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Dates

Mon 25.09. 15-17:30

Tue 26.09. 09:00-11:30, 15-17:30
Wed 27.09. 15-17:30

Thu 28.09. 15-17:30

Fri 29.09. 15-17:30

Mon 02.10. 09:00-11:30, 15-17:30
Wed 04.10. 15-17:30
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Course Structure

Unit | Title Topics

1 Intro to Programming in Python | Variables, if Statements, Loops, Func-
tions, Lists

- | Full-Time Programming Session | Deepen Programming Skills

2 Functions in Math Function Types and Properties, Plotting
Functions

3 Linear Algebra Vectors, Trigonometry, Matrices

4 | Calculus Derivative Definition, Calculating
Derivatives
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Course Structure

Unit | Title Topics
5 Integration Geometrical Definition, Calculating In-
tegrals
6 Differential Equations Properties of Differential Equations
- 04.10.23: Test
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Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics
_and_computer_science_for_modeling winter_term_2023
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Overview

1. Motivation

2. Mathematics

» Approximating the Area under a Curve
» Calculating the Area under a curve
» Improper Integrals

3. Exercise
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From Velocity to Position

You drove 30 km/h for 6 hours. How far did you drive?
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From Velocity to Position

Let’s say you slowed down for the last 3 hours. How far did you get?

Km/h

40+

30

20+

10—+

NS
w

hours

October 2, 2023 6/21



From Velocity to Position

Let’s say you slowed down for the last 3 hours. How far did you get?
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From Velocity to Position
What if you mixed it up to not get bored?
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From Velocity to Position
What if you mixed it up to not get bored?
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Incegration [

From Velocity to Position

But how about something realistic?
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Integration Mathematics - Approximating the Area under a Curve

Approximation

» Notall areas can be
calculated with [0:6] f(x) mm—
rectangles
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Integration Mathematics - Approximating the Area under a Curve
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Integration Mathematics - Approximating the Area under a Curve

Midpoint Riemann Sum

Calculating Midpoints

The Midpoint Riemann Sum is a way of approximating an integral with finite
sums.

The are under the curve in a given interval [x;, x; 1] can be approximated as
the area of a rectangle with width Ax = x;,; — x; and height f (%)

Xi + Xit1
2

f( )Ax

The sum over all intervals yields an estimation of the area under the curve

n
e Zf(%)mc
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Integration Mathematics - Approximating the Area under a Curve

Midpoint Sums
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Integration Mathematics - Approximating the Area under a Curve

Midpoint Sums
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Integration Mathematics Approximating the Area under a Cu

Midpoint Sums
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Integration Mathematics - Calculating the Area under a curve

From Sums to Integrals
: : Xt
Midpoint Sum: f(*) Ax

The larger the number n of intervals, the smaller Ax and the better our
approximation.
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Integration
From Sums to Integrals
Midpoint Sum: f ( % )Ax
The larger the number n of intervals, the smaller Ax and the better our

approximation.
What if » becomes infinitely large and Ax becomes infinitely small?
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Integration
From Sums to Integrals
Midpoint Sum: f ( % )Ax
The larger the number n of intervals, the smaller Ax and the better our

approximation.
What if » becomes infinitely large and Ax becomes infinitely small?

Definite Integral

The definite integral of a function f (x) between the lower boundary a and
the upper boundary b
b
/ fx)dx

is defined as the size of the area between f and the x-axis inside the
boundaries. Areas above the x-axis are considered positively and areas below
negatively.

v
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Integration Mathematics - Calculating the Area under a curve

Definite Integral

flx) =cos(x)  [2" cos(x)dx

o]
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Integration Mathematics - Calculating the Area under a curve

Indefinite Integral
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Integration Mathematics - Calculating the Area under a curve

Indefinite Integral

f(x) = cos(x) 5 cos(x)dx’
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Integration Mathematics - Calculating the Area under a curve

Indefinite Integral

f(x) = cos(x) 5 cos(x)dx’
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Integration Mathematics - Calculating the Area under a curve

Indefinite Integral

f(x) = cos(x) J5 cos(x’)dx'= sin(x)
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Integration Mathematics - Calculating the Area under a curve

