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Sensors

M transform a physical
Intensity into a
neural activation

M intensity: light, sound,

displacement o
intensity

M neural activation: \ 4 A activation

membrane potential,
spike rate
* intensity

activation )




Motors

M transform activation
into physical action

M ... muscles activation

* A movement

activation

\ 4 >

movement




What is “‘activation’’?

M activation is an abstraction of
the state of neurons, defined
relative to sigmoidal threshold
function

B low levels of activation are not
transmitted (to other neural systems, to
motor systems)

B high levels of activation are transmitted

M threshold at zero (by definition)




Origin of the activation concept in
neurophysics

M activation, u, as a real number that reflects the
(population) membrane potential
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Grounding in neurophysics

B u(t) evolves as a dynamical system, characterized by
a time scale, 7 & 10ms

tu(t) = — u(t) + h + input(z)

[from:Tresilian, 2012]
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Grounding in neurophysics

M spiking when membrane potential exceeds
threshold....

M spike train is transmitted to downstream neurons
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Grounding in neurophysics

M activation captures different firing rates in a small
population...
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Grounding in neurophysics

M in neural dynamics, the spiking mechanism and
associated firing rate is replaced by a statistical
(population) description: threshold function

| Ao(u)




Neural dynamics

B dynamical system: the present predicts the future

M given a initial level of activation, u(0), the activation,
u(t), at times t>0 is uniquely determined

A du/dt = f(u)

vector-field
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Neural dynamics

B fixed point = constant solution (stationary state)

M stable fixed point = attractor: nearby solutions
converge to the fixed point

tu(t) =—u(@®)+h

A du/dt = f(u)

vector-field
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Neural dynamics

B attractors structure the
ensemble of solutions (for
all initial conditions) = flow
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Neuronal dynamics

M inputs are contributions to the
rate of change

A du/dt

&ut’s

M positive: excitatory
M negative: inhibitory

M => shifts the attractor

Tu(t) = — u(t) + h + s(r)

N .
restizg \ hIs
level, h
A input, s

u(t)

ﬁ(t»
/ time, t

>

Z resting level, h



Neuronal dynamics

B what is transmitted is o(u(t))

M (labelled g(t) in the book and in
some figures)

B => neural dynamics as a low-

pass filter of time varying input
A input, s

B = input-driven solution u(t)

g(u(t))

[/ time, t
>

tu(t) = —u(t) + h + s(v) o resting level,h




=> simulation



Neuronal dynamics with self-excitation

v

M activation variable with self-
excitation (representing a small
population with excitatory coupling)

Tu(t) = —u(t) + h+ s(t) + ¢ o(u(r))



Neuronal dynamics A duldt

with self-excitation
\(‘ |
T u

resting level \

®m=> nponlinear dynamics! 4 du/dt

u
>
resting
level, h

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation

A du/dt
A input strength

®varying input

resting
level, h

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics A dulde
with self-excitation

Mat intermediate A
stimulus strength:
bistable
B“on” vs “off”’ state time, t
_ u(t)<0

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation durde

stimulus
®increasing input strength Stre”gthT
=> detection instability

®m=> the detection A

put strength
decision is stabilized N

resting
level, h

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))

N

A fixed point

unstable
stimulus
N strength
stable

A du/dt




Neuronal dynamics
with self-excitation poudde -y Tedpot

stable

stimulus
strength
unstable

stimulus
strength

Bmdecreasing input

strength => reverse A du/dt
detection instability A input screngeh
\\/

resting
level, h

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))




Neuronal dynamics
with self-excitation

Bthe detection and its
reverse == create
discrete events from
time-continuous changes

u(t)
A

reverse

detection P

instability -

l 4"'4&‘4‘
:/ time, t
A

detection
instability

tu(t) = — u(t) + h + s(t) + ¢ o(u(r))



=> simulation



Neuronal dynamics with competition

M two activation variables ¢ ¢

with reciprocal inhibitory
coupling

B representing two small
populations that are
inhibitorily coupled

T (1) = — u(t) + h + 51(1) — cro(uy(2))
TUy(1) = — uy(1) + h + 5,(1) — ¢y10(uy(2))



Neuronal dynamics with competition

B Coupling: the rate of change ¢ ¢
of one activation variable
depends on the level of
activation of the other
activation variable

l coupling
T (1) = — u(t) + h + 51(t) — cro(uy(2))
TUy(1) = — uy(1) + h + 5,(1) — ¢y10(u(2))



Neuronal dynamics with competition

h'IS|
B to visualize, assume that T

. inhibition
U, has been activated by h+s,,.c.2\y\fmmtu2

input to a positive level

B => it inhibits i,

T (1) = — u(t) + h + 51(t) — cr0(uy(2))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))

uj

U2



Neuronal dynamics with competition

.Wh)’ WOUId l/tz be POSitive A du/dt
before u?

® more input to u, (better

. u
“match”) => faster increase . T \{nhibmon |
S1-C|2 from uy
B input advantage <=> time A duylde
advantage <=> competitive A
advantage
1 "2
h+s,

T (1) = — u(t) + h + 51(t) — cr0(uy(2))
TUy(1) = — uy(t) + h + 5,(t) — ¢r16(uy(2))



resting state

Neuronal dynamics with competition

vector-field in the
absence of input

u?z

N

A du/dt = f(u)
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Neuronal dynamics with competition

vector-field (without

interaction) when both
neurons receive input
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Neuronal dynamics with competition

M only activated neurons
participate in interaction!




Neuronal dynamics with competition

M vector-field of mutual inhibition

site | inhibits site 2 site 2 inhibits site | interaction combined
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Neuronal dynamics with competition

vector-field with strong
mutual inhibition:
bistable

input interaction total
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Neuronal dynamics with competition

before input is presented after input is presented
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u?

Neuronal dynamics with competition

stronger input to u; => attractor with positive u; stronger,
attractor with positive u, weaker => closer to instability

input
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Neuronal dynamics with competition

Edecision made at detection instability!

before input is presented after input is presented
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=> simulation



The neural dynamics of fields

M ... the same underlying math

B coupling among continuously many activation
variables

B |ocal excitatory coupling (“self-excitation”)

M global inhibitory coupling (“mutual inhibition™)

tu(x,t) = —ulx,t)+ h+ s(x, 1) + de’w(x —x") o(u(x', 1))

A

w(x-x')/\

/ o




field vs. activation variables
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