
Lab class: Autonomous robotics
Background material

Stephan Sehring Lukas Bildheim Raul Grieben
Daniel Sabinasz Minseok Kang Prof. Gregor Schöner

Winter term 2022/23

Contents

1 E-pucks 1
1.1 Drive mechanism . 1
1.2 Infrared sensors . 2

1.2.1 Measuring distance . 2

2 Kinematics and odometry 3
2.1 Coordinate frames . 4
2.2 Inverse kinematics . 4
2.3 Forward kinematics . 6

3 Dynamical systems 9
3.1 Differential equations . 9
3.2 Numerical approximation . 10
3.3 Attractors and repellors . 10
3.4 Controlling heading direction 13
3.5 Relaxation time . 14
3.6 Implementation . 14
3.7 Nonlinear dynamics . 15

4 Force-lets 15
4.1 Combining multiple influences 16
4.2 Obstacle contributions . 16
4.3 Bifurcations and decisions . 18
4.4 Implementation . 19

i

“We will talk only about machines with very simple
internal structures, too simple in fact to be interesting from
the point of view of mechanical or electrical engineering.
Interest arises, rather, when we look at these machines or
“vehicles” as if they were animals, in a natural
environment. We will be tempted, then, to use
psychological language in describing their behavior. And
yet we know very well that there is nothing in these
vehicles that we have not put there ourselves.”

— Valentino Braitenberg

iii

1 E-PUCKS

Figure 1: The e-puck robot.

1 The e-puck robot

The e-puck, shown in Figure 1, is a small mobile robot that was developed
primarily for research. Each e-puck has two wheels, one on the left side of its
body and one on the right. Each wheel can be controlled individually via a
servo motor. The wheels have a diameter of 40mm and the distance between
the two wheels is 53mm. The robot is also equipped with eight infrared
sensors, a VGA camera (resolution of 640x480 pixels), three microphones, a
loudspeaker, and several LEDs. The power for the e-puck is provided by a
rechargeable battery, which can be accessed and replaced at its bottom. The
robot can be controlled wirelessly via a bluetooth connection. The e-puck has
a small blue reset button. Pressing this button instantly stops the robot’s
wheels. Figure 1 shows a picture of an e-puck.

1.1 Drive mechanism

The e-puck is moved by its two wheels, each of which is driven by an indi-
vidual servo motor. The velocity is specified as angular velocity in radians
per second.

Each motor is equipped with an encoder that sums up the total rotation
the motor was commanded to perform in radians. Reading out these encoder
values thus enables us to compute the distance covered by each wheel.

1

1.2 Infrared sensors 1 E-PUCKS

U
16

D
SP

IC
30

F6
01

4A
PT

1

(P
0.

