effect lasts for a shorter time at higher speeds, induc-
ing a smaller rotation. In contrast, since the potential
field equations determine the direction of the agent’s
motion, it will always traverse the same path indepen-
dent of speed. For any physical agent with mass and
momentum, the responsiveness of trajectories to speed
may actually be a desirable effect.

An example for the dynamical model is presented in
Fig. 21. With a constant speed of 0.25 m/s, the model
traverses path 1 to the left of the obstacle, but with a
speed of 1.0 m/s it takes path 2 to the right. In these sim-
ulations, the agent’s initial heading was 0◦ (horizontal),

attractor dynamics:
spurious attractor

potential field

attractor dynamics

in potential field approach, local minimal and
constraint violations occur

solution: make potential field approach exact
and global by computing the potential to
guarantee constraint satisfaction…

=> navigation functions that have the exact
required maxima and minima (Rimon,
Koditschek, 1992)

but: computational costly, and requires global
information

local minima vs. spurious
attractor

local minima vs. spurious
attractor

in attractor dynamics appraoch, spurious
attractors come from cancellation of
repulsive force-lets… Analyzed in Dose,
Schöner 1992

solution proposed there: reduce number of
contributions to avoid cancelation.. selecting
only relevant contributions…

Potential fields as reactive planners
use potential field to plan locally based on low-level
sensory information (reactive)

different “behaviors” generated by different vector-
fields (“schema”, slight generalization of potential
fields)

organize the different behaviors in an architecture

[Arkin, Blach: AuRA 1997]

Architecture

Schema Controller

Motor Perceptual

R
E
P
R
E
S
E
N
T
A
T
I
O
N

Mission Planner

Spatial Reasoner

Plan Sequencer

Actuation Sensing

Hierarchical
 Component

 Reactive
Component

Learning

Plan Recognition
User Profile

Spatial Learning

Opportunism

 On-line
 Adaptation

User Input

User Intentions

Spatial Goals

 Mission
 Alterations

Teleautonomy

The reactive component

E
N
V
I
R
O
N
M
E
N
T

ES1

ES

ES

2

3

RS

RS RS

PS

PS

PS

1

21

2

3

1

2

3

TS

TS

IS

IS

1

2

MOTORS

ROBOT
MOTOR SCHEMAS

ENVIRONMENTAL
 SENSORS

TRANSMITTER
 SCHEMAS

INTERNAL
SENSORS

VECTOR

BROADCAST
 MEDIUM

Σ
Key:
 RS - Receptor Schema
 TS - Transmitter Schema
 PS - Perceptual Schema
 MS - Motor Schema
 IS - Internal Sensor
 ES - Environmental Sensor

Motor schemata

Vector-fields
for different
behaviors
(schemata)

Superposing
potential
fields to
combine
behaviors

Behavior-based sequence planner

Start
Wander

for
Trash

to
Move

Trash Trash
Grabbumper_pushed = 1 trash_detected = 1 IR_beam = 0

Backup1
Wander

for
Trashcan

IR_beam = 1
(add obstacle)

trashcan_detected = 1 at_trashcan = 1

Turn 90 Backup2

Move
to

Trashcan

Drop

Trash

IR_beam = 1
(add obstacle)

gripper_closed = 1

IR_beam = 0

complete = 1

complete = 1 complete = 1

complete = 1

bumpers = 0

bumpers = 0

trash_detected = 0

trashcan_detected = 0

Scaling behavior-based architectures

behaviors: map sensor input to motor output

are activated/deactivated

and may in term activate/deactivate other
behaviors

[Proetzsch, Luksch, Berns 2010]

48 M. Proetzsch et al. / Robotics and Autonomous Systems 58 (2010) 46–67

Fig. 1. Basic iB2C behavior module.

behavior is wrapped into such a module with a uniform interface.
Behaviors can be described as three-tuples of the form
B = (fa, fr , F) (1)
where fa is the activity function, fr is the target rating function, and F

is the transfer function of the behavior. These functions generate
activity information Ea, a target rating r , and an output vector Eu,
respectively. Additionally, each behavior receives an input vector

Ee, a stimulation s, and an inhibition vector Eı. In the following, these
characteristics are explained in more detail.

Behaviors receive data required for fulfilling their work via the
input vector Ee 2 Rm which can be composed of sensory data
(e.g. distance measurements) or information from other behaviors
(e.g. their target rating). The output vector Eu 2 Rn transmits
data generated by the behavior (e.g. intended velocity values). This
output describes the data which is used for actuator control or as
input for other behaviors.

Each behavior provides standardized inputs for adjusting its
relevance:

Definition 1 (Stimulation). The stimulation s 2 [0, 1] of a behavior
B is an input determining the intended relevance of B. In this
notation, s = 0 indicates no stimulation and s = 1 a fully
stimulated behavior. Values between 0 and 1 refer to a partially
stimulated behavior.
Stimulation can be used to adjust the influence of competing
behaviors or to allow higher-level behaviors to recruit lower-level
behaviors and their functionality by explicitly stimulating them.
Certain behaviors require to be constantly stimulated, e.g. safety
behaviors or reflexes. These behaviors are depicted by a filled
triangle at the stimulation port in the figures, as an example see
the Avoid collision behavior in Fig. 4.

Definition 2 (Inhibition). Each behavior can be inhibited by k other
behaviors via its input Eı 2 [0, 1]k. The inhibition i 2 [0, 1], i =
maxj=0,...,k�1(ij) of a behavior B reduces the relevance of B. Here
i = 1 refers to full inhibition, i = 0 to no inhibition. Values
between 0 and 1 refer to a partially inhibited behavior.

Therefore, inhibition has the inverse effect of stimulation.

Definition 3 (Activation). The activation ◆ of a behavior B indicates
the effective relevance of B in the behavior network. It is composed
of the stimulation s and the inhibition i, with

◆ = s · (1 � i). (2)

The calculation of the outputs of a behavior is implemented by the
transfer function F , the activity function fa, and the target rating
function fr . The transfer function F(Ee, ◆) determines the output
vector Eu, where

F : Rm ⇥ [0, 1] ! Rn, F
�Ee, ◆

�
= Eu. (3)

F provides the intelligence of a behavior, calculating actions
depending on input values and internal representations. This can
be a reactive respond to input values, but also a more complex
calculation like a state machine or sophisticated algorithms.
This way, both reflexive sensor-actor coupling and deliberative
behaviors can be implemented (as postulated for behavior-based
architectures by [2]).

Each behavior provides two behavior signals that provide the
ability to deduce information about its state and its assessment of
the current situation:

Definition 4 (Activity). The activity signal a 2 [0, 1] of a behavior
B represents the amount of influence of B in the current system
state. a = 1 refers to a statewhere all output values are intended to
have highest impact, whereas a = 0 indicates an inactive behavior.
Values between 0 and 1 refer to a partially active behavior.

The activity a and the derived activities Ea are defined by the
activity function fa with

fa : Rm ⇥ [0, 1] ! [0, 1] ⇥ [0, 1]q, fa

�Ee, ◆
�

= Ea =
�
a, Ea

�T (4)

where

Ea =
�
a0, a1, . . . , aq�1

�T (5)

with

a
i
 a 8i 2 {0, 1, . . . , q � 1} . (6)

The derived activities Ea allow a behavior to transfer only a part of
its activity to other behaviors.

Definition 5 (Target Rating). The behavior signal target rating r 2
[0, 1] is an indicator for the contentment of a behavior. A value of
r = 0 indicates that the behavior is content with the actual state,
while r = 1 shows maximal dissatisfaction. Values between 0 and
1 refer to a partially content behavior.
To ensure a consistent behavior network during the development
process, some principles have to be complied with. Similar to [27],
these principles allow some basic assumptions about the structure
of the control system. These are required for the analysis of system
properties.

As the activation defines the upper bound of a behavior’s
influence, the following principle must be observed:

Principle 1 (Activity Limitation). The activation ◆ of a behavior B

limits its activity a: a ◆.

Furthermore, if the system is in the goal state of a behavior
(characterized by r = 0), it intends to maintain its adjusted
influence. Therefore, the following principle is postulated:

Principle 2 (Goal State Activity). The activity a of a behavior B does

not change in case r = 0 and ◆ = const.

Usually a behavior’s activity is a = 0 in case it is situated in its goal
state, but there are cases where a constant influence is required,
i.e. a > 0. An example is a behavior generating torque for an arm
joint. If, in this case, the behavior’s activity was lowered in the
goal state, external forces or competing behaviors could change the
adjusted joint angle.

In contrast to the influence of the activation on the activity, the
target rating only depends on the input vector and the behavior-
internal state. This way, the target rating is an indicator for a
behavior’s state assessment, leaving out external adjustments of
its influence:

Principle 3 (Target Rating Independence). There is no (direct,

i.e. inside a behavior) influence of the activation ◆ on r.

