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Abstract
Spatial learning is critical for survival and its underlying neuronal mechanisms have been studied extensively. These studies 
have revealed a wealth of information about the neural representations of space, such as place cells and boundary cells. While 
many studies have focused on how these representations emerge in the brain, their functional role in driving spatial learning 
and navigation has received much less attention. We extended an existing computational modeling tool-chain to study the 
functional role of spatial representations using closed-loop simulations of spatial learning. At the heart of the model agent 
was a spiking neural network that formed a ring attractor. This network received inputs from place and boundary cells and 
the location of the activity bump in this network was the output. This output determined the movement directions of the 
agent. We found that the navigation performance depended on the parameters of the place cell input, such as their number, 
the place field sizes, and peak firing rate, as well as, unsurprisingly, the size of the goal zone. The dependence on the place 
cell parameters could be accounted for by just a single variable, the overlap index, but this dependence was nonmonotonic. 
By contrast, performance scaled monotonically with the Fisher information of the place cell population. Our results therefore 
demonstrate that efficiently encoding spatial information is critical for navigation performance.
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Introduction

Spatial navigation is critical for the survival of most ani-
mals and many neural populations in the brain appear to 
have evolved to support spatial learning and navigation, 
e.g., place cells (PC) (O’Keefe and Nadel 1978), boundary 
cells (BC) Hartley et al. (2000), and head direction cells 
(Taube 1998). Place cells in the hippocampus are selectively 
active when the animal is located in one particular part of an 

environment, the place field (O’Keefe and Nadel 1978). A 
large number of studies have examined which aspect of the 
environment determines the firing patterns of place cells, 
e.g. there is a larger number of place fields with smaller 
sizes close to goal radius locations as compared to elsewhere 
in the environment (Parra-Barrero et al. 2021; Hollup et al. 
2001; Lee et al. 2006; Ainge et al. 2007; Zaremba et al. 
2017; Tryon et al. 2017; Gauthier and Tank 2018; Turi et al. 
2019; Sato et al. 2020; Lee et al. 2020; Kaufman et al. 2020; 
Dupret et al. 2010; Grieves et al. 2016, 2018; Jarzebowski 
et al. 2022). The same observation was made near walls 
as compared to further away Tanni et al. (2022). Further-
more, the range of some place cell parameters can be large, 
e.g., place field sizes cover two orders of magnitude, rang-
ing from tens of centimeters to more than 10 ms (Kjelstrup 
et al. 2008; Rich et al. 2014; Eliav et al. 2021). It is largely 
unknown why this variability occurs.

In sensory systems, it has been suggested that variability 
of the quality of sensory code might have an intrinsic source 
in the brain (Abbott and Dayan 1999; Rieke et al. 1999; 
Ralf and Bethge 2010). Barlow (1961) suggested the effi-
cient coding hypothesis, which has driven much research in 
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sensory neuroscience. A sensory code is considered efficient, 
if it maximizes the amount of useful information that can be 
extracted about a sensory input while minimizing noise and 
redundancy, or irrelevant information, (Graham and Field 
2007; Wiskott and Sejnowski 2002). Many aspects of the 
efficient coding hypothesis have been tested and confirmed 
in sensory systems (Barlow 2001). Since place fields of hip-
pocampal pyramidal neurons are similar to tuning curves in 
sensory neurons, the concept of efficient coding can readily 
be applied to spatial information, which we refer to as effi-
cient spatial coding. One aspect of coding efficiency is how 
well place fields cover the environment, another is how many 
spikes place cells fire, and yet another is by how much the 
firing rate of place cells change as a function of spatial posi-
tion. However, few studies have attempted to apply the effi-
cient coding hypothesis to spatial representations, although 
there are notable exceptions (Rolls and Treves 2011; Mathis 
et al. 2012; Finkelstein et al. 2018).

Efficient coding would benefit spatial navigation similar 
to how it benefits perceptual tasks. However, the purpose of 
efficient sensory codes has not been studied nearly as much 
and remains obscure (Simoncelli 2003). Similarly, little is 
known about the exact functional role of place cells in spa-
tial navigation and learning, in particular the role of place 
cell properties—such as field size, firing rate, and density—
and their variations across the environment. At some point, 
it was hypothesized that place cells are important for path 
integration (Samsonovich and McNaughton 1997), which 
tracks the animal’s position by integrating velocity signals. 
However, after the discovery of grid cells it was suggested 
that they might be a more likely candidate for maintaining 
a representation of the animal’s position via path integra-
tion (McNaughton et al. 2006). Nevertheless, even if that 
were true, path integration is only one of the computations 
that is required for navigation behavior. So, even if spatial 
representations were intimately linked to path integration, it 
remains to be clarified how neural path integration impacts 
spatial behavior.

Here we studied the function of place cells in spatial 
navigation and the role of place cell parameters using an 
artificial agent based on spiking neural networks that learned 
to navigate to a goal location. This requires simulating neu-
ronal processes and the emerging spatial behaviors a closed-
loop setup, in which neuronal activity is driven by the inputs 
from the environment, and which in turn affects actions. The 
action of the agent changes its state and the sensory inputs. 
We based our computational model on a computational mod-
eling tool-chain (Jordan et al. 2019) that uses the NEST sim-
ulator (Gewaltig and Diesmann 2007) to simulate biological 
neural networks and Gym (Brockman et al. 2016) to model 
the interactions with the environment. In our simulation, the 
agent had to solve a spatial learning task similar to the Mor-
ris watermaze (Morris 1981). We found that, as expected, 

increasing the goal size leads to a better navigation perfor-
mance. By contrast, the dependence of performance on the 
parameters of the place cell population, i.e., cell number, 
field size, and peak firing rate, was less clear. However, we 
found a systematic relationship between performance and a 
new variable, the overlap index, which measures the degree 
of overlap between two neighboring place cells and which 
incorporates both place cell number and field size. However, 
this relationship is nonmonotonic. Finally, we found that 
the Fisher information, which describes how informative the 
place cell population is about the spatial location (Klooster-
man et al. 2014; Brunel and Nadal 1998), best accounts for 
navigation performance in our model.

