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Recall: neural dynamics

activation dynamics of 
individual “neurons”
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Neural Dynamics

dynamic neural “networks” consisting of one or 
two neurons



Neural dynamic networks

in networks neural activation 
variables, the forward 
connectivity determines “what 
a neuron stands for” 

= space code (or labelled line 
code) 

in rate code, the activation 
level “stands for” something, 
e.g. a sensed intensity

generic neural networks 
combine both codes
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is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 
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FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3, are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.
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FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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Neural fields

forward connectivity 
from the sensory surface 
extracts perceptual 
feature dimension

sensory signal, s(x)

dimension, y

dimension, x

activation
field, u(y)



Neural fields

forward connectivity 
predicts/models tuning 
curves

sensory signal, s(x)

tuning curve

dimension, y

dimension, x

activation
field, u(y)
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interactions effects. In Chapter  2, we described 
how such interactions bring about the activation 
dynamics in DFs that form peaks and create deci-
sions. Here we will show that lateral interactions 
in DFs are consistent with empirical data and can 
account for the observed activation patterns in 
the visual cortex. In this context, we will present 
an extension of the basic DF model, the two-layer 
field. The two-layer field ref lects more closely the 
biological connectivity within neural populations 
and is particularly aimed at capturing the tempo-
ral details of population dynamics. With this tool, 
we can also demonstrate how to fit activation pat-
terns for the preparation of reach movements in the 
motor cortex with a DF model.

The analysis method of DPA plays a key role in 
all of this by bringing empirically measured popu-
lation responses into the same format used in DF 
models. This makes it possible to directly compare 
activation patterns in DF models with neural data. 
In particular, this method allows us to make test-
able predictions from DF models about activation 
patterns in biological neural populations. The DPA 
method thereby provides the neural grounding for 
the dynamic field theory (DFT), establishing a 
direct link between the level of neural activity and 
DF models of behavior and cognition.

L I N K I NG  N E U R A L  AC T I VAT ION 
T O   P E RC E P T ION,  C O G N I T ION, 
A N D  BE H AV IOR
This section concerns the link between neuro-
physiology and things that actually matter to liv-
ing, behaving biological agents like you and me. Is 
this apple green or red? Where do I  have to move 
my hand to grab it? Some aspect of neural activation 
must ref lect the state of affairs on this macroscopic 
level—the level of perceptual decisions, cogni-
tive states, and overt behavior. As presented in the 
introduction, we believe that this role is played by 
patterns of activation in neural populations. To sub-
stantiate this claim, we need to take a brief detour to 
the realm of single neurons, and then work our way 
up to population-based representations.

To determine the link between the activity of 
a single neuron and external conditions, neuro-
physiologists record the spiking of the neuron via 
a microelectrode placed near (or within) the cell 
while varying sensory or motor conditions in a 
systematic fashion. This could mean, for instance, 
varying the color or position of a visual stimulus or, 
in the motor case, varying the direction of a limb 

movement that an animal has to perform. Not all 
neurons are sensitive to all parameters, so the first 
step is to determine which parameters cause the 
neuron to change its activity level. When we find a 
parameter that reliably affects the spike rate of the 
recorded neuron, we can proceed to assessing the 
exact nature of the relationship. In order to do this, 
the parameter value is varied along the underlying 
dimension and the spike rate for each sample value 
is recorded. The results of this procedure can be 
visualized by plotting spike rate against the param-
eter dimension. An idealized function may be fitted 
to the data points, interpolating spike rate between 
sample values. The resulting curve is called the tun-
ing curve of the neuron.

This technique has revealed that, throughout 
the brain, many neurons share a roughly similar 
type of mapping between parameter dimension and 
spike rate, which is characterized by Gaussian-like 
tuning curves (Figure 3.1). That is, they fire most 
vigorously for a specific “preferred” parameter 
value, while spike rate declines with rising distance 
from that value, reaching the neuron’s activity base-
line for very distant values.

A classic example for these characteristics 
can be found in the visual cortex, where many 
cells respond strongly to bars of light of a par-
ticular orientation and reduce their firing as the 
angle of orientation deviates from that preferred 
value (Hubel & Wiesel, 1959, 1968). Visual cells 
show tuning along other feature dimensions as 
well, such as color (Conway & Tsao, 2009), shape 
(Pasupathy & Connor, 2001)  or the direction of 
motion (Britten & Newsome, 1998). Neurons in 
nonvisual areas exhibit similar properties, such 
as cells in auditory cortex that are tuned to pitch 
(Bendor & Wang, 2005), or cells in somatosensory 
cortex that are tuned to the orientation of tactile 
objects (Fitzgerald, 2006).The most common 
scheme, however, is tuning to locations in physical 
space. In sensory areas, most cells are tuned to the 

Feature dimension
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FIGURE  3.1: Schematic illustration of an idealized 
tuning curve.
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Neural fields

forward connectivity thus 
generates a map from 
sensory surface to 
feature dimension

neglect the sampling by 
individual neurons => 
activation fields

sensory signal, s(x)

dimension, y

dimension, x

activation
field, u(y)



