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ABSTRACT
Curriculum analytics (CA) studies curriculum structure and student
data to ensure the quality of educational programs. To gain statisti-
cal robustness, most existing CA techniques rely on the assumption
of time-invariant course difficulty, preventing them from captur-
ing variations that might occur over time. However, ensuring low
temporal variation in course difficulty is crucial to warrant fairness
in treating individual student cohorts and consistency in degree
outcomes.We introduce item response theory (IRT) as a CAmethod-
ology that enables us to address the open problem of monitoring
course difficulty variations over time. We use statistical criteria to
quantify the degree to which course performance data meets IRT’s
theoretical assumptions and verify validity and reliability of IRT-
based course difficulty estimates. Using data from 664 Computer
Science and 1,355 Mechanical Engineering undergraduate students,
we show how IRT can yield valuable CA insights: First, by revealing
temporal variations in course difficulty over several years, we find
that course difficulty has systematically shifted downward during
the COVID-19 pandemic. Second, time-dependent course difficulty
and cohort performance variations confound conventional course
pass rate measures. We introduce IRT-adjusted pass rates as an alter-
native to account for these factors. Our findings affect policymakers,
student advisors, accreditation, and course articulation.
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1 INTRODUCTION
Student grade point average (GPA) scores are a summary of in-
dividual course grades and are viewed as a measure of students’
performance in an educational program. Notably, GPA scores play
a central role in decision processes of employers and academic insti-
tutions and are known to be correlated with students’ future career
success (e.g., [16, 28]). This makes the monitoring and controlling of
potential course difficulty variations–that can affect student GPAs–
an important task for policymakers of academic and professional
degree programs. It is essential for ensuring fairness in treatment
of individual student cohorts and consistency in GPA scores.

The field of Curriculum Analytics (CA) studies educational pro-
gram structure and student data to assess the quality of individual
courses inside a curriculum and to provide insights to various stake-
holders (e.g., program administrators and student advisors). Still,
CA methodologies for analyzing variations that can occur inside
programs over time are currently underexplored. For example, ex-
isting CA approaches that rely on process mining and simulation
techniques tomonitor student activities inside a curriculum struggle
with issues of concept drift [10] because they are unable to capture
differences between individual offerings of the same course (e.g., CS1
in winter 2020 and CS2 in winter 2021), that can occur over time
and that can result in changes in the process while being measured.
Similarly, CA approaches that make curriculum structure-based
predictions assume a stationary data generation process and are
unable to quantify the effects of distribution shifts over time.

This paper addresses the open problem of monitoring varia-
tions in course difficulty inside educational programs over time.
We introduce item response theory (IRT)–originally proposed for
high-stakes assessments [14]–as a promising new CA methodology.
We assess the suitability of IRT for analyzing multi-year course
performance data and show how IRT can yield valuable insights by
revealing temporal course difficulty variations inside a Computer
Science (CS) and a Mechanical Engineering (ME) Bachelor’s pro-
gram. Our analysis demonstrates the importance of IRT as a CA
instrument that enables us to warrant temporal consistency and
fairness inside educational programs. Our findings prompt policy-
makers to implement feedback mechanisms to verify that policies
achieve intended effects and to detect and investigate unintended
variations, such as those induced by COVID-19. Key contributions
of this paper include:

• Certifying the need for temporal modeling: We show
that course characteristics, such as difficulty, are subject
to significant variations over time by conducting a log-
likelihood ratio test comparing two nested course grade
models. This highlights the need for CA methodologies ca-
pable of monitoring such fluctuations.
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• IRT as temporal CAmethodology: We assess the suitabil-
ity of IRT for CA by studying to what degree course perfor-
mance data meets IRT’s theoretical assumptions. We further
evaluate the validity and reliability of IRT-based course diffi-
culty estimates. By estimating difficulty values for different
offerings of the same course, we can monitor variations in
course difficulty over time.

• Case study: Using 10 years of course grade data from a CS
and a ME Bachelor’s program. We estimate course difficulty
values for individual course offerings, revealing substantial
variations over time. We further observe a systematic shift
in course difficulty during the COVID-19 pandemic.

2 BACKGROUND AND RELATEDWORK
2.1 Curriculum Analytics
Curriculum Analytics (CA) is a subfield of Learning Analytics that
studies curriculum-related data (e.g., information describing when
individual students take different courses and how well they per-
form in them) intending to understand, modify, and improve edu-
cational programs such as college degrees and professional certifi-
cation programs [10].

Existing CA approaches can be classified into three major cate-
gories based on their underlying methodology: (i) process mining,
(ii) process simulation, and (iii) curriculum structure-based pre-
diction. Process mining techniques have been proposed to create
representations of the educational process focusing on the order of
interactions with individual curriculum elements (e.g., [10, 32]). As
an extension to process mining, simulation approaches have been
explored to estimate the effects of potential curriculum changes
(e.g., [6, 23]). Lastly, prediction techniques have been developed to
predict future student performance [27] and to make personalized
curriculum recommendations [5, 18].

This paper addresses the open problem of how to monitor course
difficulty variations inside a curriculum over time, which is crucial
for ensuring fairness in treatment of individual student cohorts and
consistency in GPA scores. Existing process mining and simulation
approaches assume that individual courses behave the same over
time and are known to suffer from concept drift issues [10]. Simi-
larly, prior prediction studies assume a stationary data generation
process and are unable to quantify the effects of distribution shifts.
While descriptive statistics such as course pass rates (PR), student
retention [35], and curriculum coherence [22] can be used to moni-
tor courses over time, they provide limited information regarding
underlying factors–i.e., is a metric change due to a variation in the
course or cohort?