5)
(L

14
)C
31U

C
331U

C
581U

C
152U

2

1
1011

20

J5 PL
UG

SW
2

ADM202EARU-A

U12

UC
C3

95
2P

W
-2

U2
5

DBD3

PY1111C

DBD2

PY1111C

DBD1
PY1111C

DBD0

PY1111C

D10
231

BAS16

R91100K

R89
0

R
88

1M

C32
100N

C65
100N

C9
100N

C20
100N

C3
1

10
0N

C45
100N

C46
100N

C47
100N

C4
8

10
0NC4

9
10

0N

C52
100N

C51
10N

C17 10P

C2
1

10
P

C50 10P

C36
1U

C1
22P C2

22P

C14
10P

C53
10P

C24
470N

R19
100K

R25
100K

R26
100K

R27100K
R52

100K
R53
100K

R54100K

R55
100K

R6
6

10
0K

R67
100K

R15
10K

R3
8

10
K

R3
9

10
KR4

4
10

KR4
5

10
K

R8
2

10
K

R6
2

15
0

R7
0

15
0

R7
4

1M

R3 22

R1
6

47
K

R13
51K R2

0
56

R7
547

R7
6

47

R3
1

68

C55
470N

R7
7

10
K

R7
8

10
K

R71
0

R72
0

C56
470N

M
1

M
1

M
1

TCRT1000

U5

TCRT1000
U4

TCRT1000
U3

TCRT1000 U2

TC
RT

10
00

U1

TC
RT

10
00

U8

TCRT1000

U7

U6
TCRT1000

T15
1 3 2

IRLML2402

T14
1 3 2

IRLML2402

T12
1 3 2

IRLML2402

T10

132

IRLML2402

T61
3

2

IRLM
L2402

T3 1
3

2

IR
LM

L2
40

2

D9K

A

C1
1 22
U

U21

TPA301D

U9

SI9986CYU1
1

SI
99

86
CY JM1JM2

XT3 12MHZ

XT2

7.3728MHZ

JB0

LP
29

85
IB

PX
-3

.3

U2
7

Forward direction

IR 1

IR 2

IR 3

IR 4

IR 5

IR 6

IR 7

IR 8

Figure 2: Top-view schematic of the e-puck robot showing the positions of
infrared sensors.

1.2 Infrared sensors

The robot is equipped with eight infrared sensors that can both emit and
register infrared light, a type of light at a wavelength just below the spectrum
visible to humans. The eight infrared sensors are attached to the e-puck robot
at directions of±13◦, ±45◦, ±90◦ and±135◦ (relative to the forward direction
of the robot). They are numbered clockwise, starting with the sensor to the
right of the front at −13◦ (see Figure 2). Each infrared sensor consists of
an emitter (a light emitting diode; LED), and a receiver (a semiconductor
transducer). The receiver can be used on its own to detect ambient light, or
in conjunction with the emitter to measure distances to surrounding objects.

1.2.1 Measuring distance

The e-puck’s infrared emitters and receivers can be used in conjunction in
order to detect the distance from a sensor to the closest surface. For this,

2

2 KINEMATICS AND ODOMETRY

the emitter of each sensor sends a brief pulse of light, which is reflected from
obstacles and is detected by the corresponding infrared receiver. The values
of the infrared receivers, in the range from 0 to 4095, indicate the difference
of light intensity with and without light emission. If an object is closer to the
sensor, more light is reflected, yielding a higher difference in light intensity
and larger values from the sensor.

The response of the sensor does not depend linearly on the distance from
the object and the function describing this dependency is also influenced by
the color, surface structure, and material of the object. In addition, this
function may be different for individual sensors. This means that by default,
the sensors do not produce an accurate measure of the distance to the nearest
object. The accuracy can be increased by calibrating the sensors, that is,
approximating the function that maps sensor readings to distances for each
sensor. Below, we show one possible method for such an approximation.

For the approximation, we first address the differences between ranges and
accuracies of different sensors. To do this, we measure the mean responses
of each sensor, once in the absence of obstacles, and once when they are
as close as possible. We use the mean values values to normalize the sensor
response so that the result lies (roughly) in the interval [0, 1] (due to noise, the
resulting values may exceed the boundaries of this interval, but our approach
is resistant to small deviations like this).

We then find a function that inverts the sensor characteristic — that is,
given a normalized IR value v, we want a function d(v), whose result is a
distance in mm or cm.

We record the mean normalized response for obstacles at different dis-
tances for a single sensor. We can remove the non-linearity of the sensor
responsed through logarithmic regression of the form

d(v) = −a · ln(v)− b, (1)

which yields a distance in cm. The parameters a, b need to be chosen de-
pending on the measured sensor characteristics.

Measuring distances is particularly problematic in the presence of inter-
fering light sources or when measuring the distance to obstacles whose surface
absorbs infrared light (e.g., black coarse fabrics) or is translucent (e.g., glass).

2 Kinematics and odometry

The e-puck robot does not have any prior knowledge about the world. With-
out sensors or additional programming, it does not have any information
about the location of objects or target positions; it does not even know

3

2.1 Coordinate frames 2 KINEMATICS AND ODOMETRY

where in the world it is, nor how it is oriented. However, this information is
required to navigate to targets and avoid obstacles on the way.

The present section focuses on how to infer the robot’s position in the
world based on the data from the wheel encoders. Analogously, we look at
how to generate appropriate commands for the wheels to turn the robot to
desired orientations. Both computations will build on our knowledge of the
e-puck’s physical measurements which can be found in Section 1.