Neural fields

analogous notion for 
forward connectivity to 
motor surfaces… 

(actually involves 
behavioral dynamics)

(e.g., through neural oscillators 
and peripheral reflex loops)

motor 
dimension, r

activation
field, u(r)

motor
state, r

dr/dt



fields defined over 
continuous spaces

homologous to sensory surfaces, e.g., visual or 
auditory space (retinal, allocentric, ...)

homologous to motor surfaces, e.g., saccadic end-
points or direction of movement of the end-
effector in outer space

feature spaces, e.g., localized visual orientations, 
color, impedance, ...

abstract spaces, e.g., ordinal space, along which 
serial order is represented 

e.g., space, movement 
parameters, feature 
dimensions, viewing 

parameters, ...

dimension

activation
field

metric contents

information, probability, certainty



Example motion perception: 
space of possible percepts 
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Activation patterns representing 
different percepts

φ

u (
φ)

φ
u (
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φ

u (
φ)

movement direction

movement direction

movement direction



Example: movement planning: space 
of possible actions

movement
direction

movement
amplitude

activation

movem
ent

direct
ion

movement
amplitude

0



Activation fields… peaks as units 
of representation

e.g., space, movement 
parameters, feature 
dimensions, viewing 

parameters, ...

dimension

activation
field

metric contents

information, probability, certainty
dimension

activation
field

specified value

dimension

activation
field

no value specified



Time courses of activation fields

dim
ens
ion

time

activation

field
preshaped

specific input
arrives



Activation patterns representing 
states of motor decision making

bi-modal distribution of activation over movement 
direction in pre-motor cortex before a selection 
decision is made 

mono-modal distribution once the decision is made

Neuron
806

Figure 6. Population Activity in PMd and M1

Population activity in one-target (A) and two-target (B) tasks represented as color contour plots for cells in rostral PMd, caudal PMd, and M1.
In each row, panels are aligned on spatial cue onset (S), color-cue onset (C), and GO signal onset (G). In each panel, each horizontal row
represents the average activity of cells whose PD lies at a given angle from the direction of the selected target (filled circle on left). Color
indicates change in firing rate relative to the background rate of each cell sample during the 500 ms prior to spatial cue onset (scale on left).
(C) Contour plots of PMd activity recorded in the 90° variant of the two-target task. (Left) SC activity in the one-target task. (Middle) SC
activity when a second spatial cue appeared 90° CCW from a cue in each cell’s PD. (Right) SC activity when a second spatial cue appeared
90° CW from the PD.

period (Figure 7B), possibly in anticipation of the arrival the target by the prior color cue, and not the other spa-
tial cue during most of the SC epoch. Only 3 (7%) PRof the salient SC cues (Crammond and Kalaska, 1996;

Vaadia et al., 1988). cells were bimodally tuned in both two-target and MS
tasks. The spatial cues did not evoke a directional re-When the two spatial cues appeared in the SC epoch

of the MS task, the activity of 70/87 cells (80%) was sponse in SR and BU cells in the two-target task, but
evoked a unimodal response in 28/33 (85%) of them inunimodally tuned when averaged over the SC epoch, 5

(6%) were bimodally tuned, and 12 (14%) were un- the MS task. The unimodal response in the SC epoch
of the MS task was stronger than the bimodal SC re-tuned. Strikingly, 40/45 PR cells (89%), which were bi-

modally tuned during the SC epoch of the two-target task sponse in the two-target task, suggesting that cell ac-
tivity reflected the quality of the directional information(Figure 3B), were unimodally tuned in response to the

same cues in the MS task (Figure 7A). They signaled provided by the cues, not their physical properties.
Nevertheless, a minority of cells showed a main effectthe location of the spatial cue that was designated as

[Cisek, Kalaska: Neuron 2005]



Neural dynamics of fields
Peaks as stable states =attractors

from intra-field interaction: local excitation/global 
inhibition

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

σ(u)

u

σ(u)

u

x�x�

�(x�x�)



mathematical formalization
Amari equation

⌧ u̇(x, t) = �u(x, t) + h + S(x, t) +
Z

w(x� x0)�(u(x0, t)) dx0

where

• time scale is ⌧

• resting level is h < 0

• input is S(x, t)

• interaction kernel is

w(x� x0) = wi + we exp

"

�(x� x0)2

2�2
i

#

• sigmoidal nonlinearity is

�(u) =
1

1 + exp[��(u� u0)]

1



Interaction: convolution
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! ∗ ! ! !! = ! !! − !! ! ! !!
!!!!!

!!!!!
!!!!!!!!!!(B2.2) 

where ! = (! − 1)/2 is the half-width of the kernel. The sum extends to indices outside the 

original range of the field (e.g., for m=0 at ! = −!). But that doesn’t cause problems because we 

extended the range of the field as shown in Figure 2.18.  

Note again that to determine the interaction effects for the whole field, this computation 

has to be repeated for each point !!. In COSIVINA all these problems have been solved for you, 

so you don’t need to worry about figuring out the indices in Equations like B2.2 ever again!  