2.2 IRT in Curriculum Analytics
IRT has been proposed in the context of high-stakes assessments
to address fundamental limitations of classical test theory (i.e., (i)
the inability to compare scores obtained from different tests and (ii)
the dependence of item parameters on the test taker cohort) [14].
Outside the domain of standardized testing, IRT-based approaches
have, for example, been used for adjusting high school GPAs based
on subject difficulty [17] and for health assessments [31]. Related to
CA, multiple IRT-based approaches have been proposed to model
students’ university course satisfaction in a single year (e.g., [4])

and over multiple years (e.g., [29, 30]) based on students’ teaching
evaluation (SET) surveys.

Closest to the spirit of this paper is a work by Bacci et al. [3],
which proposed a multidimensional latent class IRT (LC-IRT) model
to assign first-year students into different performance groups us-
ing exam enrollment and exam grade data. They studied data from
861 incoming Economics and Business students going through
six courses during the single academic year 2013/2014. Students
were split by last name into four groups, and each group was
taught courses by different lecturers. As part of their work, Bacci et
al. [3] pointed out variations in course difficulty between individual
groups. In contrast, our work focuses on accurately monitoring vari-
ations in course difficulty over multiple years using data from a CS
Bachelor’s program consisting of 19 courses over 9 years and a ME
Bachelor’s program consisting of 17 courses over 10 years. We show
that IRT can yield valuable insights for CA using multi-year perfor-
mance data. Bacci et al. [3] trained a comparatively more complex
IRT model but reported difficulties fitting course discrimination
parameters even when working with a small number of courses. In
our work, we employ the simpler Rasch model [14] as it yielded
the highest confidence regarding course difficulty parameter fit.

3 METHODOLOGY
First, we formulate a statistical procedure to verify whether the
time-invariant course difficulty assumptions apply to CA datasets.
Second, we introduce IRT in the CA context. Third, we define a
multi-step IRT-based methodology (i.e., (i) dimensionality assess-
ment, (ii) model selection, and (iii) validity/reliability assessment)
for monitoring course difficulty variations over time, which we later
use to analyze datasets from a CS and a ME Bachelor’s program.

3.1 Testing Time-Invariance in Course
Properties

To emphasize the need for CA methodologies capable of capturing
variations in course difficulty over time, we conduct a likelihood
ratio test [9] to determine if course properties, such as course diffi-
culty, vary over time. The test is based on the null hypothesis that
a simple model assuming that course properties are time-invariant
is sufficient to describe the course grade data. If the test result is
significant, we would reject this null hypothesis, indicating that a
model that accounts for temporal variations in course properties
may be a better fit. This would also suggest that changes in course
properties occur over time.

Formally, we fit two models with nested model parameter spaces.
First, we fit a simple regression model 𝑀0 that models student-
course grade (𝑔𝑠,𝑐 ) additively using student (𝜃𝑠 ) and course (𝜃𝑐 )
parameters, and an intercept (𝑏): 𝑔𝑠,𝑐 = 𝑏 + 𝜃𝑠 + 𝜃𝑐 . Here, the course
parameters 𝜃𝑐 come from a parameter set Θ0. The more complex
model,𝑀1, also models the course grades additively but uses one
parameter per course-semester combination: 𝑔𝑠,𝑐 = 𝑏 + 𝜃𝑠 + 𝜃𝑐×𝑡 .
Here, 𝜃𝑐×𝑡 represents the properties of course 𝑐 in semester 𝑡 . The
parameters 𝜃𝑐×𝑡 now come from a superset Θ1 ⊇ Θ0, which al-
lows us to formulate the null hypothesis 𝐻0 and the alternative
hypothesis 𝐻1 for the likelihood ratio test as:

𝐻0 : ∀ (𝑐 × 𝑡) : 𝜃𝑐×𝑡 ∈ Θ0, 𝐻1 : ∃ (𝑐 × 𝑡) : 𝜃𝑐×𝑡 ∈ Θ1 \ Θ0 . (1)
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3.2 Item Response Theory
In the following, we assume a curriculum consisting of several
courses offered repeatedly in different semesters with dichotomous
grades ("pass"/"fail"). We use the term course offering (CO) to refer
to one course in one semester. Focusing on CA, the idea underlying
IRT is to assign each student a latent trait value that explains the
probabilities with which the student passes individual COs. The
relationship between student trait values and CO pass rates (PRs)
can be modeled by fitting a sigmoid function for each CO known
as the item response function (IRF). The inverse image (𝑥-axis) of
the IRF is the student’s trait value, and the image (𝑦-axis) is the
student’s probability of passing a specific CO.