2.1 Coordinate frames

Due to constraints in the geometry of its chassis, the e-puck is mostly re-
stricted to moving on flat surfaces. Within the lab class, this means that
we can describe the robot’s position and orientation in a two-dimensional
coordinate system aligned with the plane of the surface. On this plane, we
use two types of coordinate frames in which we specify the positions of the
robot, targets and obstacles. The first is an ego-centric coordinate frame,
the second is the allo-centric one.

The origin of the ego-centric (or local) coordinate frame is always at the
center of the robot. The x-axis is always facing straight ahead, that is,
it points in the heading direction of the robot. The y-axis, by convention,
always points (orthogonally) toward the left of the x axis when looking at the
system from above. The gray, tilted coordinate frame in Figure 3 illustrates
an ego-centric coordinate frame.

The origin of the allo-centric (or global) coordinate frame is positioned
arbitrarily and is independent of the robot’s movement. It can be placed, for
instance, at a prominent landmark in the world or the corner of a piece of
paper. The orientation of this coordinate frame is arbitrary but fixed, and the
robot’s heading direction is specified with respect to this orientation. The
black coordinate frame in Figure 3 shows an allo-centric coordinate frame
and the way it relates to the ego-centric coordinate frame (shown in gray).

2.2 Inverse kinematics

Directing the robot to given coordinates in the world, possibly even with a
specific final orientation, can be a hard problem to solve. There are infinitely
many routes the robot could drive. Some may seem like the routes a hu-
man would drive with a car, others may look choppy or completely random.
Selecting one of these routes requires setting up constraints on what makes
a ‘good’ route. This problem is analogous to what is usually referred to as
inverse kinematics in problems involving movement of robotic arms: figuring

4

2 KINEMATICS AND ODOMETRY 2.2 Inverse kinematics

Figure 3: With an allo-centric coordinate frame (black coordinate system)
it is possible to describe the global position (xallo, yallo) and orientation ϕallo

of the robot. In the egocentric coordinate frame (tilted, gray coordinate
system), the robot is located in the center and its forward direction is aligned
with the local zero orientation. The position of a point P can be given
either in global coordinates (xalloP , yalloP) or in local coordinates of the robot
as (xegoP , yegoP). The direction of the point from the robot is ϕego

P .

out a good trajectory of the arm to a target given that there are many joints
to move in various directions.

Assume that our robot has a starting position (xstart, ystart) and starting
orientation ϕstart in the allocentric reference frame. We want the robot to
drive to the target position, (xtarget, ytarget), with a final orientation ϕtarget.
How can we get the robot to move to these coordinates?

As a first step, we can simplify the problem by decomposing it into two
separate movements. The first one rotates the robot on the spot so that it
faces the target point. The second moves the robot forward in a straight line
until it has traversed the distance between the start and target point.

To realize the first part of the simplified movement, we need a way to
turn the robot on the spot by an arbitrary angle, ∆ϕ. To do so, we turn one
wheel in one direction and the other wheel in the opposite direction with the
same speed. This makes the wheels drive along circular arcs whose radius, r,
is half the distance between the robot’s wheels. The length b of this circular
arc can be computed by taking a fraction, ∆ϕ

2π
, of the full circumference, 2πr,

of the circle:

b =
∆ϕ

2π
2πr = ∆ϕ r, (2)

5

2.3 Forward kinematics 2 KINEMATICS AND ODOMETRY

Inserting the wheel distance, l, into the equation, we get

b = ∆ϕ · l
2
. (3)

In order for a wheel to traverse this distance, it has to travel with a
speed v for the time interval ∆t. This follows from the equation describing
a straight-line movement:

b = v ·∆t (4)

⇔ v =
b

∆t
(5)

Note that either the time or the speed of the movement can be chosen freely
(for the lab class, specify the velocity).

This equation also allows us to realize the second part of our movement
towards the target. To traverse the distance between start and target, we
can again use Equation 5 to determine the speed or duration of a movement
for the given distance.