Methods

For closed-loop simulations of spatial learning and memory 
we used the software framework CoBeL-spike (Closed-
Loop Simulator of Complex Behavior and Learning Based 
on Spiking Neural Networks), which is available at https://​
github.​com/​sench​eng/​CoBeL-​spike (Fig. 1). CoBeL-spike 
builds on a computational modeling tool-chain (Jordan 
et al. 2019) that includes the NEST simulator for networks 
of spiking neurons (Gewaltig and Diesmann, M. 2007), such 
as place cells (O’Keefe and Nadel 1978), boundary cells 
Hartley et al. (2000), and head direction cells (Taube 1998). 
The network model is based on a earlier neural network 
developed by Brzosko et al. (2017) and described below. The 
interactions with the environment are modelled by OpenAI 
Gym (Brockman et al. 2016).

Overview of simulated task

We used CoBeL-spike to simulate spatial learning in a 
2.4 m × 2.4 m open 2-d environment (which is comparable 
to sizes of Morris watermazes used in experiments). Each 
simulation consisted of 30 trials. At the beginning of each 
trial, the artificial agent was located at the center of an open 
environment. The agent moved freely inside the environ-
ment and sought a hidden goal zone, a circular area, cen-
tered at [0.5, 0.5] from the center of the environment. Its 
radius r varied across simulations, but remained fixed within 
a simulation. A trial ended either if the agent entered the 
goal zone or after the time out of 5 s (see below), whichever 
occurred first. The agent was rewarded, if it entered the goal 
zone. This reward drove learning, so that agents tended to 
reach the goal zone faster in later trials. Then the next trial 
commenced.

The main simulation parameters that were varied indepen-
dently were the goal size r ∈ {0.1m, 0.15m, 0.2m, 0.3m} , 
the number of place cells in the input from NPC = 32 

https://github.com/sencheng/CoBeL-spike
https://github.com/sencheng/CoBeL-spike
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to NPC = 1012 , and the place field size in the range of 
�PC = 0.02 m to �PC = 1.4 m. Varying the last two param-
eters allowed us to study the role of the place cell popula-
tion in spatial learning. For each parameter set, results were 
averaged over 100 simulations, in each of which the network 
was randomly initialized to simulate learning in different 
artificial agents. The number was chosen based on our expe-
rience that it reduced the variability of average performance 
to an acceptable level.

We used two variables to evaluate navigation perfor-
mance of the agent in the simulated task: escape latency ( � ) 
and hit rate. The former was determined by averaging the 
trial duration over the 100 repetitions of the same simula-
tion. The lower � , the better the navigation performance. 
The other performance variable was the hit rate, which was 
defined as the fraction of the successful trials out of the 100 
repetitions of the same simulation. A trial was considered 
successful, if the agent found the reward within a certain 
time limit (see below). The higher the hit rate, the better the 
performance. Since both parameters measure performance, 
they are correlated to some extent, but that correlation can 
be high or low depending on the task and the behavior of the 
agents. For instance, if all agents learn the same trajectory to 
the reward, if they find it at all, then the latency and hit rate 
would be highly anti-correlated. This case is quite likely in 
simple task where there is one solution that is easily found 
and clearly better than other options. On the other hand, if 
there are multiple potential solutions that vary in their qual-
ity, it is conceivable that agents with the same success rate 
would show different latencies.

In preliminary simulations, we found that in most cases, 
the agent either found the reward within 3 s or did not find 
it at all. In most of the unsuccessful trials, the agent became 
stuck in a loop or failed to move. To make sure that simu-
lation time was not wasted on these kinds of unsuccessful 

trials, we implemented a timeout after 5 s, which allows for 
some variation in the behavior on successful trials. If the 
trial duration was less than 4.5 s (there were very few data 
points between 4.5 s and 5 s), the trial was considered suc-
cessful. Otherwise, the trial was considered unsuccessful.

Model architecture

In this section, we give an overview of the components 
in our computational model, which are described in more 
detail in Fig. 2. We performed our simulations with a time 
step of 0.1 ms. The agent’s position x(t) modulated the fir-
ing rate Ωi

PC
(x(t)) of NPC place cells (Fig. 2A), whose place 

field centers were evenly distributed across the environment 
(Fig. 2B). In addition, the input layer included eight bound-
ary cells with firing rate Ωi

BC
(x(t)) (Fig. 2C). The output 

spikes of place and boundary cells were fed to 40 action 
selection neurons (Fig. 2D). The action selection neurons 
formed a ring attractor network. The location of the bump 
in this network determined the allocentric direction of the 
movement at each time step. A symmetric spike-timing-
dependent plasticity (STDP) enabled learning to the feed-
forward weights if the goal is found (Fig. 2E), mimicking 
the modulation of synaptic plasticity upon dopamine release 
(Brzosko et al. 2017) and the agent is not punished if it fails 
to obtain the reward. We utilized only positive reinforce-
ment, similar to the Morris water maze paradigm (Morris 
1981).