For CO 𝑗 , the position of its IRF on the 𝑥-axis (i.e., the value with
the largest IRF slope) indicates the CO difficulty denoted as 𝛿 𝑗 . The
slope of the IRF describes the CO discrimination property denoted
as 𝛼 𝑗 . Given student trait 𝜃𝑖 , CO difficulty, and discrimination, we
define the probability of passing a CO 𝑗 as

P(𝑋𝑖, 𝑗 = 1 | 𝜃𝑖 , 𝛼 𝑗 , 𝛿 𝑗 ) =
1

1 − 𝑒−𝛼 𝑗 (𝜃𝑖−𝛿 𝑗 )
, (2)

where 𝑋𝑖, 𝑗 is the dichotomous response of student 𝑖 to CO 𝑗 . 𝑿 is
the potentially sparse CO response matrix capturing all responses.
The IRT model defined by Equation 2 can be fitted using maximum
likelihood estimation. If we optimize only the difficulty parame-
ters 𝛿 𝑗 and fix all 𝛼 𝑗 = 1, we refer to it as Rasch or 1-parameter
logistic model (1PL) [14]. If all 𝛼 𝑗 are free, we call it Birnbaum or as
2-parameter logistic model (2PL) [14]. Generalizing the Birnbaum
model, the multidimensional IRT model (MIRT) [12] characterizes
CO discrimination and student traits using multidimensional pa-
rameter vectors. MIRT explains observational data via multiple
latent variables, which in our context can be interpreted as distinct
latent traits that describe a student’s ability to complete COs suc-
cessfully. We refer to the 2-dimensional IRT model as 2PL-2DIM
and the 3-dimensional IRT model as 2PL-3DIM.

IRT is designed to explain student performance data a posteriori–
i.e., it explains past data by fitting course difficulty and student
trait parameters. While one could use these parameters to make
predictions about the future (i.e., how difficult will a course be next
year), we emphasize that this paper only focuses on explaining past
performance data to derive learning analytical insights. Because
of this, we rely on information criteria (described in Section 3.3.3)
that trade-off model fit with model complexity for different IRT
models with in-sample data. We do not try to predict future student
performance, which would require other means of model evaluation
(e.g., cross-validation).

3.3 Verification of Model Assumptions and
Model Selection

To verify the suitability of IRT for CA, we assess if multi-year course
response data meets IRT’s theoretical assumptions.

3.3.1 Dimensionality. To assess the suitability of one- and multidi-
mensional IRT models, we study the number of latent dimensions
required to explain variance in student performance data. We do
so by performing principal component analysis (PCA) on the grade
point CO response matrix 𝑿 [0,100] [21]. Because PCA demands a

complete CO response matrix, we need to address the sparsity com-
mon in course examination data. We assume that skills associated
with individual courses are content-based and do not vary from
CO to CO (e.g., the content of the CS1 course is time-invariant).
This assumption allows us to aggregate data from different COs of
the same course to form a denser course response matrix. The re-
maining missing values (e.g., due to drop-out students) are filled via
multiple iterative PCA imputation (MIPCA) [19], leaving us with
a dense aggregated response matrix 𝑎𝑔𝑔(𝑿 [0,100] ) with 19 courses
for CS and 17 courses for ME. MIPCA allows us to perform PCA on
a complete matrix and estimates imputation-induced uncertainty
in the recovered principal components (PCs). We use a scree plot
visualizing the eigenvalues of the covariance matrix 𝑪𝑎𝑔𝑔 (𝑋 [0,100] )
of the aggregated matrix as a complementary criterion for assessing
latent dimensionality [21].

3.3.2 Local Independence. In the CA context, IRT’s local indepen-
dence (LI) assumption states that a student’s probability of passing
a CO is independent of their performance in other COs, given their
latent trait. To determine the degree to which course performance
data meets the LI assumption, we use the Q3 criterion [14]. Q3
studies residual correlations and quantifies pairwise dependencies.
If the Q3 score of a pair deviates by more than a threshold value of
0.2 from the average Q3 score of all pairs, it is commonly suspected
that LI is at risk [13, 14].

Because of the multi-year horizon, we cannot compute residuals
for each individual CO pair (e.g., there is no CS student that took
Statistics in 2013 and Databases in 2021). As in the dimensional-
ity assessment, we assume that relationships between individual
courses are content-based and thus time-invariant. We calculate Q3
values for the 19 courses in CS and 17 courses in ME using a Rasch
model fitted on their aggregated dichotomous matrices (𝑎𝑔𝑔(𝑿 )).

3.3.3 Model Selection. After determining an upper bound on the
number of latent dimensions, we fit corresponding Rasch, Birn-
baum, and multidimensional IRT models. We select the final model
using common information criteria–i.e., Akaike information crite-
rion (AIC), Bayesian information criterion (BIC), and sample size
adjusted Bayesian information criterion (SABIC) [14]. These crite-
ria quantify the trade-off between model fit (log-likelihood) and
potential overfitting (number of model parameters) and are form
of in-sample validation.

3.4 Validity and Reliability Assessment
We evaluate validity and reliability of IRT-based student and course
difficulty estimates before deriving CA insights.

3.4.1 Concurrent Validity and Regression Validation. We assess va-
lidity to verify that the fitted student and CO measures capture the
constructs of interest (i.e., student ability and CO difficulty). We
utilize concurrent and regression validity methods for this purpose.
Concurrent validity compares IRT’s trait parameters with vari-
ables designed to measure the same attribute (e.g., GPA measuring
student performance). Regression validation studies whether our
measures have higher predictive power than comparable variables.

We study concurrent validity by considering the correlations be-
tween fitted IRT trait and difficulty values and student GPA and CO
pass rate (PR) statistics. In line with GPA adjustment research (e.g.,



LAK ’24, March 18–22, 2024, Kyoto, Japan Frederik Baucks, Robin Schmucker, and Laurenz Wiskott

[17]), we expect a positive correlation between student trait param-
eters and GPAs and a negative correlation between CO difficulty
parameters and CO PRs.

For regression validation, analog to IRT, which uses a logistic
regression model that explains the data via student trait and CO dif-
ficulty values, we fit an alternative logistic model that uses student
GPA scores and CO PRs as inputs. This allows us to evaluate the IRT
model’s a posteriori fit by contrasting it with a model that employs
GPA and CO PRs, assessing the in-sample predictive capabilities of
both sets of features.