Note that in both cases, the speed v has the unit mm s−1. Because the
robot expects commands to be in rad/s, you first have to convert it using
the physical measurements of the robot (see Section 1).

Please make sure that your code follows the mathematical convention
that rotations around a positive angle are counter-clockwise.

2.3 Forward kinematics

The robot does not necessarily execute commands perfectly. Thus, to keep
track of the robot’s position and orientation, we need to rely on readings
from its sensors. The problem of calculating the robot’s position from these
sensor readings is called forward kinematics.

For the e-pucks, the main sensor for tracking its location are the wheel
encoders. They provide an estimate of how much distance each wheel has
covered in a given time interval. To calculate the change in position from
this, we separate the movement of the robot into segments so that during
each segment the speed of both wheels remains, ideally, constant.

Let us now consider a single such segment. Given the robot’s position
x, y and orientation ϕ before the movement, we now want to calculate its
position x′, y′ and orientation ϕ′ after the movement. Using the encoders, we
can determine the distance traversed by the left (bL) and right (bR) wheel.
Because we assumed that the wheel speeds were constant, only four cases
can have occurred: The first case is that the robot simply did not move

6

2 KINEMATICS AND ODOMETRY 2.3 Forward kinematics

Figure 4: An illustration of the derivation of the change in position when the
robot has traversed a circular arc.

(bL = bR = 0). The second is that it moved in a straight line (i.e., bL = bR).
The third is that it moved on the spot (i.e., bL = −bR). In these cases,
determining the new position and orientation can be computed trivially by
applying basic trigonometric functions (the same equations that were used
in Section 2.2). In the fourth case (|bL| ̸= |bR|), the robot has moved along
a circular arc, as shown in Figure 4. To find out the coordinate changes in
this case, we need to find out the radius r of the arc as well as the angle ∆ϕ
covered by the arc.

To begin, we determine the radius by constructing a new triangle as shown
in Figure 4b. We know the involved quantities of a smaller triangle defined
by the sides of length l and bR−bL. By construction, this smaller triangle has
the same angles as the larger triangle with sides r and b. Thus, the following

7

2.3 Forward kinematics 2 KINEMATICS AND ODOMETRY

must hold:
r

b
=

l

bR − bL
⇔ r =

b l

bR − bL
(6)

Using Equation 2, we find the change of the angle to be

∆ϕ =
b

r
=
bR − bL

l
. (7)

To compute the change of the robot’s position, ∆xego and ∆yego, we use
the triangle with sides r and c as shown in Figure 4a. The length c is given
by

c = r cos(∆ϕ). (8)

Using trigonometry, we get

∆xego = r sin(∆ϕ) (9)

Because by construction, r = ∆yego + c, it follows that

∆yego = r − c = r(1− cos(∆ϕ)). (10)

To transform these changes from the local (ego-centric) coordinate system
to the global (allo-centric) one, we must rotate and translate them accord-
ingly.

The change of the heading direction is not affected by translation, and
rotation amounts to an addition. The new heading direction is therefore

ϕ′ = ϕ+∆ϕ. (11)

The change in position is first rotated according to

∆xallo = ∆xego cos(ϕ)−∆yego sin(ϕ) (12)

∆yallo = ∆xego sin(ϕ) + ∆yego cos(ϕ). (13)

Then, we translate it by adding the origin of the ego-centric coordinate sys-
tem. The new position is thus

x′ = x+∆xallo (14)

y′ = y +∆yallo. (15)

Note that the method we present here for estimating the position of a
robot via odometry is affected both by systematic and random errors, for
example, insufficient wheel traction, effects of the gear system, deviations of
the e-puck chassis from the specifications and so on.

8

3 DYNAMICAL SYSTEMS

3 The dynamical systems approach to navi-

gation in autonomous robotics

The dynamical systems approach is geared toward behavioral control of a
robot. In particular, this approach can be applied for navigation.