Indefinite Integral

f(x) = cos(x) [y cos(x)dx'= [ cos(x)dx’'
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Integration Mathematics - Calculating the Area under a curve

The Antiderivative

If f is a function with domain [a, b] — R and there is a function F, which is
differentiable in the interval [a, b] with the property that

F'(x) = f(x),

then F is considered an antiderivative of f
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Integration Mathematics - Calculating the Area under a curve

The Antiderivative

If f is a function with domain [a, b] — R and there is a function F, which is
differentiable in the interval [a, b] with the property that

then F is considered an antiderivative of f

o
Properties of an antiderivative

> Differentiation removes constants, therefore F(x) + ¢ for any constant ¢
is also an antiderivative

» Unlike with differentiation there are no fixed rules to compute an
antiderivative from a given f

v
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Integration Mathematics - Calculating the Area under a curve

A function and its antiderivative
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Integration Mathematics - Calculating the Area under a curve

The Fundamental Theorem of Calculus

First Fundamental Theorem of Calculus

One of the antiderivatives of a function can be obtained as the indefinite
integral:

[ s = £

» Intuition: The rate of change of the area under f (x) is f (x)
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Integration Mathematics - Calculating the Area under a curve

The Fundamental Theorem of Calculus

Second Fundamental Theorem of Calculus

If f is integrable and continuous in [a, b], then the following holds for each
antiderivative F of f

b
/a f(x)dx = [F(x)]" = F(b) — F(a)

Example:

» Area under f(x) = x between values 1 and 2
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Integration Mathematics - Calculating the Area under a curve

Definite Integral Example
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Integration Mathematics - Calculating the Area under a curve

The Integral is a Linear Operator

Integration Rules

> Summation ) ) )
|0 +a0 = [ s+ [ g

v
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Integration Mathematics - Calculating the Area under a curve

The Integral is a Linear Operator

Integration Rules

> Summation

/f—w /f / )

» Scalar Multiplication
b b
| dw=c [ e

v
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Integration Mathematics - Calculating the Area under a curve

The Integral is a Linear Operator

Integration Rules

> Summation

/f +gx /f / )

» Scalar Multiplication
b b
| dw=c [ e

» Boundary Transformations
b c c b a
[+ [10= 10 [fe=-[ e
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Integration Mathematics - Improper Integrals

Improper Integrals

Infinite Intervals

It is possible to calculate the area in infinitely large intervals. Intervals with
an infinite boundary are called Improper Integrals

00 b
/ fldx = lim [ fex)ds

Example:

» Convergent improper integral

9] b
/ x2dx = lim [ x"*dx= lim [—x_l}f = lim(-b'+1) =1
1

b—oo J; b—oc0 b—o0
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Exercise

Answer the following tasks using a piece of paper and a pocket calculator.

1. Given the Antiderivative F(x) = 12x* + 5x of the function f (x), calculate
the area between f (x) and the x-axis in the interval of [—3, 5].

2. Calculate [ cos(x)dx. Before applying the formula, look at a plot of
cos(x). What kind of result would you expect?
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Exercise Solutions
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Exercise Solutions

1. The antiderivative is already given, therefore you only need to plug-in
the beginning and the end of the interval.

[F(x)]; =F(b) — F(a) = F(5) — F(3)
=12 5> +5%5 — (12 (—3)* 4+ 5% (—3)) =325 — 93 = 232
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Exercise Solutions

1. The antiderivative is already given, therefore you only need to plug-in
the beginning and the end of the interval.

[F(x)]s =F(b) — F(a) = F(5) — F(3)
=125 +5%5— (12% (—3)* + 5% (—3)) =325 - 93 =232

2. Looking at the plot of cos(x) you can see that exactly the same area is
enclosed above the x-axis as below the x-axis, therefore the total area

has to be zero.
To verify this analytically, you need to figure out the antiderivative of

cos(x) first. From the lecture you know that F(x) = sin(x).

[F(x)]2 = F(b) — F(a) = F(r) — F(0) = sin(r) — sin(0) =0 — 0 = 0
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