3.4.2 Internal Consistency Reliability and Simulation Study. We
assess reliability to verify consistency of measures recovered by
IRT. We employ two approaches: Internal consistency using split-
half testing and a simulation study. Split-half testing partitions the
dataset into two disjoint sets as basis for two measurements. Then,
internal consistency in measurements is determined by examining
whether the model produces comparable results on the two sets.
The simulation study examines how much data under a certain
missing value rate is required to ensure a robust model fit.

For internal consistency reliability, we split the dataset into two
disjoint subsets. We fit two independent Rasch models on the sub-
sets to assess the consistency of recovered model parameters. We
quantify consistency by computing the Pearson correlation be-
tween the two models fitted on disjoint data. The dataset is split
in two ways: random and time-dependent. First, we estimate two
latent trait values for each student by splitting their CO responses
into two disjoint subsets at random. Second, we estimate two la-
tent trait values for each student for the earlier and later half of
their CO responses. The time-invariant split addresses IRT’s con-
stant time-invariant trait assumption. While we address potential
changes in course difficulty by fitting different parameters for dif-
ferent semesters, we need to warrant consistency in student trait
values. We focus on students with at least 12 CO responses to obtain
a temporal separation over multiple semesters. For both splitting ap-
proaches, we assess internal consistency by computing the Pearson
correlation coefficient between the trait value pairs.

Using a simulation study, we evaluate the reliability of the IRT
difficulty parameter estimation. Following common methodology
(e.g., [21, 26]), we generate a ground truth IRT model by sampling
student trait and CO difficulty values from a standard Gaussian
and simulate student responses for different expected CO sizes
({50, 75, 100, 150, 200, 250, 300}). To mimic missing responses, we
randomly mask individual response matrix entries with a proba-
bility equal to the missing value ratio of our real data (29%). The
number of simulated students is chosen to meet the expected CO
size. Following [25], we generate data for 1,000 seeds. We report
root mean square error (RMSE) and Pearson correlation metrics of
the learned difficulty parameters using the ground truth values.

4 DATA AND PREPROCESSING
The CS and ME datasets used for this study capture exam scores
from two Bachelor’s programs at a German university.

The CS dataset covers a time period of nine years (2013-2021),
and includes exam data from 1098 students. It consists of 19 compul-
sory courses, each graded on a scale from 0 to 100 points. To pass
an exam, a minimum score of 50 points is required, otherwise the

exam is considered failed. Before obtaining the data, anonymization
was performed by removing all demographic information and by
adding uniform stochastic noise ranging from −5 to 5 to each grade.
Preprocessing steps were implemented to warrant data quality and
validity. These steps involved focusing on students’ first exam at-
tempts, excluding reattempts, and only considering students with at
least 5 observed non-zero grades and COs with at least 20 students.
As a result of preprocessing, the CS dataset was refined to include
664 students and 127 COs.

The ME dataset spans a period of ten years (2012-2021) and con-
sists of data from 3059 students. It encompasses 18 compulsory
courses with exams graded on a discrete scale ranging from 5.0
(worst) to 1.0 (best). A grade of 5.0 indicates a failed exam. All
other grades indicate a pass. We transformed the original 5.0 to 1.0
scale to an international 0 to 100 point grade scale by referring to
university guidelines. Similar to the CS dataset, anonymization was
performed by removing demographic information. The preprocess-
ing steps were identical to those performed for the CS dataset. After
preprocessing, the ME dataset contains data from 1651 students
and 177 COs.

Except for the project-based software engineering COs in the CS
dataset, each CO grade was determined via a single examination at
the semester’s end, highlighting their importance. It is worth noting
that the CS and ME datasets represent separate degree programs
with no course overlap. Finally, before analyzing the data using
the dichotomous IRT models, we converted the grade point data in
each dataset to pass/fail data.

5 RESULTS
5.1 Testing Time-Invariance in Course

Characteristics
Following the methodology (Section 3.1), we first perform the like-
lihood ratio test (LRT) for the two datasets. The LRT statistic for
the CS dataset is 998.83 with a 𝑝-value 𝑝 < 0.001 and 110 degrees
of freedom. The LRT statistic for the ME dataset is 653.71 with a
𝑝-value of 𝑝 < 0.001 and 113 degrees of freedom. Thus, in both
tests, the null hypothesis (Eq. 1) of a simpler model being sufficient
was rejected with high significance. This emphasizes the impor-
tance of accounting for temporal variations in course properties,
such as course difficulty. These findings highlight the need for CA
methodologies that can account for temporal course variations and
advocate the following IRT-based analyses.

5.2 Verification of Model Assumptions and
Model Selection

5.2.1 Dimensionality. To inform the model selection, we inves-
tigate how many latent dimensions are required to explain the
variance captured in the course response matrix. After aggregating
responses from different COs (see Section 3.3), the missing value
ratios of individual courses vary between 7% and 44%. The ME
courses’ ratios are lower (< 29%) than the CS courses’ ratios. In
both programs, we observe more missing values in courses rec-
ommended for later semesters. We generate 200 dense response
matrices for CS and ME with different MIPCA imputations.
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Figure 1: Scree plots visualizing the eigenvalues of the student course grade covariance matrix for a single MIPCA imputation.
[Left] Computer Science (CS) program. [Right] Mechanical Engineering (ME) program.

Figure 2: Scatter plots visualizing the variance in course representations using the first 2 principal components (PCs) recovered
by different MIPCA imputations. [Left] Computer Science (CS) program. [Right] Mechanical Engineering (ME) program.