In the dynamical systems approach, control is local. This means that we
restrict ourselves to information that the robot can obtain directly with its
on-board sensors. Global information, such as the layout of obstacles in the
world is not used. As a consequence, when faced with the task to traverse a
maze of obstacles, we cannot determine the path we want to take beforehand.
Instead, we use the available local information to instantaneously control
basic behavioral variables such as the heading direction and forward speed
of the robot. These variables are controlled by specifying a law for their
rates of change that depends on the current sensory information. This law
is formulated as a dynamical system.

In this section, we therefore start by briefly introducing the basics of
dynamical systems. As an example, we then use a dynamical system to
control the heading direction of a robot in order for it to approach a given
target. Finally, we extend this dynamical system to make it avoid obstacles
it encounters along its way to the target.

3.1 Dynamical systems and differential equations

A dynamical system is described by one or more dynamic variables, x⃗(t),
whose values change over time t. Here, we only look at systems with a
single such variable, x(t). The change of this variable may be described by
a differential equation,

ẋ =
dx

dt
= f(x, t), (16)

where f(x, t) is a function that specifies how the variable changes depend-
ing on its current value. To make this concrete, let us look at the linear
differential equation

ẋ = f(x) = −αx.

How can we find the actual value, x(t), of the system at a given point in
time? This is exactly the problem of finding the solution of the equation; for
the system above, it is known1 to be an exponential decay of the form

x(t) = x0 exp (−αt).
1You can look this up in any textbook on dynamical systems.

9

3.2 Numerical approximation 3 DYNAMICAL SYSTEMS

To see why this solves the system, look at the derivative of the equation at
some arbitrary point in time:

ẋ(t) =
dx

dt
= −αx(0) exp (−αt) = −αx(t).

Note that we need to specify the initial value of the system, x(t = 0). Solving
this dynamics is therefore also called an initial value problem. Also note that,
for α > 0 and t → ∞, the system will approach ±0 regardless of the choice
of initial value. This is the attractor of the system; we discuss this in detail
below.

3.2 Numerical approximation

Analytically finding the solution for a dynamical system is generally a com-
plex problem. An alternative approach is to approximate the solution using
numerical methods. One such method is the Euler method, which involves
transforming the dynamics into a difference equation. Since a derivative is
a limit case of the inclination of a secant, it can be approximated by the
inclination of a secant with a fixed size ∆t

ẋ(t0) = lim
t→t0

x(t)− x(t0)

t− t0
≈ x(t0 +∆t)− x(t0)

∆t

We can use this relationship to derive an approximation, x̂(t0 + ∆t), of the
value of x at time t0 +∆t if we already know the approximation, x̂(t0), at a
previous time, t0:

x̂(t0 +∆t) = x̂(t0) + ∆t · ẋ(t0)

Here we have approximated the real function by a linear one for a small in-
terval of time. This means that we disregard higher-order terms and thus
introduce an approximation error. This error grows larger the more impor-
tant the higher order terms become; generally, larger step sizes, ∆t, increase
the error. Figure 5 illustrates this graphically for a large time step (note,
that t0 = 0 was chosen for clarity). Thus, the approximation improves in
accuracy the smaller the time step ∆t. However, smaller time steps also lead
to a higher computational burden.

3.3 Attractors and repellors

To control a robot using a dynamical system, we have to construct a dif-
ferential equation that produces the desired behavior, for instance turning
the robot toward a target. For the dynamical systems approach, this means

10

3 DYNAMICAL SYSTEMS 3.3 Attractors and repellors

Figure 5: For values of ∆t that are large, the approximation error may
become large as well. Here, x̂(∆t) strongly deviates from the analytically
calculated x(∆t).

11

3.3 Attractors and repellors 3 DYNAMICAL SYSTEMS

Figure 6: Attractor (left) and repellor (right) of a dynamical system

constructing a dynamics that has attractors at target states that “pull” the
system’s state towards them and repellors that “push” the system’s state
away from undesired states.

In the simplest case, attractors and repellors are fixed points of the sys-
tem. A fixed point is a state of the dynamical system in which the rate of
change, ẋ, is equal to zero. Once the system has reached such a state, it will
remain there unless it is driven out of the state by some external influence.
If we plot the rate of change ẋ of a system against the state variable x, as
we have done in Figure 6 for a linear system, the fixed points are the zero
crossings in the graph. This kind of plot is commonly referred to as a phase
plot.