Spatial representations in the input layer

The key question in our study is what role spatial repre-
sentations encoded by the place cell population play in 
spatial learning and navigation. The fields of the place 
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Fig. 1   Relationship between the components of the CoBeL-spike 
framework. The CoBeL-spike tool-chain consists of two main com-
ponents: the environment and the artificial agent. The environment 
is simulated using OpenAI Gym (Brockman et  al. 2016) and keeps 
track of the agent’s position and reward and makes sure that the 
agent’s moves are consistent with the physical constraints. The envi-
ronment sends the current state and rewards to the learning agent 

and receives the action from the agent. The agent is a 2-layer spiking 
neural network implemented using NEST (Gewaltig and Diesmann 
2007). Communication between two components is facilitated by two 
interfaces. MUSIC (Djurfeldt et al. 2010) transfers massive amounts 
of event information as well as continuous values from one parallel 
application to another. The action is taken through ZeroMQ (Hintjens 
2013) to the Gym environment
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cells in our simulations were evenly distributed across 
the 2-d environment on a square mesh. The spiking activ-
ity of the i-th place cell is modeled as an inhomogene-
ous Poisson process, implemented as a Poisson generator 
(poisson_generator) in NEST (Gewaltig and Diesmann 

2007). Thus, the spiking dynamics of place cells was not 
modelled. The firing rate of each place place cell was 
given by

A B C

D E F

Fig. 2   Illustration of model components. A Place cells of different 
field sizes. Left: firing maps of two CA1 place cells (Herzog et  al. 
2019). Firing rate is indicated by color (from blue to red). Right: two 
sample firing fields of place cells in the model (top: � = 0.2 m and 
bottom: � = 0.1 m). The red disk is the goal zone ( r = 0.2 m). Once 
the agent enters to this zone, the trial is terminated and the agent is 
rewarded as described in Sect.  2.5. B Left: Firing rate maps of two 
individual place fields of different sizes at the center of the environ-
ment (top: � = 0.2 m, bottom: � = 0.1 m). Also shown is the distribu-
tion of place field centers of the other cells (top: N = 441 , bottom: 
N = 49 , marked with yellow dots). Right: The summed firing rate 
map over all cells. The maximum firing rate of individual cells is 
chosen such that the summed firing rate at the center of the environ-
ment is 3500 Hz. C Left: Firing rate maps of two boundary cells from 
MEC (van Wijngaarden et al. 2020). Right: two boundary cells from 
our model. D Illustration of the model architecture. Left: Place cells 
and boundary cells encode the position x(t) of the agent and provide 

input to 40 action selection neurons, which determine the direction 
of movement of the agent. Each action selection neuron represents 
one direction, which are distributed homogeneously. The action selec-
tion neurons form a ring attractor network, in which each cell excites 
neighboring cells (red) and inhibits globally (blue). Top-Right: In this 
example, the feedforward inputs are strongest to the action selection 
neurons that represent the North-East direction (dark red). Hence, the 
bump forms around that neuron and the agent moves in that direction. 
Bottom-Right: A different representation of the same situation that 
shows the preferred movement direction at different locations in the 
environment. E Feedforward weights between place cells and action 
selection neurons undergo synaptic plasticity. After an unsuccessful 
trial the weights remain unchanged. After finding the goal, weights 
from place cells to action selection neurons (top) are updated accord-
ing to a symmetric STDP rule (bottom). F Example of the postsynap-
tic effect of one place cell onto action selection neurons. This impact 
is shown before (top) and after (bottom) learning
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where xi
PC

= (xi
PC
, yi

PC
) is the coordinate of the place field 

center of the i-th cell, �i
PC

 is the maximum firing rate of 
that cell, and �x,i

PC
 and �y,i

PC
 are the standard deviations of the 

Gaussian kernel along the x- and y-axis, respectively.
We used a simplified version of Eq. 1, where the maxi-

mum firing rate of all cells are equal and the standard devia-
tions of the Gaussian kernels all have the same value in both 
directions.

Hence, the firing map of the t-th place cell in our simulations 
can be simplified to

Fig. 2A shows the firing rate map of two sample place cells 
with field sizes � = 0.1 m and � = 0.2 m.

Changing the place cell number NPC and field size �PC 
changes the total spiking activity fed forward to the action 
selection neurons. This change causes a major impact on 
the agent’s behavior. If the input is very low, the action 
selection neurons do not activate the ring attractor. If the 
input is too high, the ring attractor is saturated and there 

(1)

Ωi
PC
(x(t)) = �i

PC
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⎛⎜⎜⎝
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PC
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−

(
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PC

)2

2
(
�PC

)2
)

is too much activity in the network and all action selection 
neurons become active. In both cases, a clear bump is not 
formed and the agent does not move properly. Our baseline 
for place cell number and place field size were NPC = 212 
and �PC = 0.2  m, respectively. Preliminary simulations 
showed that the best performance for these parameter val-
ues occurred when the maximum firing rate of a single 
neuron was �PC = 200 Hz. In this case, the summed firing 
rate across all place cell at the center of the environment is 
3500 Hz. Therefore, in all simulations we adjusted the maxi-
mum firing rate of individual cells such that the summed 
firing rate across all place cell at the center of the environ-
ment is 3500 Hz (see Fig. 2B), if possible. The maximum 
firing rate of individual cells so obtained are shown in Fig. 3.

At first glance, these maximum firing rates might appear 
unrealistically high. However, for computational reasons 
our simplified model includes far fewer neurons than the 
hippocampus of rodents. We regard each neuron in our sim-
ulation as representative of a larger number of biological 
place cells that all have a place field in the same location. A 
rough back-of-the-envelop calculation shows that the total 
number of spikes that all place cells send to action selec-
tion neurons at a given moment in our model (3500 Hz) 
roughly matches the spike rate that downstream neurons 
might receive from hippocampal neurons. We assume that a 
neurons received projections from about 10,000 place cells, 
of which about 25% are active in a typical experimental 
environment. Assuming further that each place field cov-
ers about 15% of the environment’s area yields about 375 
neurons that are simultaneously active. If each neuron fires 
with a maximum firing rate of 10 Hz, the total input rate is 
about 3750 Hz.