Focusing on one of the imputed matrices from each program,
we visualize the eigenvalues of their corresponding covariance
matrices in two Scree plots (CS: Figure 1 left, ME: Figure 1 right). In
both Scree plots, we see one large eigenvalue (above 12 for CS and
above 8 for ME). All other eigenvalues are significantly smaller and
do not vary much in magnitude, which suggests at most one or two
relevant latent dimensions represented by the first and second PC.

While the Scree plots focused on a single imputation, we now
study the amount of uncertainty induced by multiple MIPCA im-
putations for each program. Figure 2 visualizes the individual CS
(left subplot) and ME (right subplot) courses in the latent space
defined by the first (𝑥-axis) and second (𝑦-axis) PC. The spread
in the course representations indicates the degree of uncertainty
induced by the imputations. For CS, we observe that representa-
tions tend to vary more for courses with more missing values (e.g.,
DiscMath I). Overall, however, the amount of induced uncertainty
in the course representations is small, indicating that the recovered
PCs are robust towards the exact imputation that is performed.

We observe that most course representations align with the first
PC and exhibit less variation in the second PC. Further, we see
that PC 1 captures 59.26% and PC 2 captures 6.18% of the variance
(axes in Figure 2 left). This behavior aligns with the eigenvalue
relationships we observed in the Scree plot (Figure 1 left). For ME,
the picture is similar. The representations are less spread out than
those of CS, which is plausible, considering the smaller missing
value ratios. However, the scatter of the course representations
along the second PC is larger, and the courses are less close to each
other. We see that PC 1 captures 46.95% of the variance and PC 2
captures 7.83% of the variance (axes in Figure 2 right). The first PC,
therefore, explains less variance than the first PC in CS. This aligns
with the largest eigenvalue we observed in the Scree plot (Figure 1
right), which is smaller than for the CS dataset. Thus, we consider
one and two latent dimensions adequate for model selection and
further consider the possibility of a third dimension.

5.2.2 Local Independence. For CS, a low average residual correla-
tion of −0.06 provides evidence that the course performance data
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Table 1: IRT model comparison. [Left] CS program. [Right] ME program.

CS Models AIC BIC SABIC
Rasch 8439.4 9015.1 8608.7

Birnbaum 8445.1 9587.7 8781.2
2PL-2DIM 8372.8 10082.1 8875.6
2PL-3DIM 8363.9 10635.5 9032.1

ME Models AIC BIC SABIC
Rasch 12123.9 12806.5 12390.3

Birnbaum 12153.2 13508.0 12682.1
2PL-2DIM 12049.6 14076.6 12840.9
2PL-3DIM 12017.1 14711.1 13068.8

meets IRT’s local independence assumption. Out of the 171 course
pairs, only three course pairs exhibited Q3 values outside the rel-
ative 0.2 threshold [13]. These three pairs are OpSys/Databases
(Q3=0.149), Programming/Obj Modeling (Q3=0.216), and Mathe-
matics I/Mathematics II (Q3=0.297). The correlations between these
course pairs might be due to overlapping learning objectives. While
we could address these higher Q3 values by modeling these three
pairs via combined course grades, we decided to model them sepa-
rately to have more fine-grained CO difficulty estimates.

For ME, we observe a similarly low average residual correlation
of −0.05. In contrast to CS, none of the 136 possible course pairs
exceeds the 0.2 threshold for Q3. Again, this provides evidence that
the ME course data meets IRT’s local independence assumption.

5.2.3 Model Selection. For each program, we train Rasch, Birn-
baum, and 2PL-2DIM IRT models and compare their fits using the
information criteria AIC, BIC, and SABIC (CS: Table 1 left, ME: Ta-
ble 1 right). In both programs, the relative ranking of criteria scores
is the same: While the lower AIC score indicates that the 2PL-3DIM
model is preferred, the lower BIC and SABIC scores, which are
more conservative regarding the number of model parameters, in-
dicate that the Rasch model is more suitable. In addition, the Rasch
performs better than the Birnbaummodel in all three criteria. Thus,
we focus on the Rasch model in the following analysis steps.

5.3 Validity and Reliability Assessment
5.3.1 Concurrent Validity and Regression Validation. For concurrent
validity, we relate Rasch student trait estimates to student GPAs
(CS: Figure 3 left, ME: Figure 3 right) and CO difficulty estimates to
CO pass rates (PRs) (CS: Figure 4 left, ME: Figure 4 right). For both
CS and ME, we see a strong positive correlation between student
trait and GPA with a Pearson coefficient of 𝑟 = 0.931 (𝑝 < 0.001) for
CS and 𝑟 = 0.810 (𝑝 < 0.001) for ME. We see a strong negative cor-
relation between CO difficulty and CO PR with Pearson coefficients
of 𝑟 = −0.908 (𝑝 < 0.001) and 𝑟 = −0.842 (𝑝 < 0.001) for CS and
ME, respectively. This is consistent with our intuition that a higher
student trait value relates to a higher GPA and a higher CO diffi-
culty value relates to a lower PR. However, we observe high PRs for
most ME COs, resulting in noisy student trait estimates (trait > 0.5)
and difficulty values below zero for all COs. For CS, in Figure 4 left,
we observe that COs with very high PRs (> 95%) stand out visually
from the rest of the distribution. We examined the individual COs
more closely and marked COs that fall into the period 2020-2022
as COVID-19 pandemic COs in red. An accumulation of pandemic
COs among the COs with PRs > 95% is visible.

