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Video: The humanoid robot Rollin' Justin, Institute of Robotics and Mechatronics, German Aerospace Center



Video: Individual cycle sport stacking world record 4.753s, Malaysia 2019 (Chan Keng lan)



Powerful torque motor Sluggish muscles
Conduction delay <1ms Conduction delay > 20ms

Accurate sensors Noisy sensory receptors



Overview of human motor system

Neural control

e Central nervous system (CNS)
- Brain
- Spinal cord

e Muscles

Scott. Nature Reviews Neuroscience 2004
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e How muscles work?
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- muscles, motoneurons, reflexes, spinal cord

e How movements look like?
- kinematic patterns

* How the brain works in movement generation?
- neuroanatomy, function
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“To move things is all that mankind can do, for such the
sole executant is muscle, whether whispering a syllable or

felling a forest.”

Sir Charles Sherrington




Muscle structure and motor neuron
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https://www.sciencenewsforstudents.org/article/explainer-what-is-a-neuron

Bear et al. Figure 13-1

Each muscle fiber is innervated by a single axon



Muscle structure and motor neuron
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Bear et al. Figure 13-7

Each motor neuron innervates multiple muscle fibers
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Each muscle is innervated by multiple motor neurons



Muscle fiber structure
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The molecular basis of muscle contraction
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Muscle force generation

Record motor
neuron activity

/ Measure muscle contraction

Single action potential => twitch

Summation of twitches => sustained contraction

Bear et al. Figure 13-8
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The human spinal cord
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Bear et al. Figure 12-11



Motor and sensory pathways
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The ventral horn of the spinal cord contains motor
neurons that innervate skeletal muscle fibers.
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Bear et al. Figure 12-9

Sensory signals enter the spinal cord through the dorsal roots.
Cell bodies of sensory neurons lie in the dorsal root ganglia



Muscle spindle structure
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A muscle spindle and its sensory innervation.

Bear et al.



Muscle spindle structure
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Gamma motor neuron function
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Kandel et al. Figure 35-9

* Gamma motor neuron adJusts the sensitivity of la sensory fibers



Gamma motor neuron function

A Alpha-gamma co-activation reinforces alpha motor activity
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Three sources of inputs to Alpha motor neuron

Input from spinal Sensory input
interneurons from muscle
spindles

e Input from
5 upper motor
neurons in
the brain

Alpha motor
neuron

Bear et al. Figure 13-9



Stretch reflex and reciprocal inhibition
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Muscle stretched — la axon activity increases — alpha MN activity of the same muscle increases — the same muscle shortened
(length increases) —alpha MN activity of the opposite muscle decreases — the opposite muscle relaxed



Flexor withdrawal reflex
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Bear et al. Figure 13-26



Crossed-extensor reflex
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Bear et al. Figure 13-27



The Ib axon of the Golgi tendon
organ excites an inhibitory
interneuron, which inhibits the alpha
motor neurons of the same muscle
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Bear et al. Figure 13-24



Reciprocal inhibition and Renshaw cell
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Modelling of spinal reflexes
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The mass-spring model of muscles

* A physical mass-spring-damping system:
- Elastic component k: proportional to position
- Viscous component c: resistance depends on velocity A

Force
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* Biological muscle-joint system has a similar “spring-like Compresion || Figngaion
behavior” ~

- But note: muscles can only pull, not push |
- A joint with agonist and antagonist muscles work bidirectional }M‘VWW«-:

- Both passive mechanics and reflexes contribute AV
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https://en.wikipedia.org/




Active tension (g)

Experimental measurement of muscle elastic property

The resting length (4) of the “spring” can be modified by brain descending command

Cat leg muscles
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Reviewed in Feldman and Zhang, J Neurophysiol. 2020



The mass-spring model

Force A: Equilibrium Point

>
Length

A is the muscle length when external force = muscle force =0 (analogous to spring’s resting length)

Stabilization of EP is contributed by muscle passive mechanics and reflexes .
Latash. J Hum Kinet 2009



Movement emerges due to the interaction between muscular
system and external load

F .
oree B: Active Movement
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The force-length characteristics do not change. Change of A results in change of EP
Latash. J Hum Kinet 2009



Movement emerges due to the interaction between
muscular system and external load

Force C: Passive Movement
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Change of external force (L) results in change of EP

Latash. J Hum Kinet 2009



Movement emerges due to the interaction between
muscular system and external load

A: Reciprocal command (r)

Torque
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The joint torque-angle characteristic (thick lines) is the algebraic sum of the corresponding muscle characteristics.
Shifts of both Af and Ae in the same direction result in a shift of the joint characteristic parallel to the angle axis.

Latash. J Hum Kinet 2009



Movement emerges due to the interaction between
muscular system and external load

B: Coactivation command (c)
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Shifts of Af and Ae in opposite directions lead to a change in the slope of the joint characteristic

Latash. J Hum Kinet 2009



The mass-spring model —a modelling study

Muscle model (one A / central command per muscle):
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Biomechanical models OpenSim model

CE

BZa

L
W !
PE )
-« P >

t’( E }.\'.l".'

<

l.\ 11

CE: Contractile element Kistemarker et al. 2007

SE: Series elastic element
PE: Parallel elastic element
lyire: Muscle-tendon complex length

Chan&Moran 2006



Current research topic:

Experimental setup:

Using theorectial models of arm reaching (incl. reflex loops) to study the temporal profile of neural descending control signals

The mathematical model:

A(t) = [I(t — d) = N(0) + (D) [(t — d)]*

M = plexp(ed) — 1]

4
£ M+ 2TM+M=M

Mechanical model F=Mf1+f2atan (f3 + 4 ] + k(I - r)
(Based on the model of Gribble et al. 1998)
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Reflex model
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Motion and electromyographic recordings



Summary: How muscles work?

* Muscles are the actuators for movement
* Muscle spindle senses muscle length
 Spinal reflex loops modulate motor output

* Muscles act as a non-linear mass-spring model
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