A B C

Fig. 3   Scaling of maximum firing rate of place cells. To ensure that 
there was appropriate excitatory drive to the action selection net-
work, we adjusted the maximum firing rate of place cells such that 
the summed firing rate at the center of the environment was 3500 Hz. 
Shown are the required maximum firing rates for three different simu-
lation sets. A Variable place cell number N

PC
 for fixed �

PC
= 0.2 m. 

We explore such different peak firing rates ( 8 ∼ 3500  Hz), because 
the firing rates of all fields at the center change when � is adjusted. 
For higher values of � , more fields contribute to the summed firing 
rate at the center. B Variable place field size �

PC
 for fixed N

PC
= 212 . 

C: Both cell number and field size change simultaneously, such that 
N
PC

× �2

PC
= 17.46
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To make sure that the agent does not get stuck at the bor-
ders of the environment, we added eight boundary cells that 
allowed us to model the obstacle avoidance behavior of ani-
mals. Boundary cells were also modelled as inhomogeneous 
Poisson processes. The firing rate map of each boundary 
cell was rectangular of size 2xhw × 2yhw (hw stands for half 
width) centered at xi

BC
:

The centers of four boundary cells are located in the middle 
of each border and the centers of four further border cells are 
located at each corner. The firing field maps of two sample 
boundary cells are shown in Fig. 2C. The boundary cells had 
a fixed projection pattern to the action selection neurons, 
such that the agent was repelled from the border or corner 
towards the inside of the environment.

Decision making with action selection neurons

At the core of the model network were 40 action selection 
neurons that formed a ring attractor. Each action selection 
neuron represents one preferred direction of movement �j , 
distributed homogeneously over 360°. The cells were con-
nected to each other though lateral synaptic weights such 
that neurons with similar preferred directions excite each 
other and neurons coding different movement directions 
inhibit each other (Brzosko et al. 2017), i.e.,

where winh = −400 and wexc = 50 are inhibitory and excita-
tory weights, respectively, � is the Kronecker delta, and 

(3)

Ωi
BC
(x(t)) =

⎧
⎪⎨⎪⎩

�BC, if �x(t) − xi
BC
� ≤ xhw and �y(t) − yi

BC
� ≤ yhw

0, otherwise

(4)w
jk

lat
=

winh

N
+

wexc

N

(
1 − �jk

)
e�cos(�

j−�k)

� = 20 . The lateral weights remained fixed throughout all 
simulations.

The parameter values ensured that the network is a con-
tinuous attractor network, where the attractor is an activity 
bump. That is, at any given point in time only a subset of 
neurons with similar movement directions was active and 
the rest of neurons were silent due to strong inhibition from 
the active neurons.

Feedforward inputs project from the place and bound-
ary cells to action selection neurons. At the beginning of 
each simulation, the feedforward weights ( wij

fwd
 ) between 

input neurons and action selection neurons were randomly 
drawn from a normal distribution with mean 30 and stand-
ard deviation 5. The feedforward weights were plastic, and 
could be potentiated if the agent found the goal, up to a 
maximum of 60 (see below).

To visualize the postsynaptic effect of place cells and 
boundary cells onto action selection neurons, we repre-
sented each action selection neuron by a unit vector that 
points in the preferred direction of that neuron ( aj ) and 
then computed the sum over all such unit vectors weighted 
by the synaptic input that the neurons received from the 
input layer in a particular location (Fig. 2F).

We modelled neurons of the action selection network 
as leaky-integrate-and-fire’ (LIF) neurons. The dynamics 
of sub-threshold membrane potential ( vi ) of the j-th LIF 
neurons is (Spreizer et al. 2019):

where �m =
Cm

gL
 denotes the membrane time constant, Cm the 

membrane capacitance, gL the leak conductance, EL the leak 
reversal potential, and Ij(t) the total synaptic input current. 
The input current is the convolution of spikes and an alpha 
function (Rotter and Diesmann 1999; Bernard et al. 1994; 

(5)
dvj

dt
=

EL − vj(t)

�m
+

Ij(t)

Cm

,

Table 1   Parameters of LIF 
neurons, implemented for the 
action selection neurons

Parameter Value Unit Description

E_L − 70 mV Resting membrane potenial
C_m 250.0 pF Capacity of the membrane
tau_m 10.0 ms Membrane time constant
t_ref 2.0 ms Duration of refractory period
V_th − 55 mV Spike threshold
V_reset −70.0 mV Reset potential of the membrane
tau_syn_ex 5 ms Rise time of the excitatory synaptic alpha function
tau_syn_in 5 ms Rise time of the inhibitory synaptic alpha function
I_e 0.0 pA Constant input current
V_min − inf mV Absolute lower value for the membrane potenial
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Jack et al. 1983). The LIF neurons were implemented using 
the iaf_psc_alpha neuron in NEST (Gewaltig and Diesmann 
2007; Rotter and Diesmann 1999; Diesmann et al. 2001; 
Kobayashi et al. 2009; Yamauchi et al. 2011). The values of 
the model parameters are summarized in Table 1.

To translate the activity of action selection neurons to 
navigation, the unit vectors aj representing the action neu-
rons’ preferred direction were weighted by the exponen-
tially discounted spikes times and summed to obtain the 
movement vector selected by the network a(t) (Brzosko 
et al. 2017).

where s = 10−4 m is the step size per spike and NAS = 40 
the number of action selection neurons, and �a = 0.5 ms. 
The second sum runs over all spikes that the action selection 
neuron j fired before the current time t. This scheme made 
it possible for the agent to move freely in any direction with 
different step sizes.