Next, we show the results for the regression validation. Table 2
shows that the student trait and CO difficulty measures yield better

model fit indicators than the GPA and PR features when predicting
CO outcomes. Although IRT only uses dichotomous (pass/fail) data
to estimate the student trait, the models of both CS (Table 2 left)
and ME (Table 2 right) perform better for all metrics compared to
the student GPA model, which has access to more detailed point
grade data.

5.3.2 Internal Consistency Reliability and Simulation Study. Fol-
lowing Section 3.4 we assess the internal consistency reliability by
computing split half tests in two ways. First, when using a random
CO response partitioning, we observe Pearson correlations of 0.801
(p<0.001) for CS and 0.675 (p<0.001) for ME, which indicate good
reliability. Second, when using temporal partitioning, we also ob-
serve high correlations of 0.797 (p<0.001) for CS and 0.685 (p<0.001)
for ME, which supports IRT’s constant latent trait assumption.

We further conduct a simulation study to test how much data
is required to ensure a reliable Rasch model parameter fit. Fig-
ure 5 shows average RMSE and Pearson correlation values and
corresponding 90% confidence intervals by comparing CO difficulty
values learned using different amounts of student data to ground
truth difficulty parameters. We observe RMSE values < 0.33 (when
training on ≥ 75 students per CO) and correlation values > 0.7 (in
all cases), indicating that we can achieve a satisfactory model fit
using small-scale data [26].

5.4 Investigating Model Parameters
To reveal variations in course difficulty over time, we visualize
the CO difficulty values estimated by the Rasch models. We show
the difficulty of compulsory courses for different semesters (CS:
Figure 6, ME: Figure 7). Using bootstrapping, we provide confidence
intervals for the individual difficulty parameters by first generating
100 datasets of equal size to our original dataset using sampling
with replacement (student-wise) and then fitting IRT parameters
for each.

5.4.1 Computer Science. For CS, again, we marked COs falling
into the period 2020-2022 in red as COVID-19 pandemic COs. First,
it can be seen that the difficulty of individual COs can vary over
time. Looking at trends in difficulty, we observe that some courses
became less difficult (e.g., CompSci II), some became more difficult
(e.g., Mathematics I), some had low fluctuations (e.g., Privacy), and
others had high fluctuations (e.g., Programming and Statistics).
Focusing on the pandemic COs, we see a systematic downward
trend in CO difficulty. Only CompArch and Privacy maintained
their difficulty level during the pandemic. We employ a t-test on the
overall pass rate (PR) of CS COs before and during the pandemic to
show the statistical significance of this downward trend. The test
indicates the significance of the PR differences (CS: t-statistic: 7.471,
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Figure 3: Scatter plots indicating correlation between student trait estimates based on Rasch model and student GPAs. [Left]
Computer Science (CS) program. [Right] Mechanical Engineering (ME) program. program.

Figure 4: Scatter plots indicating the correlation between course offering (CO) difficulty estimates based on Rasch model and
CO PR. COVID-19 COs (marked in red) accumulate at low difficulty. [Left] CS program. [Right] ME program.

Table 2: Model fit indicators for logistic regression models fitted using Rasch parameters and student GPA + CO PR. On all four
metrics, the Rasch model performs better. [Left] CS program. [Right] ME program.

CS Models ACC AUC NLL RMSE
Rasch 0.840 0.918 0.346 0.332

GPA + PR 0.813 0.893 0.390 0.356

ME Models ACC AUC NLL RMSE
Rasch 0.892 0.913 0.243 0.276

GPA + PR 0.859 0.721 0.366 0.333

p-value: < 0.001, mean PR COVID COs: 0.875, mean PR ’remaining’
COs: 0.558). Lastly, it is noticeable that COs with very low difficulty
(< −3) (discussed in Section 5.3) have wider confidence intervals
indicating uncertainty in the estimation process.

We observe a strong correlation between CO difficulty estimates
and PRs (Figure 3 right). Remarkably, the Rasch model enables us
to determine trait-adjusted PRs that allow us to compare COs fre-
quented by different student cohorts (unadjusted PRs are inherently
confounded by the trait level of their cohort). The IRT-adjusted PR
of a course is the average probability that a student with an average
trait value of (for CS −0.007) will pass the course, calculated across
all its corresponding COs. In detail, we estimate Rasch model pass
probabilities for the respective COs by taking the average student
trait value. We then average these pass probabilities, weighting
them according to the number of students examined in the COs.

Table 3 shows IRT-adjusted and unadjusted PRs for all courses. We
observe that IRT-adjusted PRs often do not vary much from un-
adjusted PRs (this might differ for individual COs). SoftEng and
OpSys show particularly small differences. In contrast, Databases
and Management show particularly large differences. In the first
semester, we observe a general upward correction in the adjustment
PRs and a downward correction from the second semester.

5.4.2 Mechanical Engineering. Inside the ME program we also de-
tect different trends in temporal CO difficulty variations (Figure 7).
Due to the generally higher pass rates, difficulty values fall mostly
into the negative range. This is consistent with the width of the
confidence intervals, which varies more within a level of difficulty
for ME (e.g., BusinessAdmin).

Regarding the COVID-19 pandemic COs, we do not highlight
them in red because there is only one (Figure 4 right), which also
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Table 3: Mean pass rates (PRs) of compulsory CS courses over all semesters and mean PRs adjusted using mean Rasch student
ability and course difficulties parameters. We see upward/downward adjustments during earlier/later semesters.