[End Box 2.1] 

 
Figure 2.18 Top: The supra-threshold activation, !(!(!!)), of a field is shown over a finite range (from 0 to 180 deg). 
Second from top: The field is expanded to twice that range by attaching the left half of the field on the right and the right 
half on the left, imposing periodic boundary conditions. Third from top: The kernel has the same size as the original field 
and is plotted here centered on one particular field location, ! = !" deg. Bottom: The matching portions of supra-
threshold field (red line) and kernel (blue line) are plotted on top of each other. Multiplying the values of these two 
functions at every location returns the black line. The integral over the finite range of the function shown in black is the 
value of the convolution at the location ! = !". 
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=> simulation



Attractors and their instabilities

input driven solution (sub-
threshold) 

self-stabilized solution 
(peak, supra-threshold)

selection / selection 
instability 

working memory / 
memory instability 

boost-driven detection 
instability

detection 
instability

reverse
detection 
instability

Noise is critical
(only) near instabilities



Relationship to the dynamics of 
discrete activation variables

self-
excitation

mutual
inhibition

s(x)
u(x)

u1 u2

x

s1
s2

self-
excitation



Detection 
instability

h

dimension
0

h

dimension
0

h

dimension
0

h

dimension
0

input

self-excited peak

sub-threshold hill

sub-threshold hill

self-excited peak
sub-threshold hill

self-excited peak



The detection instability stabilizes 
decisions

threshold piercing detection instability
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The detection instability stabilizes 
detection decisions

self-stabilized peaks are macroscopic neuronal 
states, capable of impacting on down-stream 
neuronal systems

(unlike the microscopic neuronal activation that 
just exceeds a threshold)



The detection instability leads to 
the emergence of events

the detection instability 
explains how a time-
continuous neuronal dynamics 
may create macroscopic 
events at discrete moments in 
time

time, t

u(t)

detection 
instability

reverse
detection 
instability



behavioral signatures of  
detection decisions

detection in psychophysical paradigms is rife with 
hysteresis

but: minimize response bias



Detection instability

in the detection 
of Generalized 
Apparent Motion

Generalized Apparent Motion

(Johansson, 1950)
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Detection instability

varying 
BRLC



Detection instability

hysteresis of motion detection as BRLC is varied

(while response bias is minimized)

184 H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173–195

Figure 5. Hysteresis effect observed by gradually increasing or gradually decreasing the background
relative luminance contrast (BRLC) for a participant in Hock et al.’s (1997) third experiment. The
proportion of trials with switches from the perception of motion to the perception of nonmotion, and
vice versa, are graphed as a function of the BRLC value at which each ascending or descending
sequence of BRLC values ends. (Note the inversion of the axis on the right.)

which there were switches during trials with a particular end-point BRLC value
was different, depending on whether that aspect ratio was preceded by an ascend-
ing (vertical axis on the left side of the graph) or a descending sequence of BRLC
values (the inverted vertical axis on the right side of the graph). For example, when
the end-point BRLC value was 0.5, motion continued to be perceived without a
switch to non-motion for 90% of the descending trials, and non-motion continued
to be perceived without a switch to motion for 58% of the ascending trials. Percep-
tion therefore was bistable for this BRLC value and other BRLC values near it; both
motion and non-motion could be perceived for the same stimulus, the proportion of
each depending on the direction of parameter change. It was thus confirmed that
the hysteresis effect obtained for single-element apparent motion was indicative of
perceptual hysteresis, and was not an artifact of ‘inferences from trial duration’.

7. Near-Threshold Neural Dynamics

The perceptual hysteresis effect described above indicates that there are two stable
activation states possible for the motion detectors stimulated by generalized ap-
parent motion stimuli, one suprathreshold (motion is perceived) and the other sub-
threshold (motion is not perceived). Because of this stabilization of near-threshold
activation, motion and non-motion percepts both can occur for the same stimu-
lus (bistability), and both can resist random fluctuations and stimulus changes that
would result in frequent switches between them.

7.1. Why Stabilization Is Necessary

Whether an individual detector is activated by a stimulus or not, a random per-
turbation will with equal probability increase or decrease its activation. Assume it



Contrast detection
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Figure 1. Experiment 1. a) and b). Illustrative stimuli in the Same- and inverted-Polarity conditions. 
c) and d) Results: Luminance values at which the probe is no longer visible. e) Difference in 
loss-of-visibility luminance value between Object and Baseline conditions indicates the extent to 
which he visibility of the probe is suppressed by the nearby object. Vertical lines for each marker 
represent +/- one standard error of the mean.

BaselineBaseline

[Hock, Schöner, under revision]



Hysteresis in contrast detection

[Hock, Schöner, under revision]

object a 4 minutes distance 
suppresses probe detection at 
lowest luminance

also helps to localize attention!

between presentations, the object/
probe pair jumps around on the 
screen unpredictably by < 1 deg

ascending trials: increase luminance in steps, ending unpredictably… 
report contrast or not 

descending trials: decrease luminance in steps, ending unpredictably

report change over initial percept (modified method of limits)
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Conclusion

even the simplest of decisions=detection in 
the simplest settings (contrast) is state 
dependent… 

consistent with the notion of a detection 
instability at the basis of perception 