Let us first focus on the dynamical system shown in the left plot of Fig-
ure 6. At position x0 it has a zero crossing with a negative slope. If the
system were in a state x1, where x1 < x0, the given change ẋ of the sys-
tem would be positive. The system would thus go to a state larger than x1,
moving closer toward x0. However, if the system were in a state x2 > x0,
the change would be negative. The system would go toward a state smaller
than x3, also approaching x0. Were the system in state x0, the change would
be zero and it would remain in this state. Such a fixed point is called an
attractor.

The right plot of Figure 6, on the other hand, shows a repellor. The incli-
nation at the zero crossing is positive. Using analogous arguments as above,
we can see that the system moves away from that point. Note, however,
that the system would remain at x0 in the absence of external influences if
it started exactly in this state.

12

3 DYNAMICAL SYSTEMS 3.4 Controlling heading direction

Figure 7: Control of the heading direction for approaching a target. The
current heading direction of the robot is ϕ, the direction of the target is ψ.
Both angles are defined relative to the zero-direction of a global coordinate
system.

Figure 8: The linear dynamical system has an attractor at ψ, the direction
of the target.

3.4 Controlling heading direction with a dynamical sys-
tem

To turn a robot toward a target that lies in the direction ψ, we now construct
a dynamical system that controls the robot’s heading direction ϕ (Figure 7
shows an illustration of the involved angles). We construct the system so
that it has an attractor at the orientation of the target:

ϕ̇ = −λ · (ϕ− ψ), λ > 0. (17)

The parameter λ > 0 has the unit radians/s and controls the turning speed of
the robot. Figure 8 shows a phase plot of this dynamical system. Note, that
we assume here that the robot rotates on the spot, meaning that relative
to the fixed reference axis, the angle ψ is constant over the course of the
rotation.

We can see that the system makes the robot turn towards the target by
looking at how the heading direction changes: For ϕ < ψ the system has a

13

3.5 Relaxation time 3 DYNAMICAL SYSTEMS

Figure 9: The time constant τ determines how fast a dynamical system
relaxes to an attractor.

positive change, turning the robot counterclockwise toward the target; for
ϕ > ψ, the change is negative, turning the robot clockwise toward the target.
If ϕ = ψ, the robot will not turn. This is the same argument we made before:
ψ is an attractor of the system.

3.5 Relaxation time

It is possible to solve the differential equation (Equation 17) analytically.
The solution is

ϕ(t) = ψ + (ϕ(0)− ψ) exp (−λt),

where ϕ(0) is the initial heading direction of the robot. The parameter λ
determines how fast the robot will turn toward the direction of the target.
After τ = 1

λ
much time, the angle between the heading direction of the robot

and the target direction will have dropped to 1
e
of its initial value.

ϕ(τ) = ψ + (ϕ(0)− ψ) exp (−λτ) = ψ + (ϕ(0)− ψ) exp (−1) (18)

See Figure 9 for an illustration. The value of τ is called time constant or
relaxation time of a dynamical system.

3.6 Implementation

As we argued above, analytical solutions quickly becomes impractical for
more complex dynamical systems that deal with current sensor values and

14

3 DYNAMICAL SYSTEMS 3.7 Nonlinear dynamics

a changing position of the target. To implement a dynamical system, we
therefore compute the change in heading direction in discrete time steps, ti,
according to

∆ϕ(ti) = −λ · (ϕ(ti)− ψ(ti)). (19)

When following the Euler approach, we would normally keep track of the
approximation, ϕ̂, of the heading direction by integrating as described in
Section 3.2. This would give us

ϕ̂(ti+1) = ϕ̂(ti) + ∆t∆ϕ(ti). (20)

However, when working with e-pucks, this is not necessary. Instead, we send
wheel velocities derived from ∆ϕ directly to the robot and the physical robot
itself (measured via odometry) gives us the current heading direction. This
replaces the estimate ϕ̂(ti) in Equation 20.