As described before, behavior-based architectures do not work
with a centralized world model. This is represented by the fact
that actions of a behavior only depend on the input vector Ee, their
activation and the behavior-internal representation of the current
situation, which can be non-existent for certain behaviors.

3.1.1. Example behavior Turn to object

In order to exemplify the calculation of the described behavior
properties, this section describes a showcase behavior which shall
rotate a vehicle to a detected object in front of the robot. As input
vector Ee the behavior receives the angle � to the object to be

activate

deactivate

activate

deactivate

sensor input

motor output

Scaling behavior-based architectures

behaviors: map sensor input to motor output

are activated/deactivated

and may in term activate/deactivate other
behaviors

[Proetzsch, Luksch, Berns 2010]

M. Proetzsch et al. / Robotics and Autonomous Systems 58 (2010) 46–67 49

Fig. 2. Fusion behavior module in iB2C.

followed. The output Eu is a normalized rotation value rot 2 [�1, 1].
As the rotation output shall reduce the deviation of the object from
the vehicle front, the transfer function can be defined as:

rot =

8
><

>:

�1 if � < ��max
�

�max
if � �max � �max

1 if � > �max.

(7)

The target rating indicates the contentment of the behavior with
the current situation. As the goal is to center the object in front
of the vehicle, the behavior becomes discontent according to the
angle to the object:
r = h(�) (8)
with

h(�) =

8
<

:

|�|
�max

if |�| �max

1 else.
(9)

As the behavior intends to reduce the deviation to the object,
its activity has to increase if the angle to the object grows. The
activation ◆ limits a in order to meet Principle 1:
a = ◆ · h(�). (10)
An example for the interaction of behaviors using the presented
Turn to object behavior is presented in Section 3.3.1.

3.2. Fusion behavior module

A behavior-based system certainly is not finished with the
implementation of the single behaviors. As the influence of
behaviors on control values or on other behaviors interleaves,
and as they can have contrary goals, their outputs must be
usefully combined. This question of behavior coordination is often
considered the main problem in developing such an architecture.

The behavior coordination within iB2C networks is achieved
by so-called fusion behaviors (see Fig. 2). These are integrated
in the case of competing behaviors. Fusion behaviors have the
same interface as defined by the basic behavior module. For the
coordination of p competing behaviors Bc , the input vector Ee is
composed of
• the activities ac (or the derived activities a

i

c
of the vector Ea

c

respectively),
• the target ratings rc , and
• the output vectors Euc .

The transfer function F is the fusion function processing input
values to a merged output control vector Eu.

An example of the fusion of three competing behaviors Bc , c 2
{0, 1, 2} is depicted in Fig. 3. Each of the Bc is connected to the
fusion behavior by its behavior signals ac and rc as well as the
output vector Euc . For clarification, the input vector of the fusion
behavior is drawn separately.

The underlying assumption of the fusion of output values is
that behaviors having a high activity deserve a higher influence on
the control output than those with a lower activity. By using the
behavior signal activity as a means for coordinating the behaviors,
the control data flow and the coordination data flow are separated.

Fig. 3. Exemplary fusion of three behavior outputs.

Fig. 4. Example for the interaction of behaviors using stimulation and inhibition.

The behavior signal calculation of fusion behaviors has to
comply with the following principle:

Principle 4 (Fusion Behavior Neutrality). The calculation of the

activity a and the target rating r of a fusion behavior must keep the

following conditions:

min
c

(ac) · ◆ a min

1,
p�1X

j=0

aj

!

· ◆ (11)

min
c

(rc) r max
c

(rc). (12)

This way, it is guaranteed that a fusion behavior does not inject or
remove activity, as expected from a coordination component. Fur-
thermore, there is no improvement or deterioration of satisfaction.
This accounts for the fact that calculations concerning the assess-
ment of state are only located in non-fusion behavior modules.

The following sections describe the set of fusion function
implementations being used.

3.2.1. Maximum fusion (Winner takes all)

In the case of themaximum fusion, the control value of themost
active behavior is forwarded. Other behaviors obtain no influence.
The transfer function F is defined as:
Eu = Eus where s = argmax

c

(ac). (13)

Activity and target rating are set according to the most active
behavior:
a = max

c

(ac) r = rs where s = argmax
c

(ac). (14)

The maximum fusion implements a switching between behaviors
and is suitable when a combination of control outputs leads to
unwanted results.

Scaling behavior-based architectures

52 M. Proetzsch et al. / Robotics and Autonomous Systems 58 (2010) 46–67

Fig. 5. Priority-based arbitration in iB2C.

Fig. 6. State-based arbitration in iB2C.

3.4.1. Arbitration in iB2C

The presented arbitration mechanisms are supported by
iB2C using the following coordination patterns:

Priority-based arbitration: Priority-based arbitration in iB2C is
implemented using inhibition of behaviors, see Fig. 5. The
order of the behaviors determines the priority of each
component. The maximum fusion behavior selects the
most active behavior.

State-based arbitration: State-based arbitration is depicted in
Fig. 6. Here, a behavior contains state evaluation mecha-
nisms and stimulates action generating behaviors. Coor-
dination takes place using a maximum fusion behavior.

If the state evaluation relies on feedback of the action
generating behaviors, the activity and the target rating
of the respective behaviors can be used (indicated by
dashed lines in Fig. 6).

Winner-takes-all: The Winner-takes-all mechanism is directly
supported in iB2C by the maximum fusion, see Fig. 7.
Here, the competition between the behaviors is imple-
mented as activity calculation.

3.4.2. Command fusion in iB2C

Besides command fusion using the weighted sum fusion func-
tion, iB2C directly supports the superposition and voting mech-
anisms. As fuzzy inferencing techniques and multiple objective
mechanisms implement similar functionality as voting, they are
not treated here.

Fig. 7. Winner-takes-all arbitration in iB2C.

Fig. 8. Superposition in iB2C.

Fig. 9. Voting mechanism in iB2C.

Superposition: Superposition in iB2C is implemented by the
weighted sum fusion, see Fig. 8. Here, a component-
wise fusion takes place with the activity representing the
relative scale of each vector.

Voting: In iB2C, voting is implemented using a standard fusion
behavior and a mapping behavior (see Fig. 9). Each
behavior involved provides votes for each of the n

possible options (e.g. driving directions) which are
transferred to the fusion behavior implementing the
weighted fusion function. The output of the fusion
behavior consists of the weighted votes for each voting
option. A mapping behavior, which is stimulated by the
fusion behavior, then maps the maximal option rating to
a command for further processing.

3.4.3. Architecture classification

With the presented properties, the classification of [6] can be
applied to iB2C:

• Cooperative as well as competitive behavior coordination
methods are available.

52 M. Proetzsch et al. / Robotics and Autonomous Systems 58 (2010) 46–67

Fig. 5. Priority-based arbitration in iB2C.

Fig. 6. State-based arbitration in iB2C.

3.4.1. Arbitration in iB2C

The presented arbitration mechanisms are supported by
iB2C using the following coordination patterns:

Priority-based arbitration: Priority-based arbitration in iB2C is
implemented using inhibition of behaviors, see Fig. 5. The
order of the behaviors determines the priority of each
component. The maximum fusion behavior selects the
most active behavior.

State-based arbitration: State-based arbitration is depicted in
Fig. 6. Here, a behavior contains state evaluation mecha-
nisms and stimulates action generating behaviors. Coor-
dination takes place using a maximum fusion behavior.

If the state evaluation relies on feedback of the action
generating behaviors, the activity and the target rating
of the respective behaviors can be used (indicated by
dashed lines in Fig. 6).

Winner-takes-all: The Winner-takes-all mechanism is directly
supported in iB2C by the maximum fusion, see Fig. 7.
Here, the competition between the behaviors is imple-
mented as activity calculation.

3.4.2. Command fusion in iB2C

Besides command fusion using the weighted sum fusion func-
tion, iB2C directly supports the superposition and voting mech-
anisms. As fuzzy inferencing techniques and multiple objective
mechanisms implement similar functionality as voting, they are
not treated here.

Fig. 7. Winner-takes-all arbitration in iB2C.

Fig. 8. Superposition in iB2C.

Fig. 9. Voting mechanism in iB2C.

Superposition: Superposition in iB2C is implemented by the
weighted sum fusion, see Fig. 8. Here, a component-
wise fusion takes place with the activity representing the
relative scale of each vector.

Voting: In iB2C, voting is implemented using a standard fusion
behavior and a mapping behavior (see Fig. 9). Each
behavior involved provides votes for each of the n

possible options (e.g. driving directions) which are
transferred to the fusion behavior implementing the
weighted fusion function. The output of the fusion
behavior consists of the weighted votes for each voting
option. A mapping behavior, which is stimulated by the
fusion behavior, then maps the maximal option rating to
a command for further processing.