The activity of the action selection neurons was not changed 
between trials, i.e., the activity of the action selection neurons 
in the last moment of trial t is the same as at the beginning of 
the next trial t + 1 . Therefore, the initial conditions of trials are 
different from one another. This made it possible for the agent 
to find the goal after an unsuccessful trial, because otherwise 
the agent would repeat the same behavior on the next trial 
since weights do not change in/after unsuccessful trials.

Synaptic plasticity rules

The feedforward weights from place and boundary cells to 
action selection neurons play a critical role in our model. 
They define the policy of the agent. Plasticity of these weights 
enables the agent to learn the location of the goal zone. We 
applied a modified STDP rule that uses an all-to-all spike 
pairing scheme and eligibility trace that allows for delayed 
update. The following learning rule was applied to feedforward 
weights, if the agent finds the goal (Izhikevich 2007; Potjans 
et al. 2010).

where ẇ denotes the change applied to the feedforward 
weight connecting the i-th place cell to the j-th action selec-
tion neuron. c is an eligibility trace that allows for delayed 
updates, which is necessary and sufficient to learn causal 

(6)a(t) = s

NAS∑
j=1

∑
tj≤t

exp

(
−
t − tj

�a

)
aj,

(7)

ẇij = c(n − b)

ċ = −
c

𝜏c
+ Ψ(Δt)𝛿

(
t − spre∕post

)

ṅ = −
n

𝜏n
+

1

𝜏n
𝛿
(
t − sn

)

associations between synaptic activity when outcomes are 
delayed. This concept is a fundamental component of rein-
forcement learning network models (Brzosko et al. 2017; 
Izhikevich 2007; Legenstein et al. 2008; Florian 2007). n is 
the dopamine concentration, and b is the dopamine baseline 
concentration. �c and �n are the time constants of the eligi-
bility trace and the dopamine concentration, respectively. 
�(t) is the Dirac delta function, spre∕post the time of a pre- or 
post-synaptic spike, sn the time of a dopamine spike.

The spiking relationship between pre- and post-synaptic 
neurons modulated plasticity via the following window func-
tion of additive STDP:

where Δt = spost − spre is the temporal difference between 
a post- and a pre-synaptic spike, A+ the amplitude of the 
weight change, and �+ a time constant. We used the stdp_
dopamine_synapse in NEST (Gewaltig and Diesmann 
2007) to implement this model with the parameters given 
in Table 2.

Characterizing spatial coding in the place cell 
population

Changing the number of place cells ( NPC ) and/or their field 
size ( �PC ) changes the spatial coding in the place cell popu-
lation. To quantify spatial coding we use two different meas-
ures. The first such measure, the overlap index, is defined by 
comparing two neighboring place fields, assuming that all 
fields are equidistant across the environment.

So, the overlap index is the average firing rate of one cell 
Ωi−1

PC
 at the center of the next closest place field xi

PC
 , normal-

ized by the peak firing rate of the other neuron Ωi
PC
(xi

PC
) . 

(8)Ψ(Δt) = A+e
−|Δt|∕�+

(9)overlap index =
Ωi−1

PC
(xi

PC
)

Ωi
PC
(xi

PC
)

Table 2   STDP learning parameters, implemented to feed forward 
weights from place cells to action selection neurons

Parameter Value Unit Description

A_plus 0.002 Real Amplitude of weight change for facilitation
tau_plus 20.0 ms STDP time constant for facilitation
tau_c 200.0 ms Time constant of eligibility trace
tau_n 0.1 ms Time constant of dopaminergic trace
b 0.0 Real Dopaminergic baseline concentration
Wmin 0.0 Real Minimal synaptic weight
Wmax 60.0 Real Maximal synaptic weight
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Note that by definition, the overlap index is independent of 
the peak firing rate of the individual neurons in our network. 
We also quantified spatial coding by calculating the Fisher 
information matrix of the place cell population (Fisher 1922; 
Brunel and Nadal 1998):

where q is the population activity vector. Given the place 
cell model, the Fisher information matrix at a location x is 
given by the following equation.

Since we use isotropic place fields, we average over the diag-
onal elements of the Fisher information matrix to quantify 
spatial coding by the place cell population. In the following, 
we refer to this average as the Fisher information of the place 
cell population.

Results

To study the functional role of the properties of place cells in 
spatial navigation, we performed closed-loop simulations of 
spatial learning controlled by a spiking neural network using 
the CoBeL-spike software framework. The behavior was 
similar to that of rodents in the Morris watermaze. Synaptic 
plasticity in the network based on STDP and an eligibility 
trace gradually changed the behavior of the agent such that 
it found the goal more often and faster in later trials (Fig. 4). 
In other words, the agent successfully learned the spatial 
navigation task in our computational model. The outcome 
of learning is also evident in more direct trajectories to the 
goal and the policy encoded in the feedforward projections 
between spatial inputs and the action selection network 
(Fig. 5). In the following, we study systematically how task 
and place cell parameters affect navigation performance on 
this spatial learning task.

(10)J(x) =
∫

�2 ln (p(q|x))
�x2

p(q|x)dq,

(11)J(x) =
1

𝜎4
PC

NPC∑
i=1

(
x − xi

PC

)
⊗

(
x − xi

PC

)
Ωi

PC
(x)

Studying the impact of cell number, field size, 
and goal size on navigation performance

First, we kept the field size of the place cells unchanged 
( �PC = 0.2 m), while we varied the place cell number from 
32 to 1012 ) and goal size. We adopted the place field size 
�PC = 0.2 m. To ensure that the agent is initially located 
at the center of a place cell at the start of each trial, we 
consistently assigned an odd number to the place cell num-
bers in a row. This approach helps to drive the agent ini-
tially and maintains consistency across trials. The smallest 
practical number for place cell is therefore 32 . Our perfor-
mance measures are escape latency (the lower, the better) 
and the hit rate (the higher, the better). We observed that 
the simulation results based on escape latency (Fig. 6A) 
and the hit rate (Fig. 6D) for this parameter set are consist-
ent with one another. As mentioned above, this indicates 
that all agents that are successful find similar trajectories 
to the goal. Hence, we will only present the escape latency 
for any further computations or analyses. A clear result 
that we found throughout all simulations was that the agent 
performs better as the goal becomes larger. This occurs 
because the task becomes easier in two ways: the distance 
between start and goal becomes shorter and a less precise 
policy suffices to reach the goal zone.