The implementation of such a system thus consists of a control loop, in
which the current heading direction of the robot ϕ is determined by odometry,
and the desired change, ∆ϕ, is computed and applied via the wheels.

The equivalent of the time step in the Euler approach in this implementa-
tion is given by the time between two iterations of the control loop. Because
the wheel speeds remain constant between two such iterations, this can lead
to problems depending on the value of λ. For small values of λ, the result-
ing change in the heading direction is very small and the robot thus turns
slowly. More importantly though, the (discrete) wheel speeds may be so
small that they cannot be properly realized by the stepper motors that drive
the e-puck’s wheels. This may manifest in deviations of the heading direc-
tion from the attractor, that is, the target angle. For large values of λ, the
amount that the robot turns between two iterations of the loop can be so
large that it turns beyond the given orientation of the target.

3.7 Nonlinear dynamics

Instead of a linear system, it is more practical to use a sine curve (see Fig-
ure 10) for the dynamical system because it fits the periodic structure of the
behavioral variable and does not produce increasingly large values for larger
angles. This means that the robot will always turn toward the target using
the shortest path.

15

4 FORCE-LETS

Figure 10: Controlling the heading direction with a sine dynamics.

4 Force-lets for obstacle avoidance in the dy-

namical systems approach to navigation

In the present section, we extend the dynamical systems approach presented
above to avoid obstacles while still driving towards the target. The obstacle
avoidance we develop here is a simplified version of the one in ?. We will use
the infrared sensors of our e-puck robot to detect obstacles. Despite the lim-
ited number and accuracy of the sensors, they provide sufficient information
for successfully avoiding obstacles.

4.1 Combining multiple influences

The key idea for building a dynamical system that reaches a target and
avoids obstacles on the way is to consider multiple influences on the robot as
contributions that “pull” the robot towards the target direction and “push”
it away from the directions of obstacles.

We already know how to realize a single such influence from the target
dynamics in Section 3.7. Here, the dynamical system

ϕ̇ = ftar(ϕ) = −λtar · sin(ϕ− ψtar) (21)

creates an attractor that orients the robot towards the target at angle ψtar.
We combine this dynamical system with a set of repelling influences, fobs,i,
which we will design to create repellors at the locations of obstacles in the
following sections. The full system then has the form

ϕ̇ = ftar(ϕ) +
∑
i

fobs,i(ϕ). (22)

16

4 FORCE-LETS 4.2 Obstacle contributions

robot

obstacle

(a) robot and obstacle (b) obstacle force-let

Figure 11: (a) shows a diagram of the robot and an obstacle with the relevant
angles marked. Here, ϕ is the heading direction of the robot and ψobs,i is the
direction of an obstacle, both relative to the global coordinate system. ∆ψ

represents the angular width of the obstacle. (b) shows a single obstacle force-
let centered around the direction of the obstacle. The repellor generated by
the force-let turns the robot away from this direction, as indicated by the
orange arrows on the ϕ axis.

4.2 Obstacle contributions

Let us first consider the contribution of an individual obstacle term in the
direction ψobs,i without the other influences (that is, without target and other
obstacles). We want the robot to be repelled from the obstacle. Naively, we
can solve this by placing a single repellor at the direction of the obstacle:

fobs,i(ϕ) = ϕ− ψobs,i. (23)

However, using a linear function has two undesired consequences. First, since
the repellor acts across the entire angular space, the robot will always turn
away from the obstacle, even if the robot is facing away from the obstacle,
that is, the obstacle no longer lies in the robot’s path. This is unnecessary
and may even prevent the robot from reaching its target. Second, combining
multiple linear functions additively for multiple obstacles would result in
another linear function with a single fixed point that generally lies somewhere
between the different obstacle directions.