3.4.3. Architecture classification

With the presented properties, the classification of [6] can be
applied to iB2C:

• Cooperative as well as competitive behavior coordination
methods are available.

52 M. Proetzsch et al. / Robotics and Autonomous Systems 58 (2010) 46–67

Fig. 5. Priority-based arbitration in iB2C.

Fig. 6. State-based arbitration in iB2C.

3.4.1. Arbitration in iB2C

The presented arbitration mechanisms are supported by
iB2C using the following coordination patterns:

Priority-based arbitration: Priority-based arbitration in iB2C is
implemented using inhibition of behaviors, see Fig. 5. The
order of the behaviors determines the priority of each
component. The maximum fusion behavior selects the
most active behavior.

State-based arbitration: State-based arbitration is depicted in
Fig. 6. Here, a behavior contains state evaluation mecha-
nisms and stimulates action generating behaviors. Coor-
dination takes place using a maximum fusion behavior.

If the state evaluation relies on feedback of the action
generating behaviors, the activity and the target rating
of the respective behaviors can be used (indicated by
dashed lines in Fig. 6).

Winner-takes-all: The Winner-takes-all mechanism is directly
supported in iB2C by the maximum fusion, see Fig. 7.
Here, the competition between the behaviors is imple-
mented as activity calculation.

3.4.2. Command fusion in iB2C

Besides command fusion using the weighted sum fusion func-
tion, iB2C directly supports the superposition and voting mech-
anisms. As fuzzy inferencing techniques and multiple objective
mechanisms implement similar functionality as voting, they are
not treated here.

Fig. 7. Winner-takes-all arbitration in iB2C.

Fig. 8. Superposition in iB2C.

Fig. 9. Voting mechanism in iB2C.

Superposition: Superposition in iB2C is implemented by the
weighted sum fusion, see Fig. 8. Here, a component-
wise fusion takes place with the activity representing the
relative scale of each vector.

Voting: In iB2C, voting is implemented using a standard fusion
behavior and a mapping behavior (see Fig. 9). Each
behavior involved provides votes for each of the n

possible options (e.g. driving directions) which are
transferred to the fusion behavior implementing the
weighted fusion function. The output of the fusion
behavior consists of the weighted votes for each voting
option. A mapping behavior, which is stimulated by the
fusion behavior, then maps the maximal option rating to
a command for further processing.

3.4.3. Architecture classification

With the presented properties, the classification of [6] can be
applied to iB2C:

• Cooperative as well as competitive behavior coordination
methods are available.

[Proetzsch, Luksch, Berns 2010]

M. Proetzsch et al. / Robotics and Autonomous Systems 58 (2010) 46–67 57

Fig. 14. Example for an activity graph of an iB2C behavior network influencing the forward and backward motion of a vehicle. The different styles of the arrows indicate
the type of interaction between behaviors, i.e. stimulation, inhibition, or activity transfer. This allows the evaluation of the activity flow through the behavior network.

to their included modules. Mca groups can be inserted into
the control network in the same way as ordinary modules.
Behavioral groups aremapped to theseMca groups by defining the
corresponding interface.

5.1. Graph visualization of iB2C networks

The usage of the predefined interfaces (i.e. stimulation, inhibi-
tion, and transfer of activity) defines a graph of interconnected be-
havior components with a flow of activity. The iB2C structure is
stored using the Boost Graph Library5 (Bgl) [44] and can be visual-
ized using Graphviz.6 Fig. 14 gives an example of such an automati-
cally generated iB2C graph containing the flow of activity between
behaviors influencing the forward and backward motion of a vehi-
cle. Within this graph, properties like cycles as well as stimulation
and inhibition successors and predecessors (see Definitions 6–9)
can be automatically identified to retrieve static information about
the influence of behaviors on the robot’s behavior. This way, in-
terconnections contradicting with the introduced principles have
successfully been spotted.

5.2. Oscillation analysis in iB2C networks

Besides evaluating the static properties, the graphic representa-
tion of the behavior network can be used to track particular effects
down to the causing components [45]. One aspect with a possi-

5 http://www.boost.org.
6 http://www.graphviz.org.

bly bad influence on the performance of robotic systems is oscilla-
tions occurring inside the control structure. The knowledge about
this information may help in diagnosing design errors with nega-
tive consequences on the robustness, performance, and reliability
of the system. Furthermore, recurring patterns, e.g. duringwalking
motions, can be evaluated.

The oscillation analysis problem splits into two components:
1. Oscillation detection (Section 5.2.1): Oscillations have to be

detected in single behaviors. If oscillations have been detected,
their severity must be evaluated using suitable quality criteria.

2. Oscillation tracing (Section 5.2.2): In order to find the root cause
of an oscillation, the path it takes through the behavior-based
control network has to be determined. Furthermore, changes
of the oscillation characteristics while propagating through the
network should be analyzed.

5.2.1. Oscillation detection

The method for detecting oscillations described here is based
on [46] where it is implemented to off-line detect multiple oscil-
lations of different frequencies in measurements from chemical
processes. It is based on analyzing the frequency spectrum of the
supervised signal using the Fast Fourier Transformation (Fft). In
order to apply the Fft, the sampled signal data (see Fig. 15(a)) is
stored in a ring buffer.

At first, the Hann-window is applied to the original signal to
avoid leakage effects (see Fig. 15(b)). Then the signal is transformed
to the frequency domain (see Fig. 15(c)) using the Fft.

The peaks in the power spectrum indicate potential oscillations
which need to be further classified in order to neglect false

[Proetzsch, Luksch, Berns 2010]

Scaling behavior-based architectures

implemented on a variety of systems

62 M. Proetzsch et al. / Robotics and Autonomous Systems 58 (2010) 46–67

Fig. 19. Design flow in Averest.

snapshots of the development procedure whereas the strategy
involves adding, interconnecting, testing, and adapting behaviors
in a step by step fashion.

Ravon’s task is to allow the navigation in rough off-road terrain.
Applications include monitoring tasks or support of action forces
in case of natural disasters. Following the development procedure
proposed in Section 4, this task is split up into several skills
of the vehicle. According to the target environment, an initial
decomposition can be done as follows:

• Obstacle avoidance
– Stop the vehicle in case of too close obstacles

* Obstacles hit by the bumper system
* Obstacles detected by 3D laser scanner
* Barriers detected by the stereo camera system
* Holes detected by the stereo camera system

– Slow down the vehicle according to the proximity of
obstacles
* Obstacles detected by 3D laser scanner
* Barriers detected by the stereo camera system
* Holes detected by the stereo camera system

– Rotate the vehicle away from obstacles
* ditto

– Perform sideward motions away from obstacles
* ditto

• Avoid tip over
– Stop at high roll angle
– Stop at high pitch angle

• Creep through vegetation
– Evaluate obstacle situation
– Maintain creep velocity

• Allow operator control
– Wireless joystick
– Joystick in user interface
– Tele operation via radio transmission

• Prefer unobstructed space
• Prefer smooth motions

– Prefer straight motions
– Reduce accelerations

• Trace back from dead ends
• Approach goal points
• Build up a map for navigation.

The next development stage concerns the bottom-up imple-
mentation which is based on the above design. Ravon features
an all-wheel drive with four independent electric motors for the
wheels and steerable front and rear axis. Concerning the imple-
mentation process the degrees of freedom of the vehicle are of in-
terest. Three components of the motion can be distinguished: the
velocity of the vehicle, the direction of the motion (i.e. sideward
motion relative to the vehicle direction), and the rotation of the
vehicle resulting from driving curves. The kinematic calculations
described in [26] provide an interface containing the mentioned
three degrees of maneuverability.

Following the Dof access pattern (see Section 4.1.3), each of
these Dof is divided into a positive and a negative component as
depicted in Fig. 21. For each of the motion directions, a behavior
is introduced which, if it is activated (i.e. ◆ > 0), provides an
output according to the desired direction. Via a fusion behavior
these output values are forwarded to a behavior for each of theDof
which generates the control value for the kinematic accordingly.
Here it should be mentioned that the behaviors of each layer are
all of the same kind, i.e. they are objects derived from the same
class. After this stage, experiments allow an evaluation whether
the interface generates correct motion commands.

The next step is introducing behaviors guaranteeing the
fundamental safety properties. Fig. 22 shows the behaviors
added for stopping the vehicle due to obstacles or a slope.

Fig. 20. Robots of the Robotics Research Lab controlled by an iB2C system: Ravon,Marvin, dynamically simulated biped, Artos, and Roman (skeleton and skin).

Fig. 21. First stage of the implementation process: Access of the Dof of Ravon.