By contrast, the relationship between performance and 
cell number was less clear. Increasing the cell number 
increases the density of place field, which in turn improves 
the spatial coverage by the place cell population. So, larger 
cell number should result in better navigation performance. 
We varied the cell number from 32 to 1012 . We report cell 
number using this convention, because the cells are always 
located on a 2-d grid (Fig. 2B). The agent performed the 
worst for very small cell number and gradually performed 
better when cell number increased—as predicted (Fig. 6A, 
D). However, for a large number of cells, the performance 
declined. We hypothesize that this occurs, because the 
place fields have too much redundancy, i.e. overlap.

Next, we changed the place field size while keeping the 
cell number constant at NPC = 212 (Fig. 6B, E). We chose 

Fig. 4   Learning curves in the 
simulated task are sensitive to 
network and task parameters. 
Examples of escape latencies 
(left column) and hit rates 
(right column) as a function of 
trial number for three sets of 
network and task parameters. 
For some parameter learning is 
evident in decreasing latency 
and increasing hit rate (red and 
green lines), whereas for others 
there is little to now learning 
(blue line)
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that value because the agent performed well in the previ-
ous simulation. We expected that the smaller the fields, the 
more precise the spatial coding and the better the behavio-
ral performance will be. Hence, we reversed the x-axis for 
this plot from the standard convention (left: �PC = 1.4 m, 
right: �PC = 0.02 m). As expected, performance was better 
(lower � and higher hit rate) for smaller place field sizes, 
but, like above, there was an optimal field size beyond 
which the performance declines. We hypothesize that very 
small fields cannot properly cover the environment, which 
leads to issues with navigation and/or spatial learning.

Investigating possible invariance to spatial 
coverage

Taken the results of the two simulation sets together, we 
hypothesize that the coverage of the environment by the 
place cell population might be the variable that determines 
navigation performance. We therefore defined the coverage 
index as follow:

To test our hypothesis, we next changed the cell number 
and field size in such a way that leaves the coverage index 
constant at NPC�

2
PC

= 17.64 m2 . This value arises from our 
standard parameters for NPC = 212 and � = 0.2 m. Perfor-
mance is roughly constant for a sizable range of place cell 
parameters (Fig. 6C, F), but at lower cell numbers and larger 
field sizes, the performance deviates quite dramatically. So, 
coverage alone is not sufficient to explain the difference in 
navigation performance.

Accounting for navigation performance using 
measures of spatial coding by the place cell 
population

We hypothesized further that it is not just the spatial cov-
erage by place cells per se, but more subtle properties of 
spatial coding by the place cell population that matter for 
spatial navigation. We therefore defined the overlap index to 
measure spatial coding by quantifying how close the peaks 
of neighboring place fields are relative to their width. The 

coverage index = NPC�
2
PC
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D E F
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Fig. 5   Example of behavior and learned policy during training. In the 
simulated task, the agent starts every trial in the center (green dot) 
and has to navigate to the goal zone (red disk) to receive reward. A–C 
Sample trajectories of the agent in the first (A), fifth (B), and tenth 
(C) trial. D–F Sum of the effects of all place cells on action selection 

neurons in the first (D), fifth (E), and tenth (F) trial. Arrows indicate 
the preferred direction of movement at each spatial location, which 
represents what is called the policy of the agent in reinforcement 
learning. Through learning, the trajectory becomes shorter and the 
agent finds the reward faster
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overlap index increases if fields move closer together while 
their sizes �PC remain constant. This occurs when only the 
cell number NPC is increased (Supplementary Fig. A1, from 
left to right). The overlap index also increases if field sizes 
increase while the field density stays constant, i.e., the cell 
number is constant (Supplementary Fig. A1, from bottom 
to top).

We calculated the overlap index for the three sets of simu-
lations that we performed above (Fig. 7, left column). Per 
definition, the overlap index increases from 0 to 1 with cell 
number (Fig. 7A), and decreases from 1 to 0 with decreasing 

field size (Fig. 7B). Also, as intended the overlap index devi-
ates from the coverage index, i.e., when the coverage index 
is held constant while place cell parameters change, the 
overlap index varies (Fig. 7C)

Interestingly, when we plotted navigation performance vs. 
the overlap index, a pattern emerged that is similar across 
the three simulation sets (Fig. 7, right column). However, the 
relationship is nonmonotomic (Fig. 7D, E). What is more, 
the asymmetric u-shape has a very wide bottom, so that the 
best performance is observed around a large range of values 
of the overlap index between 0.2 and 0.8 (Fig. 7D, E). These 

Fig. 6   Asymptotic navigation 
performance after learning. 
A–C Escape latency as a 
function of place cell number 
N
PC

 for fixed �
PC

= 0.2 (A), 
of place field size �

PC
 for fixed 

N
PC

= 212 (B), and simultane-
ous scaling of both variables 
such that N

PC
× �2

PC
= 17.46 

(C). Each point represents the 
average trial durations over 100 
repetitions. The color represents 
different goal radii (as indi-
cated). D–F The hit rate, i.e. the 
fraction of trials in which the 
agent successfully navigates to 
the goal, shown using the same 
plotting convention as in (A–C)

A

B

C

D

E

F
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results are clear indications that the overlap index accounts 
for spatial coding features that are important for spatial navi-
gation, but does not capture it well enough.