Sem. Course Name Avg Size PR Adj. PR
I Mathematics I 82 0.641 0.690

Statistics 64 0.673 0.684
CompSci I 79 0.650 0.687
Programming 69 0.622 0.581
Economics 79 0.688 0.763

II Mathematics II 69 0.650 0.655
CompNets 74 0.678 0.634
CompSci II 76 0.581 0.615
Obj Modeling 76 0.621 0.566
Management 59 0.620 0.374

Sem. Course Name Avg Size PR Adj. PR
III DiscMath 69 0.620 0.555

CompArch 76 0.648 0.616
CompSci III 58 0.840 0.784

IV Data Struct. 53 0.750 0.688
SoftEng 67 0.823 0.824
WebEng 74 0.771 0.825
OpSys 70 0.632 0.633

V Privacy 72 0.661 0.643
Databases 83 0.585 0.488
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Figure 5: Simulation study across 1,000 simulated datasets.
We provide average root-mean-square-error (RMSE) and
Pearson correlation values compared to ground truth pa-
rameter sets and indicate 90% confidence intervals.

has a very low difficulty value. However, we noticed that most
pandemic COs were discarded during preprocessing, as their PRs
were 100 percent after the initial steps. On the unfiltered data, the
t-test again revealed a statistically significant difference between
the PRs of pandemic COs and the remaining COs (ME: t-statistic:
7.091, p-value < 0.001, mean PR pandemic COs: 0.965, mean PR
’remaining’ COs: 0.721). Since PRs are strongly correlated with
difficulty (Figure 4 right), this provides evidence that ME pandemic
COs have significantly higher PRs.

6 DISCUSSION
Our analysis illustrates how item response theory (IRT) can serve
as a methodology for curriculum analytics (CA). Importantly, IRT
allows us to address the open problem of gaining insight into varia-
tions in course difficulty that can occur inside educational programs
over time. This enables policymakers to monitor the effects of con-
scious curriculum changes, implemented to alter the properties of
individual courses to support the achievement of their intended
outcomes. Furthermore, the methodology can be used to detect
unintended variations in course difficulty and prompt stakeholders

to investigate underlying causal factors, to ensure fairness in course
experience between cohorts [33].

The findings confirm that the difficulty level of individual courses
can exhibit different trends over time (Figure 6 and 7). While the
difficulty of some courses stays constant, for other courses, diffi-
culty values increase, decrease, or show other types of fluctuations.
Existing CA approaches do not capture such temporal variations
because they assume time-invariant course characteristics. This is
reflected in the concept drift issues of process mining and simula-
tion techniques [10] and the stationary data generation assumption
underlying prediction-based approaches. The data efficiency of IRT
models makes them attractive in settings where datasets are too
small for more complex Markov network- or deep learning-based
approaches. This is particularly important when we want to re-
cover temporal variations in course offerings (CO), as achieving a
temporal resolution necessitates the use of even more data. Thus,
IRT-based approaches are suitable for extending existing CA meth-
ods (e.g., process mining, simulation, and prediction) that do not
account for time-dependent variation.

Beyond these algorithmic improvements, our study of tempo-
ral course difficulty variations yields valuable insights into shock
phenomena of learning like the recent COVID-19 pandemic and is
instrumental in assessing the effects of policy changes. Our analysis
revealed a significant decline in the difficulty level of pandemic
COs in both Computer Science (CS) and Mechanical Engineering
(ME) programs (CS: Figure 6, ME: Figure 7). We discussed our find-
ings with the faculty board and reflected on curriculum changes
implemented in response to the pandemic. There was a system-
atic and conscious shift from traditional classroom lectures to an
online-based teaching paradigm that puts a greater emphasis on
problem-based learning, which might have enabled a larger number
of students to achieve the learning objectives. Further investiga-
tions are needed to understand the exact effects of these curriculum
changes on student learning outcomes and CO difficulty. Improved
learning outcomes seem plausible, as problem-based learning ac-
tivities can promote increased student engagement compared to
conventional classroom lectures [2].

Course pass rates (PR) are a common statistic used to monitor
courses inside educational degree programs (e.g., [11, 15, 35]).While
course PRs can be informative, our analysis highlights that they
need to be interpreted with care (Table 3). Course PRs, as a measure
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Figure 6: Plot visualizing variations in Computer Science (CS) course offering (CO) difficulty (as captured by Rasch IRT model)
over time together with 95% confidence intervals (as determined by bootstrapping). We observe different patterns in difficulty
trends (e.g., growth, oscillation, . . . ). COVID-19 COs (highlighted in red) show systematically lower difficulty.

of course difficulty, can be confounded by the trait level of their
respective student cohort. These factors can become even more
pronounced during policy changes, such as those caused by the
COVID-19 pandemic. Therefore, relying on course PRs can yield
misleading insights into the true quality of the curriculum [7] and
thus may affect the robustness of program (re-)accreditation pro-
cesses that do not adjust for related biases in historic data [20]. The
IRT framework allows us to define IRT-adjusted course PRs that
quantify how well a student of average trait would have performed
in each course. The results suggest that the unadjusted course PRs
are too high in the later semesters, presumably due to dropouts
in earlier semesters. Thus, a semester-by-semester curriculum and
course quality assessment approach involving IRT-adjusted course
PRs can offer a more dynamic and context-sensitive evaluation.
Incorporating these refinements, institutions can create resilient
and data-driven curriculum quality assurance, which is important
in times of policy shifts with significant impacts, e.g., COVID-19

pandemic COs. This can make re-accreditation processes more ro-
bust and sensitive to internal and external changes in the learning
environment. Accreditation bodies can include temporal course
difficulty variations as part of their holistic evaluation criteria.