Scaling behavior-based architectures

[Proetzsch, Luksch, Berns 2010]

Dynamic window approach

take dynamic constraints of vehicle into account
(maximal decelerations/accelerations)… to drive fast

in a dynamic variant of the potential field method

1m

robot

target

right wall I right wall II

left wall

[Fox, Burghard, Thrun, 1996]

Dynamic window approach

discretize motor control space: linear and angular
velocity

=> search space: circular trajectories of v, omega

Va

Vs

90 deg/sec-90 deg/sec

90 cm/sec

door

left wall corridor right wall II

right wall I

Dynamic window approach

Dynamic window approach

aV

Vs

Vr

90 deg/sec-90 deg/sec

90 cm/sec

ddynamic window V

actual velocity

Dynamic window approach

Dynamic window approach

actual position

predicted position

θ
target targt heading

-90
-45

0
45

0

30

60

900

0.5

1

rot. velocity [deg/sec]

trans. velocity [cm/sec]

distance

-90
-45

0
45

0

30

60

900

0.5

1

rot. velocity [deg/sec]

trans. velocity [cm/sec]

velocity

-90
-45

0
45

0

30

60

900

0.5

1

rot. velocity [deg/sec]

trans. velocity [cm/sec]

target cost function

Dynamic window approach

actual position

predicted position

θ
target targt heading

-90
-45

0
45

0

30

60

900

0.5

1

rot. velocity [deg/sec]

trans. velocity [cm/sec]

distance

-90
-45

0
45

0

30

60

900

0.5

1

rot. velocity [deg/sec]

trans. velocity [cm/sec]

velocity

-90
-45

0
45

0

30

60

900

0.5

1

rot. velocity [deg/sec]

trans. velocity [cm/sec]

clearance cost function

Dynamic window approach

smoothing the cost functions

evaluation function

-90
-45

0
45

0

30

60

900

1

2

rot. velocity [deg/sec]

trans. velocity [cm/sec]

smoothed evaluation function

-90
-45

0
45

0

30

60

900
1
2
3

rot. velocity [deg/sec]

trans. velocity [cm/sec]

Dynamic window approach

two samples of actual velocities

aV

Vs

Vd2

Vd1

90 deg/sec-90 deg/sec

90 cm/sec

door
corridor

Dynamic window approach

cost function for the action velocities

dynamic window (70,0)

-90
-45

0
45

0

30

60

90-1
-0.5

0
0.5

1
1.5

2
2.5

rot. velocity [deg/sec]

trans. velocity [cm/sec]

dynamic window (40,0)

-90
-45

0
45

0

30

60

90
0
1
2

rot. velocity [deg/sec]

trans. velocity [cm/sec]

Dynamic window approach

example RHINO

used Borenstein Koren approach to smooth
and accumulate sonar distance data

1m

robot

target

obstacle lines

left wall

right wall

γ

collision point

trajectory

r

Dynamic window approach

data

1m

Decision area

2

2

2- 20 cm/sec , 30 deg/sec

70 cm/sec
40 cm/sec
40 cm/sec

- 50 cm/sec , 60 deg/sec
- 50 cm/sec , 60 deg/sec2

2

2

1m

human

Dynamic window approach

data

1m

Decision area

2

2

2- 20 cm/sec , 30 deg/sec

70 cm/sec
40 cm/sec
40 cm/sec

- 50 cm/sec , 60 deg/sec
- 50 cm/sec , 60 deg/sec2

2

2

1m

human

Dynamic window approach

data

1m

humans

ultra-sound histograms: the virtual force field
concept

vector-field histogram concept: polar histogram
(heading direction!); height (strength) depends
on both certainty and distance

threshold: determine free sectors

select free direction closest to target

Virtual force field:
Borenstein & Koren

[Koren, Borenstein, 1991)

Virtual force field: Borenstein & Koren

vector toward target

active window around
robot

use histogram within
active window to
compute vectors
pointing away from
obstacle

vector summing

~dynamic approach!

Virtual force field:
Borenstein & Koren

Problem:
oscillations
in narrow
passages

Virtual force field:
Borenstein & Koren

transform active window in world grid into
polar histogram

Vector field histogram: Borenstein & Koren

lab set-up

Vector field histogram:
Borenstein & Koren

local polar
histogram
provides “free”
directions

Vector field histogram:
Borenstein & Koren

Select safe direction algorithmicallyVector field histogram:
Borenstein & Koren

works

Vector field
histogram:
Borenstein &
Koren

Extension of attractor dynamics
approach

Autonomous Robots (2019) 43:589–610
https://doi.org/10.1007/s10514-018-9729-2

Attractor dynamics approach to joint transportation by autonomous
robots: theory, implementation and validation on the factory floor

Toni Machado1 · Tiago Malheiro1 · Sérgio Monteiro1 ·Wolfram Erlhagen2 · Estela Bicho1

Received: 1 November 2016 / Accepted: 2 April 2018 / Published online: 12 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper shows how non-linear attractor dynamics can be used to control teams of two autonomous mobile robots that
coordinate their motion in order to transport large payloads in unknown environments, which might change over time and
may include narrow passages, corners and sharp U-turns. Each robot generates its collision-free motion online as the sensed
information changes. The control architecture for each robot is formalized as a non-linear dynamical system, where by design
attractor states, i.e. asymptotically stable states, dominate and evolve over time. Implementation details are provided, and it is
further shown that odometry or calibration errors are of no significance. Results demonstrate flexible and stable behavior in
different circumstances: when the payload is of different sizes; when the layout of the environment changes from one run to
another; when the environment is dynamic—e.g. following moving targets and avoiding moving obstacles; and when abrupt
disturbances challenge team behavior during the execution of the joint transportation task.

Keywords Joint transportation · Autonomous robots · Mobile robots · Obstacle avoidance · Unknown environments ·
Attractor dynamics

1 Introduction

A large number of scenarios—e.g.warehouses, depots, ports,
construction sites, and industrial processes—require a spe-
cific object, cargo or payload to be transported from a
point A (initial or loading location) to a point B (destina-
tion or unloading location). The practicality of using robots
to provide assistance in such scenarios has already been
demonstrated, and these are often used in process automa-
tion. See for instanceWidyotriatmo and Hong (2011), where
autonomous forklifts aid in the handling of materials in
industry, Durrant-Whyte (1996) for a scenario depicting
autonomous guided vehicles (AGV) which transport ISO-
standard cargo containers in port environments, or Sprunk

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10514-018-9729-2) contains supplementary
material, which is available to authorized users.

B Estela Bicho
estela.bicho@dei.uminho.pt

1 Department of Industrial Electronics, University of Minho,
Guimaraes, Portugal

2 Department of Mathematics and Applications, University of
Minho, Guimaraes, Portugal

et al. (2017) for a focus on the navigation of omnidirectional
transport vehicles in industrial environments.However,when
the objects to be transported are larger in size, it is prefer-
able to use teams of (smaller and cheaper) robots that jointly
carry the payload to its destination, instead of resorting to
single large robots. One example in space exploration is a
Mars Rover pair, which has cooperatively transported a long
payload (Trebi-Ollennu et al. 2002). Another more recent
application is that of the car transportation system developed
at TohokuUniversity, which uses teams of two or fourmobile
robots (Endo et al. 2008; Kashiwazaki et al. 2011). Neverthe-
less, neither of these two examples has dealt with the problem
of obstacle avoidance.

In a joint transportation task, the team of robots should
be able to navigate in their environments while still main-
taining the relative distance between robots, which is equal
to a predefined distance associated to payload sizes. Despite
related to the problem ofmulti-robot formation control (Hess
et al. 2009; Monteiro and Bicho 2010; Sabattini et al. 2011;
Bayram and Bozma 2016), there is one fundamental differ-
ence: the robots are physically connected by the payload.
This means that the distance between robots is to be kept
within tight boundaries and that, when avoiding obstacles,
the complete team should be able to navigate around them.

123

Extension of attractor dynamics
approachAutonomous Robots (2019) 43:589–610 591

Fig. 1 The team of autonomous mobile robots transporting a long box
as cargo/payload. Here, the validation scenario is a factory floor

transportation task. The paper ends with a conclusion and an
outlook for future work in Sect. 6. Three appendixes further
complement the work reported here.

2 Related work

2.1 Object transportation by teams of mobile robots

In literature on the subject of object transportationby teamsof
mobile robots, one typically finds four different approaches
to physically transport, or move, an object from a point A
to point B: (1) pushing the object (e.g. Sudsang 2002; Gross
andDorigo 2009); (2) pulling the object (e.g. Yamashita et al.
1998; Donald et al. 2000; Cheng et al. 2009); (3) placing the
object on top of the robots (e.g. Tang et al. 2004; Stouten
and Graaf 2004; Loh and Traechtler 2012); (4) using robots
with manipulators, or some sort of gripping devices (e.g.
Ahmadabadi and Nakano 2001; Tanner et al. 2003).