Next, we used a measure of sensory coding that is often 
used in sensory neuroscience (Brunel and Nadal 1998): the 
Fisher information. We calculated the Fischer information 
for the place cell population at all locations between the 
start point (center of the environment) and the center of 
the reward zone (see Sect. 2.6) and use the minimum value 
encountered to characterize the place coding by the popu-
lation—more on this point below. The Fisher information 

increases if the number of cells increase while field sizes 
remain constant (Supplementary Fig. A2, from first to sec-
ond column). Since the Fisher information also takes into 
account the peak firing rate, we held the peak firing rate 
constant for this comparison. However, if we scale the peak 
firing rate as we do in our closed-loop simulations, the 
simultaneous scaling of cell number and peak firing rate 
leaves the Fisher information virtually unchanged (Supple-
mentary Fig. A2, from first to third column). When field 
sizes increase and peak firing rates simultaneously decrease, 

Fig. 7   The agent’s navigation 
performance shows a depend-
ence on overlap index. The 
dependence of the overlap index 
on key simulation parameters: 
A cell number when sizes 
are fixed, B field size when 
numbers are fixed, and C when 
cell number and field sizes scale 
inversely to one another. D–F 
Escape latency depends on 
overlap index for the three types 
of scaling, but the relationship 
is non-monotonic

A

B

C

D

E

F
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Fisher information decreases (Supplementary Fig. A2, from 
bottom to top).

These properties of the Fisher information explain its 
scaling in the three simulation sets (Fig. 8, left column). 
When cell number is increased, and peak firing rate is 
decreased, while field sizes remain constant, the Fisher 
information remains constant (Fig. 8A). In the other two 
cases, the Fisher information increases as expected (Fig. 8B, 
C). However, for very low cell numbers or very small field 
sizes this trend breaks, because in these cases the place fields 

are so sparse that the Fisher information varies substantially 
between locations where there is a place field and those 
where there is none (see Supplementary Fig. A3). This is 
the reason why we chose the minimum Fisher information 
along the path to quantify spatial coding in the place cell 
population.

The navigation performance vs. Fisher information plots 
are similar across all three simulation sets (Fig. 8, right col-
umn) and, the relationship is largely monotonic, unlike the 
relationship between performance and overlap index. We 

Fig. 8   Fisher information 
accounts for agent’s navigation 
performance. Same plotting 
convention as in Fig. 7 for the 
binary logarithm of the mini-
mum value Fisher information 
on the direct path between the 
start point and the goal’s center. 
A Except for very low cell 
numbers, the Fisher informa-
tion remains constant when 
increasing place cell number 
in our simulations, because 
we simultaneously decrease 
the maximum firing rate of 
individual cells (see Supple-
mentary Fig. A2). B Decreasing 
the place field size lead to an 
increase in Fisher information, 
because of the power of �4

PC
 

in the denominator of Fisher 
information. However, for 
extremely small place fields 
the Fisher information drops 
because the place representation 
becomes too sparse. C Scaling 
of cell number and field size 
simultaneously also increases 
Fisher information. D–F For the 
three types of parameter scaling, 
the escape latency monotoni-
cally decreases, and therefore 
the performance increases, with 
increasing Fisher information

A

B

C

D

E

F
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therefore conclude that the spatial coding of the place cell 
population, as measured by the Fisher information, is indeed 
an important driving factor in the behavioral performance 
of the agent in the closed-loop simulations. Modifying the 
simulation parameters to increase the Fisher information 
leads to improved performance of the agent.

Consistent relationship between navigation 
performance and efficiency of spatial coding

To investigate whether the relationship between naviga-
tion performance and spatial coding is the same in all three 

simulation sets, we plotted the results of all simulations in 
one figure. Both relationships navigation performance vs. 
overlap index (Fig. 9A) and navigation performance vs. 
Fisher information (Fig. 9B) are consistent across all three 
simulation sets. Our results therefore show that the efficiency 
of spatial coding of the place cell population is a determinant 
of the behavioral performance of the agent in the closed-loop 
simulations, regardless of the specific value of other place 
cell parameters.

Discussion

Using closed-loop simulations of spatial learning based 
on spiking neural networks and reward-driven STDP, we 
studied how the agent’s navigation performance depends on 
the goal size and the parameters of the place cell popula-
tion. While the dependence on goal size is straight forward, 
the larger the better, the dependence on cell number and 
field size is complex and difficult to interpret. We found that 
the Fisher information of the place cell population, which 
measures the efficiency of spatial coding, provided a simple 
correlate of navigation performance. Therefore, our work 
not only shows that the efficient coding hypothesis can be 
applied fruitfully to spatial representations, it also demon-
strates that efficient spatial coding is important for function, 
i.e. spatial navigation and learning, as well.

Related closed‑loop simulation work

The closest simulation framework to ours is the one that 
our model was based on Brzosko et al. (2017). That study 
used the model to study the role of sequential modulation of 
synaptic plasticity rule in learning a navigation task, but did 
not study the role of place cell parameters. Another closed-
loop simulator based on spiking neural networks, SPORE 
Kaiser et al. (2019), provides an interface between NEST 
(Gewaltig and Diesmann 2007) and the GAZEBO robotics 
simulator,1 but primarily targets robotics tasks. Furthermore, 
there is a framework for simulating closed-loop behavior 
based on reinforcement learning that is oriented towards 
neuroscience (CoBeL-RL) (Walther et al. 2021). While this 
allows for studying the computational solutions that emerge 
under different constraints, such as place-cell like represen-
tations Vijayabaskaran and Cheng (2022), how the statistics 
of hippocampal replay emerges in the network Diekmann 
and Cheng (2022), or the function of memory replay Zeng 
et al. (2022), these studies were based on machine learn-
ing implementations of reinforcement learning and neural 