IRT as a CA methodology has implications for various stakehold-
ers and problems in the higher education domain. Multidimensional
IRT models can calibrate multiple skill traits at student and course
levels, contributing to more holistic student profiles (e.g. [1, 34]).
This allows academic departments to calibrate their major pro-
grams in conjunction with minor courses. Such calibration can help
create a more coherent educational experience, bridging gaps in
skills and knowledge that might exist between different college
majors. Student advisors can employ skill data to guide students
not only based on their academic performance but also their latent
skill attributes. For instance, students contemplating a change in
major or minor can be directed towards programs that are likely
to align more closely with their current skill sets, thus potentially
improving overall retention rates. We are currently working with
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Figure 7: Plot visualizing variations in Mechnical Engineering (ME) course offering (CO) difficulty (as captured by Rasch IRT
model) over time together with 95% confidence intervals (as determined by bootstrapping). We observe different patterns in
difficulty trends (e.g., growth, oscillation, . . . ). CO difficulties values are negative due to higher course pass rates.

student advisors to launch an advisor-facing dashboard to make
these insights actionable [8].

Finally, IRT can inform course articulation decisions, which re-
main challenging for various stakeholders [24]. Different courses
may cover similar learning material but vary significantly in dif-
ficulty levels. IRT models that monitor difficulty represent a data-
driven approach that can inform articulation officers about the com-
parability of courses across individual institutions or departments.
Such modeling approaches can be applied when intersections in
data from different institutions exist, (i.e., students who already
transferred between the two). IRT can model this intersection to
calibrate the difficulty levels of potential course articulation pairs.
This can improve the efficiency of credit transfer processes and
ensure that students receive an equitable education regardless of
their institutional pathway.

7 LIMITATIONS AND FUTUREWORK
IRT is predicated on two assumptions: (i) local independence (LI)
and (ii) time-invariant latent student trait. In our context, the LI
assumption posits that a student’s probability of passing a particular

course offering (CO) is independent of their performance in other
COs, given their latent trait. Considering this assumption, this study
focuses on first-attempts examination data to avoid dependencies
on reattempts. To assess the degree to which our dataset meets
the LI assumption, we further have employed the Q3 criterion [14],
which has shown a low average residual correlation value of −0.06
for CS and−0.05 for ME. Only three of 171 CS course pairs exhibited
a Q3 score outside the 0.2 threshold. While we could have addressed
this by modeling these pairs as combined courses with a single
grade, we decided in favor of more fine-grained difficulty estimates.

Our validity and reliability analysis suggest that a single-
dimensional time-invariant student trait can be adequate to de-
scribe students’ ability to pass COs in the two considered degree
programs. This could be due to the specifics of the German system,
where students choose their major before starting their studies, and
the courses of each considered major are close in terms of technical
content. In addition, all included courses are offered in a single
department overseeing the major. Differences with other countries,
which may offer more diverse majors in several departments, could
lead to multidimensional student and course traits. Future work
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may investigate whether the dimensionality of other degree pro-
grams at different institutions (academic or professional) might
differ and how latent traits between multiple overlapping majors
can be calibrated using IRT, e.g., using shared COs.

One should be careful when interpreting student trait values as
"ability to pass courses in a CS/ME program on the first attempt"
as they might be more constant than specific aspects of student
knowledge. The primary aim of this study was to monitor varia-
tions in course difficulty. Thus, the trait values should be considered
in this context when interpreting the results. This limitation be-
comes evident when examining the ME program, which exhibits
considerably higher pass rates compared to CS. This results in
lower variations in the data, limiting the informational value for
distinguishing between good and outstanding students, as shown
during the validity assessment. One solution that holds promise is
to employ polytomous IRT models, including Rating Scale Models
and Partial Credit Models [21]. These models provide a nuanced
capture of grading criteria and student performance. This makes it
possible to distinguish not just between failing and passing students
but also between good and outstanding students.

We do not explain the causal factors behind the observed dif-
ficulty variations. Empirically significant stakeholder interviews
need to be conducted to narrow down potential causal factors. Three
potential candidates are highlighted based on the discussion held
with the faculty board. Firstly, policy changes, teacher turnover, or
changing the department in which the course is offered can affect
teaching style. Second, over time, the method of evaluation may
shift, for example, from written to oral exams. Furthermore, exter-
nal environment factors such as a pandemic can profoundly impact
the entire educational process, resulting in a range of downstream
effects, as we have witnessed.

8 SUMMARY AND CONCLUSION
We have shown how item response theory (IRT) can serve as foun-
dation for a novel type of curriculum analytics (CA) methodology
that enables us to monitor variations in course difficulty inside edu-
cational degree programs over time, which is essential for ensuring
fairness in the treatment of individual student cohorts and consis-
tency in GPA scores. The findings of the model selection process,
as well as validity and reliability analyses, highlight the robustness
of IRT course difficulty measures and their suitability for deriving
CA insights. Our methodology revealed significant variations in
course difficulty that were previously unknown to stakeholders. In
particular, we detected a systematic downward shift in course diffi-
culty levels during the COVID-19 pandemic. Furthermore, we found
that conventional course pass rate measures need to be interpreted
with care as they are confounded by temporal variations in course
difficulty and cohort performance. We introduced IRT-adjusted pass
rates as an alternative measure that addresses these effects. Overall,
our findings prompt policymakers to monitor course difficulty vari-
ations over time to verify that implemented policy changes achieve
intended effects and to revise policies as necessary.
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