In the context of this paper, we are especially interested in
solutionswhichmight be useful in industrial scenarios,where
the objects to be transported might be large and heavy. As
such, solutions based on the pushing and pulling of the object
are inadequate, while solutions relying on mobile platforms
with industrial manipulators, though quite flexible, are not
robust enough for heavy loads.

There are two general approaches to control a team of
robots transporting a payload: Centralized (e.g. Hashimoto
et al. 1993; Tanner et al. 2003; Yamashita et al. 2003; Wada
andTorii 2013) andDecentralized control schemes (e.g. Tang
et al. 2004; Trebi-Ollennu et al. 2002; Fujii et al. 2007). The
centralized approach relies on a unique agent (which may be
an outside entity) to compute the teams overall path. This
is undertaken either by providing a reference trajectory—
which can be virtual—for the transported object, or one for
each robot, or each robot’s action. For a recent study, see e.g.
Yamaguchi et al. (2015), which proposes a path-following
feedback control law for a cooperative transportation system

with two car-like vehicles, in order to followparametric curve
paths at variable velocities.

The limited success of the centralized approach is mainly
due to computational and communication costs, particularly
in environments that may be dynamic.

In the decentralized approach, each robot is completely
autonomous, in that it senses the world, communicates (or
not) with the team and computes its own behavior based on
limited, local and sensorial information. It has been claimed
that the decentralized approach has several advantages over
centralized approaches (see e.g. Cao et al. 1997; Parker 2000;
Jones andMataric 2005). However, a major difficulty resides
in achieving purposive team behavior in that precise control
and coordination of the robots can be extremely difficult.
From the perspective of a cooperating robot, the (sensed)
environment—consisting of themanipulated object, the other
robot(s) and the world scenario (be it static or dynamic)—
presents complex behavior.

The decentralized approaches mainly follow leader–
follower, master–slave or leader–helper strategies. These
can be defined as synonymous of a team, where one robot
(the leader) heads the way for the team; the remaining robots
keep up with the leader’s path by taking object sizes into
account. Several authors have minimized the coordination
effort in decentralized approaches by relying on precom-
puted trajectories, either for the leader or for the transported
object, or for some reference point. In Yang et al. (2004), for
instance, a leader–follower control architecture, which relies
on a planned trajectory of the object in transportation, is pre-
sented. Similarly, simulations of two robots transporting a
ladder along a corridor with a 90◦ corner were presented in
Asahiro et al. (2001). The approach is distributed in the sense
that each robot computes its own trajectory. This is computed
at the start of the mission, from the initial to the final posi-
tion, based on knowledge of the environment. At run-time
the robots try to follow these a priori defined set-points,
with local adjustments to compensate for robot inequalities
and obstacle avoidance. In Abou-Samah et al. (2006), the
authors developed leader–follower and decentralized archi-
tectures for twomobile robots equipped with 2 DOF revolute
joint manipulators transporting payloads in cooperation. In
both approaches, a reference trajectory is required as input. In
Yufka et al. (2010), a virtual leader–follower formation con-
trol approach is used. The transported object is assumed to be
the virtual leader, while the carrying robots are the followers,
in a formation that is dependent on object shape. A reference
trajectory is required for the object acting as virtual leader,
and this is assumed to be provided. The consequence is that
knowledge of the environment is required and that moving
obstacles are not considered. The work in Kim and Minor
(2010) also uses the reference trajectory of the transported
object, thus presenting the same disadvantages as the previ-
ous study. The existence of such preplanned trajectories does

123

[Machado et al, 2019]

Extension of attractor dynamics
approach

Autonomous Robots (2019) 43:589–610 593

stability of the control law is difficult and sometimes impos-
sible. (2) We present and analyze in detail the dynamical
systems that generate the robots’ behavior. Importantly, we
demonstrate relevant issues concerning the implementation
on the robots, highlighting that odometry and/or calibration
errors are of no significance. (3)We present, analyze and dis-
cuss a set of new results, namely: (a) we show that there is
nothing in our approach that forces us to work with static tar-
gets; the robotic team can also follow a moving target, which
can be another robot or a human operator/co-worker; (b) it
is shown that the team is able to handle unexpected events
during task execution, even though these may cause abrupt
perturbations (e.g. a human subject throwing obstacles onto
to robots’ path); (c) for the very first time, validation on a
real factory floor, in a scenario aggregating several challeng-
ing situations, e.g. narrow passages with U-shaped turns, and
the appearance of a human operator driving a pallet stacker
which disturbs the team.

3 Robot team

The mission of the team, as depicted in Fig. 1, is to transport
long objects from a starting location (the payload loading
location) to a destination location (the payload unloading
location). Both the loading and unloading actions are not
subject of study in this paper. The Leader robot holds an
extremity of the payload and leads the team from an ini-
tial position to a detected target destination while avoiding
sensed obstacles. The Helper robot holds the other extrem-
ity of the object and helps the Leader to carry the payload.
This implies that the Helper has to steer in such a way that
it always maintains an appropriate orientation and distance
from the Leader, which simultaneously subsumes two task
constraints: assisting in the transportation of the object and
avoiding collisions with obstacles sensed in the meantime. It
is important to highlight that the Leader is also responsible
for keeping the payload away from obstacles (c.f. Sect. 4).

The two robots possess similar characteristics (depicted
in Fig. 2a). Each consists of a cylindrical platform with two
differential motorized wheels, driven by electronic circuitry
that guarantees an accurate control of rotation speed, and
two caster wheels for balance. Each robot is equipped with a
ring of (N) distance sensors—centered on the rotation axis—
which are used to measure distance to obstructions at the
directions they are pointing towards in space. These sen-
sors are arranged such that their sensitive cones just touch.
The distance range is a parameter that can be set. An omni-
directional vision system is used by the Leader robot to
detect targets identified by specific colors. Image process-
ing is based on color blob extraction. The size and location
of the blob, followed by ad-hoc calibration, allows one to
compute an estimate of the distance and relative direction of

Fig. 2 The payload support is a 2 DOF system, which is based on
a prismatic joint coupled to a rotational joint. The prismatic joint is
equipped with returning springs. The payload support base is instru-
mented to output the relative displacement, dr , and bearing, αc,r , of
the transported payload, in relation to the robot’s center and the head-
ing direction, respectively. The angular displacement between distance
sensors is δ rad. a Photo of one of the robots used in the experiments.
b Scheme (top view) showing the 2 DOF payload support base and the
N (= 11) distance sensors

the target. All this is carried out in real time (up to 15 fps)
and with a maximum error of 5% in direction and 10% in
distance. A compass is used to keep a record of the robot’s
heading direction over time. This information is only used
to monitor and document results; it is not used to control the
robot’s motion. All programming, control and computation
are undertaken onboard. A wireless router enables access in
order to facilitate configuration and communication.

Each robot is also equipped with a 2 DOF dedicated
support—payload support base—mounted on its top and
centered to hold the transported object. Each support base
is composed of a prismatic joint (to which the object is
attached), which is coupled to a free rotational joint centered
on the robot (see Fig. 2b). During acceleration and maneu-
vers, the object is displaced along the prismatic joint, which
rotates to accommodate these changes. In order to guaran-
tee that the displacement on each robot’s payload support is
approximately the same, the prismatic joint is equipped with
springs that also try to return the payload support base to the
center after a transient A similar solution has been proposed
in Hashimoto et al. (1993). The maximum displacement of

123

594 Autonomous Robots (2019) 43:589–610

Fig. 3 The leader and helper’s heading direction are φL and φH ,
respectively. These are measured in relation to an arbitrary, but fixed,
external reference frame (to obtain these angles, one should consider
that the reference frame moves with each robot’s center but that its
rotation is locked, as in Bicho et al. 2000). The support base on each
robot ensures the displacement of the payload in relation to the robot’s
center, dL or dH , as well as the payload bearing, αc,L or αc,H , i.e. the
payload angle in relation to the current heading direction of the Leader
and Helper robots, respectively

the payload allowed is 20 cm to each side of the robot’s cen-
ter and along the prismatic joint. When above this value, the
payload falls down.

A description follows of the control systemwhich governs
each robot’s behavior.

4 The dynamical systems for joint
transportation

For the following, please refer to Fig. 3.
In order to model each robot’s behavior, we use as control

variables the heading direction, φr , in relation to an arbitrary
but fixed reference frame, and path velocity, vr (r = {L, H},
where L ≡ Leader and H ≡ Helper). Behavior is gener-
ated by providing values to these variables, which control the
robot’s wheels. The time course for each of these variables
is obtained from the (fixed point) solutions of dynamical
systems. The fixed point attractor solutions (i.e. the asymp-
totically stable states) dominate these solutions by design.
In the present system, the behavioral dynamics of heading
direction, φr (t), and path velocity, vr (t), are defined by dif-
ferential equations

dφr

dt
= fdes,r (φr)+ Fobs,r (φr)+ fvir ,r (φr) (1)

dvr
dt

= gdes,r (vr) (2)

where the vector fields consist of a number of contribu-
tions that express independent task constraints or elementary
behaviors. In isolation, each contribution creates an attrac-
tor (an asymptotically stable state) or a repeller (an unstable
state) of the dynamics of the behavioral/control variable,

with a specified strength and range of attraction or repulsion,
respectively.

