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Behavioral dynamics

. obstacle

M so far, we had a “symbolic”

approach to behavioral
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“symbolic” approach
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Targets....

M are segmented... in the foreground

B => neural fields to perform this segmentation

from low-level sensory information: Dynamic
Field Theory ...

A do/dt

attractor

vehicle



Obstacles ...

M obstacles need not be segmented ... does not
matter if obstacles are one or multiple objects...

M avoidance is about free space...

A do/dt

obstacle

repellor

obs



“sub-symbolic” approach

obstacle

B use low-level sensory ¢
information directly, Ay
without first
detecting,
segmenting, and
estimating objects



Obstacle avoidance: sub-symbolic

Figures and results from:
Estela Bicho: Dynamic Approach to Behavior-Based Robotics
Design, Specification, Analysis, Simulation and Implementation
Doctoral disseration, Univ. Minho, Guimaraes, Portugal, | 999]

https://core.ac.uk/download/pdf/55601836.pdf



https://core.ac.uk/download/pdf/55601836.pdf

Obstacle avoidance: sub-symbolic

B each sensor mounted at fixed angle 0

M that points in direction Y=®+0 in the world

M erect a repellor at that angle
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Obstacle avoidance: sub-symbolic

® Note: only ®-=-6

shows up, which is
constant!

M => force-let does
not depend on @ !
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Obstacle avoidance: sub-symbolic
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Obstacle avoidance: sub-symbolic
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Obstacle avoidance: sub-symbolic

B => as a result, range becomes wider as obstacle
moves closer

[Bicho, 1999]



Obstacle avoidance: sub-symbolic

B summing contributions from all sensors

Obstacle

d /
L = (@) = 3 Fonil®)
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Obstacle avoidance: sub-symbolic

® but why does it work?

® shouldn’t there be a problem when heading
changes (e.g. from the dynamics itself)?

Obstacle d(l)/df\ resultant

g repeller

0 37|I/2 2[%(')

[Bicho, 1999]



Obstacle avoidance: sub-symbolic

® but why does it work?

® shouldn’t there be a problem when heading
changes (e.g. from the dynamics itself)?
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Obstacle avoidance: sub-symbolic

® but why does it work?

® shouldn’t there be a problem when heading
changes (e.g. from the dynamics itself)?

resultant
repeller

Obstacle di/di]

3T|p/2 %TC A

[Bicho, 1999]



Obstacle

resultant
repeller
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31/2 2
L——at

d/dt]

resultant
repeller

37Ic/2 én A

B => dynamics invariant!
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Behavioral Dynamics

* target

M integrating the two
behaviors

d
L = 1) + Fur()

[Bicho, 1999]



Bifurcations
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Bifurcations
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Bifurcations




Bifurcation on approach to wall

M initially
attractor
dominates:
weak
repulsion

M bifurcation

B then obstacles
dominate:
strong
repulsion and
total repulsion
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Bifurcation on approach to wall

B same with
small opening
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Bifurcation on approach to wall

M at larger
opening:
repulsion
weak all the
way through:
attractor
remains stable
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Tracking attractor

M as robot
moves around
obstacles,
tracks the
moving
attractor
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Tracking attractor

M as robot
moves in
between
obstacles, the
dynamics
changes but
not the
attractor
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Some implementations/demos









Observation:

B even though the approach is purely local, it
does achieve global tasks

M based on the structure of the environment!






Observation

M different solutions may emerge depending
on the environment...



Other implementations

B autonomous wheel-chair by Pierre Mallet, Marseille




[Pierre Mallet, Marseille]




other implementations

Attractor dynamics approach to joint transportation by autonomous
robots: theory, implementation and validation on the factory floor

. B I C h O/ E rl h age n Toni Machado’ - Tiago Malheiro® - Sérgio Monteiro! - Wolfram Erlhagen? . Estela Bicho'

. Autonomous Robots (2019) 43:589-610
Ccoo Pe ratlve https://doi.org/10.1007/s10514-018-9729-2

ro bOtS Video #4: Abrupt perturbations




Conclusion

M attractor dynamics works on the basis low-
level sensors information

M as long at the force-lets model the sensor-
characteristics well enough to create
approximate invariance of the dynamics
under transformations of the coordinate

frames



Second order
attractor dynamics

B source: Bicho, Schoner, Robotics and
Autonomous Systems 21:23-35 (1997)



Second order dynamics

M idea: go to even lower level
sensory-motor systems:

M 2 sensor that only knows there is a
target or an obstacle on the left vs.
on the right...

B but is not able to estimate the
heading of either

B a motor system that is not calibrated
well enough to steer into a given
heading direction in the world




behavior variable

B turning rate omega rather than heading direction

M can be enacted” by setting set-
velocity servo controllers of eac

hoints for
N motor

M target: information about target

being to the left,

to the right, or ahead, but no calibrated bearing,

psi, to target

M obstacle: turning rate

B to the right when obstacle close and to the left

B to the left when obstacle close and to the right

B zero when obstacle far



dynamics of turning rate:
obstacle avoidance

B pitch-fork normal form (to get left-right
symmetry)

B but symmetry potentially broken by additive
constant: biases bifurcation toward left or
toward right

w= (x + %?T)CngFDbS + ow — yw3



obstacle avoidance

: | 3
w = (a + 57 )Cobs Fobs + Q@ — YW
(a) dynamics of turning rate (b) dynamics of turning rate
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obstacle ;. 1 ahead
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obstacle avoidance

M in absence of obstacle in forward direction
(distance large): alpha negative, constant zero

(a) dynamics of turning rate

o A

turning rate

-1 1 2




obstacle avoidance

M in presence of obstacle in forward direction,
symmetric bifurcation to desired avoidance
rotations: alpha positive, constant zero

(b) dynamics of turning rate

A

turning rate
L -

2 \-1 1\ 2




obstacle avoidance

M in presence of obstacle to the right of current
heading: tangent bifurcation removes attractor
at negative omega, alpha negative, constant
negative

(¢) dynamics of tuming rate (d) dynamics of turning rate

A A

1 1;
/ turning rate turning rate
).
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mathematical form

B compute constant and alpha from obstacle force lets
3

: l
w = (& + 57T )Cobs Fobs + QW — Yw

force-let potential
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bifurcations as
an obstacle is
approached




dynamics: target acquisition

M a sensor for a target on the left sets an attractor at
positive turning rate, strength graded with intensity

M a sensor for a target on the right sets an attractor at
negative turning rate, strength graded with intensity

dynamics of turning rate

A

“ turning rate
-

5\

S\

dynamics of turning rate

A

\ turning rate
\ . P

5\




mathematical formulation

B force-let of 1 (@ — ;)
gi(w) = ——(w— w;)exp| —2 3 -
each target T Aw
Sensor (i = right or left)
M summed to Gieft (W) + Bright (w)

total dynamics



putting it to work on a simple
platform
M Rodinsky!

M circular platform with
passive caster wheel

M two (unservoed)
motors

M5 IR sensors

M2 LDR’s

M microcontroller

MC68HCAI A0
Motorola (32 K RAM),
8 bit
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demonstration




why does it work?

B here the dynamics exists instantaneously
while vehicle is heading in a particular
direction

® while the vehicle is turning under the
influence of the corresponding attractor for
turning rate, the dynamics is changing!

M typically undergoing an instability as vehicle’s
heading turns away from an obstacle...



Summary

B behavioral variables

M attractor states for behavior

M attractive force-let: target acquisition
B repulsive force-let: obstacle avoidance
M bistability/bifurcations: decisions

M can be implemented with minimal
requirements for perception



