Dynamic Field Theory: Detection decisions

Gregor Schöner

 $\tau \dot{u}(t) = -u(t) + h + \text{ inputs}(t)$

Neural Dynamics

dynamic neural "networks" consisting of one or two neurons

Neural dynamic networks

in networks neural activation variables, the forward connectivity determines "what a neuron stands for"

- space code (or labelled line code)
- in rate code, the activation level "stands for" something, e.g. a sensed intensity
- generic neural networks combine both codes

forward connectivity from the sensory surface extracts perceptual feature dimension

- forward connectivity thus generates a map from sensory surface to feature dimension
- neglect the sampling by individual neurons => activation fields

- gous notion for ard connectivity to r surfaces...
- ally involves vioral dynamics)
- , through neural oscillators peripheral reflex loops)

fields defined over continuous spaces

information, probability, certainty

e.g., space, movement

parameters, feature dimensions, viewing

parameters, ...

homologous to sensory surfaces, e.g., visual or auditory space (retinal, allocentric, ...)

- homologous to motor surfaces, e.g., saccadic endpoints or direction of movement of the endeffector in outer space
- feature spaces, e.g., localized visual orientations, color, impedance, ...
- abstract spaces, e.g., ordinal space, along which serial order is represented

Example motion perception: space of possible percepts

Activation patterns representing different percepts

Example: movement planning: space of possible actions

Activation fields... peaks as units of representation

Time courses of activation fields

Activation patterns representing states of motor decision making

bi-modal distribution of activation over movement direction in pre-motor cortex before a selection decision is made

mono-modal distribution once the decision is made

[Cisek, Kalaska: Neuron 2005]

Neural dynamics of fields

Peaks as stable states = attractors

from intra-field interaction: local excitation/global inhibition

mathematical formalization

Amari equation

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + \int w(x-x')\sigma(u(x',t)) \, dx'$$

where

- time scale is τ
- resting level is h < 0
- input is S(x,t)
- interaction kernel is

$$w(x - x') = w_i + w_e \exp\left[-\frac{(x - x')^2}{2\sigma_i^2}\right]$$

• sigmoidal nonlinearity is

$$\sigma(u) = \frac{1}{1 + \exp[-\beta(u - u_0)]}$$

Interaction: convolution

OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

dynamicfieldtheory.org

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

=> simulation

Attractors and their instabilities

- input driven solution (subthreshold)
- self-stabilized solution (peak, supra-threshold)
- selection / selection instability
- working memory / memory instability
- boost-driven detection instability

reverse detection instability

Noise is critical (only) near instabilities

Relationship to the dynamics of discrete activation variables

The detection instability stabilizes decisions

threshold piercing

detection instability

The detection instability stabilizes detection decisions

- self-stabilized peaks are macroscopic neuronal states, capable of impacting on down-stream neuronal systems
- (unlike the microscopic neuronal activation that just exceeds a threshold)

The detection instability leads to the emergence of events

the detection instability explains how a timecontinuous neuronal dynamics may create macroscopic events at discrete moments in time

behavioral signatures of detection decisions

detection in psychophysical paradigms is rife with hysteresis

but: minimize response bias

hysteresis of motion detection as BRLC is varied

(while response bias is minimized)

H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173–195

Contrast detection

[Hock, Schöner, under revision]

Hysteresis in contrast detection

ascending trials: increase luminance in steps, ending unpredictably... report contrast or not

descending trials: decrease luminance in steps, ending unpredictably

report change over initial percept (modified method of limits)

object a 4 minutes distance suppresses probe detection at lowest luminance

also helps to localize attention!

between presentations, the object/ probe pair jumps around on the screen unpredictably by < 1 deg</p>

[Hock, Schöner, under revision]

Conclusion

- even the simplest of decisions=detection in the simplest settings (contrast) is state dependent...
- consistent with the notion of a detection instability at the basis of perception