In the dynamical system defined by (1): fdes,r (φr)mod-
els target acquisition behavior by dynamically orienting the
robot to a desired target direction, which is achieved by
erecting an attractor state at this direction; Fobs,r (φr) mod-
els robot obstacle avoidance behavior by erecting repellers,
which make the heading direction avoid the undesired direc-
tions (e.g. directions at which obstructions are sensed by
the distance sensors); fvir ,r (φr) models payload collision
avoidance behavior, which keeps the payload safe fromcolli-
sions. The resulting dynamical system is non-linear and may
present multiple stable states (attractors) that change over
time, as the robots move and/or the environment changes.

Equation (2) defines a dynamical system which attracts
path velocity to a desired value, as is later explained in this
section (c.f. Sect. 4.2).

By design, parameters are tuned so that the control
variables are mostly very close to one attractor of the result-
ing dynamics, i.e. the variables follow one of the moving
attractors extremely closely. This implies that each robot’s
behavior is generated as a time series of asymptotically sta-
ble states. The fact that only attractor solutions matter can
be used to design the layout of attractors and repellers by
using the qualitative theory of dynamical systems. Qualita-
tive changes in behavior emerge through bifurcations in the
vector fields. The local bifurcation theory helps to design the
dynamics, so that these qualitative changes are automatically
carried out under the appropriate environmental conditions
(e.g. sensory information or shared information within the
team of robots).

The next subsections build the individual contributions to
the vector fields in (1) and (2) for the Leader and theHelper.
One also simultaneously discuss relevant issues concerning
the implementation on the robots, highlighting that odometry
and/or calibration errors are not a relevant issue here.

4.1 Heading direction dynamics

The dynamical system governing the heading direction of
each robot r ∈ {L, H} is given by (1). It is the outcome of
the integration of several components, which are specified
below.

4.1.1 Target acquisition behavior

Orientation towards a desired heading direction ψdes,r ∈
[0, 2π] is modeled by

fdes,r (φr) = −λdes,r sin
(
φr − ψdes,r

)
(3)

which erects an attractor for φr at ψdes,r with an attraction
strength defined by λdes,r (> 0), corresponding to the relax-

123

Autonomous Robots (2019) 43:589–610 595

Fig. 4 Desired heading directions for both robots, Leader and Helper,
respectively ψtar ,L and ψc,H . The star represents the mission target.
Note that: αc,r = ψc,r − φr ; and ψc,L = ψc,H − π

ation rate to that attractor (i.e. inverse of local relaxation
time).

Next,we explain how to compute the attractor valueψdes,r
for the Leader and Helper (refer to Fig. 4).
For the Leader (r=L) The desired heading direction is the
direction at which it sees the mission target, i.e. ψdes,L =
ψtar ,L .
For the Helper (r=H) The desired heading direction is the
direction that aligns itself with the transported object, i.e.
ψdes,H = ψc,H .

It is important to highlight that, for the implementa-
tion of (3) on the robots, there is no need to maintain an
estimate of the robots’ heading direction. This is because(
φL − ψtar ,L

)
= αtar ,L is the bearing angle at which the

Leader sees themission target,which is provided by its vision
system, while

(
φH − ψc,H

)
= −αc,H , is directly given by

the payload support base (see Fig. 2b or 3). This implies that
calibration and/or odometry errors are of no significance.

4.1.2 Robot obstacle avoidance behavior

Fobs,r (φr) is given by:

Fobs,r (φr) =
Nr∑

i=1

fobs,i,r (φr) (4)

where Nr represents the number of distance sensors, and
fobs,i,r (φr) models a repulsive forcelet, which ensures the
collision avoidance of robot r and an obstruction sensed by
its distance sensor i . Each of these contributions is defined
by:

fobs,i,r (φr) = λobs,i,r
(
φr − ψobs,i,r

)

exp

(

−
(
φr − ψobs,i,r

)2

2σi,r 2

)

. (5)

It erects a repeller at a direction specified by ψobs,i,r , with
a repulsion strength defined by λobs,i,r (≥ 0), and with σi,r
setting the angular range over which the repeller exerts its
repulsive force (see Bicho et al. 2000 for details).

The computation of ψobs,i,r is performed as follows: for
a single free-moving robot, the directions at which repellers
are erected, ψobs,i,r , are directly the directions at which the
obstructions are sensed (Bicho et al. 2000). This approach
is not valid here for the robots in the team because they are
linked by the payload that they jointly transport. Hence, the
presence of that payload must also be accounted for during
each robot’s obstacle avoidance behavior.

Consider the situation depicted in Fig. 5a. In this situa-
tion, the leader is moving away from the obstacle, while the
Helper has the obstacle on its left. More specifically, its sen-
sors i = 7 and i = 8 are detecting obstructions (see Fig. 5b).
If the directions of the repellers were to be the directions at
which these sensors are pointing in space, then the Helper
would turn clockwise and move around the obstacle, keep-
ing it to its left. The problem is that the payload could collide
with the obstacle if the obstacle was high enough. To avoid
this problem, the Helper must remain on the same side of
the obstacle as the Leader and payload. In this particular
scenario, the Helper has to turn counterclockwise. This is
accomplished by shifting the repellers from the directions
relating to sensor i = 7 and i = 8 to sensor sector i = 5.

With this in mind, for the general case, the direction at
which each repeller i is erected is made:

ψobs,i,r = φr + Ψobs,i,r (6)

where Ψobs,i,r , accounts for the fact that a payload is being
carried with a bearing angle αc,r (see Fig. 2b), and is defined
by:

Ψobs,i,r =

⎧
⎨

⎩

−δ ,
(
αc,r ≥ 0

)
∧

(
0 ≤ ϱiδ ≤ αc,r

)

+δ ,
(
αc,r < 0

)
∧

(
αc,r ≤ ϱiδ ≤ 0

)

ϱiδ , otherwise
,∀αc,r ∈ [−π,π] .

(7)

Here, δ represents the angular distance between the cen-
ter of two consecutive distance sensors and ϱi = {−(N −
1)/2, . . . , 0, . . . , (N−1)/2} constitutes the sensor’s position
in relation to the robot’s heading direction (see Fig. 5b).

The repulsion strength, λobs,i,r , of each contribution
fobs,i,r is a decreasing function of the distance sensed, di,r :

λobs,i,r = β1,r exp
(

− di,r
β2,r

)
. (8)

The parameter β1,r (> 0) is the maximal strength of repul-
sion, while β2,r (> 0) fixes the distance over which the
repulsion contribution decays. The larger the sensed distance

123

[Machado et al, 2019]

Extension of attractor dynamics
approach

Autonomous Robots (2019) 43:589–610 595

Fig. 4 Desired heading directions for both robots, Leader and Helper,
respectively ψtar ,L and ψc,H . The star represents the mission target.
Note that: αc,r = ψc,r − φr ; and ψc,L = ψc,H − π

ation rate to that attractor (i.e. inverse of local relaxation
time).

Next,we explain how to compute the attractor valueψdes,r
for the Leader and Helper (refer to Fig. 4).
For the Leader (r=L) The desired heading direction is the
direction at which it sees the mission target, i.e. ψdes,L =
ψtar ,L .
For the Helper (r=H) The desired heading direction is the
direction that aligns itself with the transported object, i.e.
ψdes,H = ψc,H .

It is important to highlight that, for the implementa-
tion of (3) on the robots, there is no need to maintain an
estimate of the robots’ heading direction. This is because(
φL − ψtar ,L

)
= αtar ,L is the bearing angle at which the

Leader sees themission target,which is provided by its vision
system, while

(
φH − ψc,H

)
= −αc,H , is directly given by

the payload support base (see Fig. 2b or 3). This implies that
calibration and/or odometry errors are of no significance.

4.1.2 Robot obstacle avoidance behavior

Fobs,r (φr) is given by:

Fobs,r (φr) =
Nr∑

i=1

fobs,i,r (φr) (4)

where Nr represents the number of distance sensors, and
fobs,i,r (φr) models a repulsive forcelet, which ensures the
collision avoidance of robot r and an obstruction sensed by
its distance sensor i . Each of these contributions is defined
by:

fobs,i,r (φr) = λobs,i,r
(
φr − ψobs,i,r

)

exp

(

−
(
φr − ψobs,i,r

)2

2σi,r 2

)

. (5)

It erects a repeller at a direction specified by ψobs,i,r , with
a repulsion strength defined by λobs,i,r (≥ 0), and with σi,r
setting the angular range over which the repeller exerts its
repulsive force (see Bicho et al. 2000 for details).