We can address both these issues by restricting the angular range of the
obstacle contribution. We use the idea of the force-let from ?, that is, we
weight the contribution of individual linear functions by a Gaussian with

17

4.3 Bifurcations and decisions 4 FORCE-LETS

obstacle target

obstacle

Figure 12: The path of the robot is blocked by two obstacles that are sit-
uated far apart from each other (left). The phase plot (right) shows the
contributions from the two obstacles (dashed orange line), the target (dotted
magenta line), and the resulting overall dynamics (solid black line). Green
dots represent attractors, while red ones represent repellors.

width σ, centered around the obstacle direction:

fobs,i(ϕ) = (ϕ− ψobs,i) · exp
(
−(ϕ− ψobs,i)

2

2σ2

)
. (24)

Figure 11 shows such a force-let for a single obstacle.
Another consideration is the distance of obstacles. We only want obstacles

that are close to the robot to have an influence on the robot’s trajectory,
whereas far obstacles should be ignored. We do this by weighting the force-
let by another term, λobs,i, leading to

fobs,i(ϕ) = λobs,i · (ϕ− ψobs,i) · e−
(ϕ−ψobs,i)

2

2σ2 . (25)

The weight function is defined as

λobs,i(t) = β1 · exp
(
−di(t)

β2

)
, (26)

where β1, β2 are positive constants, and di(t) is the distance of obstacle i at
the current time t.

4.3 Bifurcations and decisions

So far, we have only looked at an individual force-let. In the full approach, we
combine multiple such force-lets and a target contribution (see Equation 22).
It is this combination that leads to emergent behaviors in our vehicle. Here,
we show how even this fairly simple combination of functions endows our
vehicle with the capacity to make decisions.

18

4 FORCE-LETS 4.3 Bifurcations and decisions

obstacle target

obstacle

Figure 13: The path of the robot is blocked by two obstacles that are situated
close to each other (left). The phase plot (right) is analogous to the one in
Figure 12.

Let us first consider the case shown in Figure 12. Two obstacles are far
enough apart for the robot to pass between them. This is reflected in the
dynamics: the individual force-lets (dashed orange lines) have relatively little
overlap. In the overall dynamics (solid black line), this leads to the emergence
of two repellors (red diamonds), each close to one of the obstacles. The target
contribution (dotted, magenta) creates an attractor (green dot) between the
obstacles. If the robot is within the range of influence of this attractor, it will
pass between the obstacles. Two more attractors are created on the outskirts
of the force-lets due to the combination with the target contribution. These
correspond to the robot going around the obstacles on the left or right hand
side.

As the obstacles move closer together, the situation changes. As we can
see in Figure 13, the obstacle force-lets overlap in such a manner that a
single repellor emerges, centered between the two obstacles. The attractor
in the target direction is canceled out by the stronger influences from the
repelling force-lets. However, the two attractors that correspond to the robot
circumnavigating the obstacles on the left or right hand side are still present.

There is a critical distance between the obstacles at which the attractor
between the obstacles vanishes. Such a point where the number of fixed
points or their stability changes is called a bifurcation. We can visualize how
and when this happens by drawing a bifurcation diagram, where we plot the
fixed points and their stability over the bifurcation parameter which, in our
case, is the distance between obstacles. Figure 14 shows such a plot for our
scenario.

19

4.4 Implementation 4 FORCE-LETS

repellor

repellor

attractor

attractor

attractor

bifurcation

distance between obstacles
Figure 14: Bifurcation diagram for the target approach with obstacle avoid-
ance dynamics.

4.4 Implementation

The robot’s sensors do not deliver a discrete set of obstacles, but rather
measurements related to the distance of the closest surface in the direction
of the sensor. To generate a discrete set of obstacle force-lets, each sensor is
thus said to point in the direction of an obstacle. Since the sensors are fixed
on the robot, the directions of these virtual obstacles are given by

ψobs,i = ϕcur + θi, (27)

where ϕcur is the current heading direction of the robot, and θi is the angle
at which sensor i is mounted, relative to the robot’s forward direction.

20

	E-pucks
	Drive mechanism
	Infrared sensors
	Measuring distance

	Kinematics and odometry
	Coordinate frames
	Inverse kinematics
	Forward kinematics

	Dynamical systems
	Differential equations
	Numerical approximation
	Attractors and repellors
	Controlling heading direction
	Relaxation time
	Implementation
	Nonlinear dynamics

	Force-lets
	Combining multiple influences
	Obstacle contributions
	Bifurcations and decisions
	Implementation