A

B

Fig. 9   Summary of dependence of navigation performance on key 
parameters. Two variables are sufficient to account for task perfor-
mance (as measured by escape latency) across all simulations: The 
reward zone radius (indicated by color) and spatial coding efficiency. 
A The dependence of latency on reward zone size and overlap index 
is consistent across all simulations. The best performance is achieved 
around overlap index= 0.5, regardless of goal size. B The depend-
ence of latency on Fisher information is also consistent across all 
simulations, albeit somewhat more noisy. However, the relationship 
is monotonic and therefore the Fisher information captures a more 
fundamental property that is important for spatial navigation, i.e. the 
efficiency of spatial coding

1  http://​gazeb​osim.​org/.

http://gazebosim.org/
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networks. Even though they help us understand the abstract 
computations performed by the brain during spatial naviga-
tion, the internal processes of this model significantly differ 
from those in the brain. In addition, there are simulation 
frameworks that target machine learning or industrial appli-
cations, such as, for example, DeepMind Lab (Beattie et al. 
2016), RLlib (Liang et al. 2018), MiniGrid,2 and MAgents 
(Zheng et al. 2018).

Efficiency of spatial coding

Spatial coding by individual place cells has been quantified 
since the early 1990’s by the spatial information. It is based 
on Shannon information and was introduced to hippocampal 
research by Skaggs et al. (1992). However, spatial informa-
tion has only been used to quantify the degree of spatial 
modulation of one place cell’s activity map, but not the spa-
tial coding efficiency in the population.

The more detailed results aside, our results imply a 
simpler relationship to roughly maintain a similar level of 
coding efficiency in a limited parameter range: the smaller 
the fields are, the larger the number of fields should be to 
maintain the same level of coding efficiency. This principle 
accords well with experimental observations and provides 
an explanation for the observation that when smaller place 
fields are observed in an area of an environment, the density 
of fields there is higher too (Hollup et al. 2001; Lee et al. 
2006, 2020; Ainge et al. 2007; Zaremba et al. 2017; Tryon 
et al. 2017; Gauthier and Tank 2018; Turi et al. 2019; Sato 
et al. 2020; Kaufman et al. 2020; Dupret et al. 2010; Grieves 
et al. 2016, 2018; Jarzebowski et al. 2022; Tanni et al. 2022).

Limits of efficient coding

However, the observation that field sizes vary systematically 
with environmental features and behavior (Parra-Barrero 
et al. 2021), suggests that absolute field sizes do matter. If 
the Fisher information was the only variable that mattered 
for navigation performance, the hippocampus could as well 
have allocated a different number of fields with different 
sizes as long as the Fisher information is preserved. How-
ever, the brain consistently opts for more and smaller fields 
in certain situations, so this suggests that there are factors 
beyond the Fisher information that constrain spatial cod-
ing in the place cell population. Some variables that might 
impose additional constraints are the size of obstacles (our 
simulation did not include any), and temporal coding linked 
to the behavior of the animal, such as running speed (Parra-
Barrero et al. 2021). In addition, there are more generic 

limitations on efficient coding, i.e. energy consumption 
(Crotty et al. 2012), and limits on peak firing rate of neurons 
due to spike dynamics. Future work is required to explore 
these factors and the trade-off between them.

Learning vs. navigation

The current study distinguishes between spatial navigation 
and spatial learning. Here, we define spatial navigation as 
the set of movements that an agent makes to reach certain 
locations in an environment. Spatial learning is the acquisi-
tion of spatial information and/or the process of determining 
which movements are most beneficial for the agent. In our 
model, the agent does the latter, i.e. it learns which actions 
to perform in certain spatial locations. This corresponds to 
what has been called a response strategy. In our model, there 
are limitations on spatial navigation because of the architec-
ture of the neural network and the inputs it receives (from 
place cells). For instance, due to the finite number of action 
selection neurons and the exponential kernel in the output 
(Eq. 6), the agent’s movements have a limited temporal and 
spatial precision, i.e. they cannot be arbitrarily precise. Fur-
thermore, there are limitations on spatial learning. Even if 
the network weights could, in principle, be set up such that 
it would perform optimal navigation, the synaptic learning 
rule and the statistics of learning might not be able to bring 
about such network weights. In other words, a solution might 
exist, but the learning process cannot find this rule.

To begin dissociating the limitations on learning from 
those on navigation itself, we compared the performance 
of trained networks to randomly initialized networks. We 
found that some difference in performance was already 
present in the random network before learning commenced 
(Supplementary Fig. A4), suggesting that for some place 
cell parameters, navigation is inherently more robust than for 
others and that learning amplifies this difference. However, it 
remains an open question whether other ways of optimizing 
synaptic weights, i.e., avoiding learning via reward-driven 
STDP, might yield a better solution for spatial navigation. In 
cases, where this is possible, the limitation of the network is 
primarily on learning, not navigation. In cases, where a well-
performing solution cannot be found by other means either, 
the limitation is on navigation per se. This requires a more 
systematic exploration of different optimization algorithms 
that is beyond the scope of this paper.

Conclusion

While the encoding of sensory information has received a 
great deal of attention in neuroscience, the functional role 
of sensory representations is much less clear. This applies 

2  https://​github.​com/​Farama-​Found​ation/​Minig​rid.

https://github.com/Farama-Foundation/Minigrid
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especially to spatial representations and navigation. Here, 
we have shown using computational modeling that the effi-
ciency of spatial coding in the inputs directly influences the 
navigation performance of an agent based on spiking neural 
networks and reward-modulated STDP.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00429-​023-​02637-8.
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