The computation of ψobs,i,r is performed as follows: for
a single free-moving robot, the directions at which repellers
are erected, ψobs,i,r , are directly the directions at which the
obstructions are sensed (Bicho et al. 2000). This approach
is not valid here for the robots in the team because they are
linked by the payload that they jointly transport. Hence, the
presence of that payload must also be accounted for during
each robot’s obstacle avoidance behavior.

Consider the situation depicted in Fig. 5a. In this situa-
tion, the leader is moving away from the obstacle, while the
Helper has the obstacle on its left. More specifically, its sen-
sors i = 7 and i = 8 are detecting obstructions (see Fig. 5b).
If the directions of the repellers were to be the directions at
which these sensors are pointing in space, then the Helper
would turn clockwise and move around the obstacle, keep-
ing it to its left. The problem is that the payload could collide
with the obstacle if the obstacle was high enough. To avoid
this problem, the Helper must remain on the same side of
the obstacle as the Leader and payload. In this particular
scenario, the Helper has to turn counterclockwise. This is
accomplished by shifting the repellers from the directions
relating to sensor i = 7 and i = 8 to sensor sector i = 5.

With this in mind, for the general case, the direction at
which each repeller i is erected is made:

ψobs,i,r = φr + Ψobs,i,r (6)

where Ψobs,i,r , accounts for the fact that a payload is being
carried with a bearing angle αc,r (see Fig. 2b), and is defined
by:

Ψobs,i,r =

⎧
⎨

⎩

−δ ,
(
αc,r ≥ 0

)
∧

(
0 ≤ ϱiδ ≤ αc,r

)

+δ ,
(
αc,r < 0

)
∧

(
αc,r ≤ ϱiδ ≤ 0

)

ϱiδ , otherwise
,∀αc,r ∈ [−π,π] .

(7)

Here, δ represents the angular distance between the cen-
ter of two consecutive distance sensors and ϱi = {−(N −
1)/2, . . . , 0, . . . , (N−1)/2} constitutes the sensor’s position
in relation to the robot’s heading direction (see Fig. 5b).

The repulsion strength, λobs,i,r , of each contribution
fobs,i,r is a decreasing function of the distance sensed, di,r :

λobs,i,r = β1,r exp
(

− di,r
β2,r

)
. (8)

The parameter β1,r (> 0) is the maximal strength of repul-
sion, while β2,r (> 0) fixes the distance over which the
repulsion contribution decays. The larger the sensed distance

123

596 Autonomous Robots (2019) 43:589–610

Fig. 5 Obstacles detected between the helper’s heading direction and
payload movement direction are moved to a strategic position, in
order to avoid payload collision with obstacles. a Obstacle contribu-
tion shifted, b positions of the distance sensors (when N = 11)

di,r to any obstruction detected by the distance sensor i , the
weaker the repulsion from the direction ψobs,i,r . For addi-
tional details and how to compute σi,r in (5) please see
Bicho et al. (2000).

Finally, and very importantly, with regard to the imple-
mentation on the robots, note that if one replaces (6) into (5)
one obtains:

fobs,i,r (φr) = −λobs,i,rΨobs,i exp
(

−Ψobs,i,r
2

2σi,r 2

)
(9)

which means, once more, that there is no need whatsoever
to maintain an estimate of the robots’ heading directions, φr ,
in the implementation. Again, this implies that calibration
and/or odometry errors do not matter.

4.1.3 Payload collision avoidance behavior

The behavior for keeping the payload safe from collisions is
modeled by an attractive force:

fvir ,r (φr) = −λvir ,r sin
(
φr − ψvir ,r

)
(10)

where λvir ,r (> 0) is the relaxation rate (strength of attrac-
tion) to the attractor erected at the heading direction given
by ψvir ,r ∈ [0, 2π]. This specifies a virtual target, which
ensures that the payload is moved away from sensed obstruc-
tions.

The parameters for this behavior are set differently for the
Leader and the Helper.

Fig. 6 Setting the virtual target for the Leader, for the payload collision
avoidance behavior

For the Leader (r=L) In this case, the behavior specified by
fvir ,L (φL) is responsible for moving the Leader (and hence
the payload) away from obstructions that appear on the side
to which the Leader is turning (at a distance specified by
dvir ,L), with the purpose of moving the payload away from
obstacles, thus facilitating its partner’s role (see Fig. 6).

fdes,L (φL) and fobs,i,L (φL) (given by (3) and (5)
respectively) can be used to indicate if the target and sensed
obstructions are to the right or to the left of the Leader
robot (regarding its heading direction φL). Negative values
of fdes,L (φL) indicate that the desired real target position
lies to the right, while positive values mean that the target
lies to the left. Conversely, negative values of fobs,i,L (φL)

indicate that an obstruction sensed by sensor i rests on the
left side of the robot, while positive values indicate the the
obstruction is on the right side.

With this inmind, the heading direction to the virtual target
is given by:

ψvir ,L = ψobs,turn + Υvir ,L (11)

with

Υvir ,L =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Ψvir ,L , αtar ,L > Ψthres ∧
∧ fobs,Sle f t ,L ̸= 0

+Ψvir ,L ,αtar ,L < −Ψthres ∧
∧ fobs,Sright ,L ̸= 0

0 , otherwise

(12)

where αtar ,L = −
(
φL − ψtar ,L

)
∈ [−π,π]. Note that

αtar ,L can be given directly by the Leader’s vision sys-
tem, and hence there in no need to maintain an estimate of
the Leader’s heading direction, φL , in the implementation.
ψobs,turn is the orientation of the sensed obstructions on the
side to which the robot is turning (relating to reference Ox).

123

596 Autonomous Robots (2019) 43:589–610

Fig. 5 Obstacles detected between the helper’s heading direction and
payload movement direction are moved to a strategic position, in
order to avoid payload collision with obstacles. a Obstacle contribu-
tion shifted, b positions of the distance sensors (when N = 11)

di,r to any obstruction detected by the distance sensor i , the
weaker the repulsion from the direction ψobs,i,r . For addi-
tional details and how to compute σi,r in (5) please see
Bicho et al. (2000).

Finally, and very importantly, with regard to the imple-
mentation on the robots, note that if one replaces (6) into (5)
one obtains:

fobs,i,r (φr) = −λobs,i,rΨobs,i exp
(

−Ψobs,i,r
2

2σi,r 2

)
(9)

which means, once more, that there is no need whatsoever
to maintain an estimate of the robots’ heading directions, φr ,
in the implementation. Again, this implies that calibration
and/or odometry errors do not matter.

4.1.3 Payload collision avoidance behavior

The behavior for keeping the payload safe from collisions is
modeled by an attractive force:

fvir ,r (φr) = −λvir ,r sin
(
φr − ψvir ,r

)
(10)

where λvir ,r (> 0) is the relaxation rate (strength of attrac-
tion) to the attractor erected at the heading direction given
by ψvir ,r ∈ [0, 2π]. This specifies a virtual target, which
ensures that the payload is moved away from sensed obstruc-
tions.

The parameters for this behavior are set differently for the
Leader and the Helper.

Fig. 6 Setting the virtual target for the Leader, for the payload collision
avoidance behavior

For the Leader (r=L) In this case, the behavior specified by
fvir ,L (φL) is responsible for moving the Leader (and hence
the payload) away from obstructions that appear on the side
to which the Leader is turning (at a distance specified by
dvir ,L), with the purpose of moving the payload away from
obstacles, thus facilitating its partner’s role (see Fig. 6).

fdes,L (φL) and fobs,i,L (φL) (given by (3) and (5)
respectively) can be used to indicate if the target and sensed
obstructions are to the right or to the left of the Leader
robot (regarding its heading direction φL). Negative values
of fdes,L (φL) indicate that the desired real target position
lies to the right, while positive values mean that the target
lies to the left. Conversely, negative values of fobs,i,L (φL)

indicate that an obstruction sensed by sensor i rests on the
left side of the robot, while positive values indicate the the
obstruction is on the right side.

With this inmind, the heading direction to the virtual target
is given by:

ψvir ,L = ψobs,turn + Υvir ,L (11)

with

Υvir ,L =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Ψvir ,L , αtar ,L > Ψthres ∧
∧ fobs,Sle f t ,L ̸= 0

+Ψvir ,L ,αtar ,L < −Ψthres ∧
∧ fobs,Sright ,L ̸= 0

0 , otherwise

(12)

where αtar ,L = −
(
φL − ψtar ,L

)
∈ [−π,π]. Note that

αtar ,L can be given directly by the Leader’s vision sys-
tem, and hence there in no need to maintain an estimate of
the Leader’s heading direction, φL , in the implementation.
ψobs,turn is the orientation of the sensed obstructions on the
side to which the robot is turning (relating to reference Ox).

123

Autonomous Robots (2019) 43:589–610 597

This value is computed from obstacle sensor measurements:

ψobs,turn = φL + αobs,turn (13)

where αobs,turn is the angle created between the obstruction
and the heading direction.

Ψvir ,L , in 12, is a parameter that sets the amount of devi-
ation in relation to the sensed obstruction. Ψthres defines
the threshold from which one considers the current head-
ing direction to be different from the desired real heading
direction (real target). fobs,Sle f t ,L and fobs,Sright ,L are the
contributions resulting from sensor sectors i = Sle f t and
i = Sright , respectively, given by:

fobs,Sside,L =
∑

i=Sside

fobs,i,L (14)

where fobs,i,L is the contribution of the Leader robot’s dis-
tance sensor i .
For the Helper (r=H) The behavior corresponding to
fvir ,H (φH) is responsible for aligning the direction of the
transported object, ψc,H , with the Leader’s heading direc-
tion, φL , causing (φL − ψc,H) → 0. It does so by erecting
an attractor in the direction of a virtual target, ψvir ,H (see
Fig. 7), given by:

ψvir ,H = ψc,H + Ψvir ,H (15)

with ψvir ,H ∈ [0, 2π] and Ψvir ,H = ±π/2 depending on
the Leader turning left or right:

Ψvir ,H =
{−π/2 , φL − ψc,H < 0

π/2 , φL − ψc,H ≥ 0
(16)

where
(
φL − ψc,H

)
=

(
π − αc,L

)
, as illustrated in Fig. 4,

signals whether the Leader is turning left (φL − ψc,H < 0)
or right (φL −ψc,H ≥ 0). Note that the αc,L value constitutes
the unique information which is explicitly communicated
between the robots, and it is communicated from the Leader
to the Helper.

Finally and very importantly, with regard to implementa-
tion on the robot, note that if (15) is replaced in (10) one gets:

fvir ,H (φH) = λvir ,H sin
(
αc,H − Ψvir ,H

)
(17)

because φH − ψvir ,H = αc,H − Ψvir ,H (see Figs. 2b or 3).
This implies that, in the implementation of this behavior

there is no need whatsoever to maintain an estimate of the
Helper’s or Leader’s heading direction. This again implies
that calibration and/or odometry errors are of no significance.

Fig. 7 Setting the virtual target for theHelper, for the payload collision
avoidance behavior

4.1.4 Behavioral integration of fdes,r and fvir,r

Since fdes,r (φr) and fvir ,r , with r ∈ {L, H}, are defined
using the sinus function, and that the addition of two sinuses
of the same frequency constitutes another sinus, then, in order
to ease the proper balancing between these two contributions
with regard to obstacle avoidance behavior, they are merged
together in a single contribution:

fdesvir ,r (φr) = fdes,r (φr)+ fvir ,r (φr)

= −λdesvir ,r · sin
(
φr − ψdesvir ,r

)
(18)

where ψdesvir ,r is the resultant attractor, which should be
located between the directions represented by ψdes,r and
ψvir ,r (ψdesvir ,r ∈

[
ψdes,r ,ψvir ,r

]
), and λdesvir ,r is the

strength of attraction (relaxation rate) to it.
The resultant attractor ψdesvir ,r is computed differently

for the Leader and for the Helper.
For the Leader (r=L) The direction of the resultant attractor
is defined by the sigmoid function:

ψdesvir ,L = ψvir ,L+
+ ψtar ,L − ψvir ,L

1+ exp
[
−µ1

(
dobs,turn − dvir ,L

)
+ ln

(
ψtar ,L − ψobs,turn

ψobs,turn − ψvir ,L

)]

(19)

with
(
ψtar ,L − ψvir ,L

)
∈ [0, 2π]. µ1 being the slope of the

sigmoid, i.e. tells us how fast the robot moves to a distance
dvir ,L from the sensed obstructions, ψobs,turn is the aver-
age orientation of the sensed obstructions, and dobs,turn is
the minimum distance to those obstructions. The parameter
dvir ,L is used to keep the cargo away from the obstructions
with potential collision when the Leader curves.

Regarding the implementation on the Leader: in (19), if
we replace ψtar ,L with ψtar ,L = φL +αtar ,L , ψobs,turn with

123

[Machado et al, 2019]

Extension of attractor dynamics
approach

Autonomous Robots (2019) 43:589–610 599

Fig. 9 Heading direction dynamics, showing the individual contribu-
tions fdesvir (dashed green line) and Fobs,r (dashed-dot red line) and
their integration (solid blue line). The current value of φr is indicated by
a solid vertical line. green circles ’o’ and red crosses ’x’ mark the attrac-
tors and repellers, respectively, of the resulting dynamical systems. As
can be seen, a bifurcation in the Leader’s heading direction has taken
place. The stability of the fixed points has changed. In particular, the
attractor φL was in become a repeller. Noise in the system will guar-
antee that this variable moves away from the repeller and converges
to an attractor of the resultant dynamics. Here it will converge to the
attractor near π . a Before bifurcation: snapshot, b before bifurcation:
vector fields, c after bifurcation: snapshot, d after bifurcation: vector
fields (Color figure online)

is chosen as Gaussian white noise, ξn , so thatQr is the effec-
tive variance of the noise. This stochastic contribution exists
in addition to sensory and motor noise, which may vary as a
function of environmental conditions. Since behavior is gen-
erated by asymptotically stable states (attractors), the system
is robust in the face of noise.

Fig. 10 The Leader’s path velocity attenuation term profiles. a Atten-
uation term as a function of payload displacement, b attenuation term
as a function of distance to the nearest obstacle, c attenuation term as a
function of distance to the final destination

4.2 Path velocity control

The robots’ path velocity, vr , with r = {L, H}, is defined by
a linear dynamical system:

dvr/dt = gdes,r (vr)

= −λv,r ·
(
vr − νdes,r

)
(27)

where λv,r > 0, is the relaxation rate to the desired path
velocity νdes,r .

The definition of the desired path velocity, νdes,r , is dif-
ferent for the Leader and Helper.
For the Leader (r=L) The desired velocity is:

νdes,L = Vdes,L · νdes,c · νdes,obs · νdes,tar (28)

in which Vdes,L constitutes a parameter that allows one to
set the Leader’s maximum path velocity, and the factors{
νdes,c, νdes,obs, νdes,tar

}
∈ [0, 1] are attenuations of that

velocity.
The factor νdes,c (see Fig. 10a) is given by

νdes,c = 1 −
1 − exp

(

µs ·
∣∣dc,L

∣∣

Dc,max

)

1 − exp (µs)
(29)

where dc,L is the displacement of the transported object as
measured by the Leader’s payload support base. The dis-
placement value is a measure of the relative path velocity to
theHelper, since the displacement is symmetric and approx-
imately of the samemagnitude in both robots. The parameter
µs > 0 controls the exponential decay, and Dc,max sets the
maximum value allowed for the displacement of the payload
(which is intrinsically dependent on the length of the support
base).

123

[Machado et al, 2019]

Extension of attractor dynamics
approach

Autonomous Robots (2019) 43:589–610 605

Fig. 19 Time course of the resultant fixed points— attractors as green
circles and repellers as red crosses—of the heading directions dynamics
(left for Leader and right for Helper) and the heading direction-blue
line—for the runs depicted in Fig. 18 (Color figure online)

Fig. 20 Overview of cargo displacements and robots’ path velocity
for the scenario shown in Fig. 18 (L=Leader, H=Helper). a Cargo
displacements, b path velocities

Fig. 21 Layout of the factory floor with a plot of the robots’ trajectories

Fig. 22 Snapshots of video (t = {25, 28, 48, 65, 100, 118} s) illustrat-
ing the team navigating on a factory floor (see Video #5)

123

Autonomous Robots (2019) 43:589–610 605

Fig. 19 Time course of the resultant fixed points— attractors as green
circles and repellers as red crosses—of the heading directions dynamics
(left for Leader and right for Helper) and the heading direction-blue
line—for the runs depicted in Fig. 18 (Color figure online)

Fig. 20 Overview of cargo displacements and robots’ path velocity
for the scenario shown in Fig. 18 (L=Leader, H=Helper). a Cargo
displacements, b path velocities

Fig. 21 Layout of the factory floor with a plot of the robots’ trajectories

Fig. 22 Snapshots of video (t = {25, 28, 48, 65, 100, 118} s) illustrat-
ing the team navigating on a factory floor (see Video #5)

123

[Machado et al, 2019]

Summary

powerful approaches exist for motion
planning, which is computational hard in
theory and practice

eexact approaches make strong demands on
world representations and computation

heuristic “reactive” approaches are state of
the art (often combined in hybrid
architectures with deliberative planning)

the attractor dynamics approach is
competitive as a reactive approach

