Tracing Changes in University Course Difficulty Using Item Response Theory

Frederik Baucks*¹, Robin Schmucker*², Laurenz Wiskott¹

¹ Institute for Neural Computation, Computer Science Department, Ruhr University Bochum
² Machine Learning Department, Carnegie Mellon University
frederik.baucks@ini.rub.de, rschmucker@cs.cmu.edu, laurenz.wiskott@ini.rub.de

Abstract

Curriculum analytics (CA) studies educational program structure and student data to ensure the quality of courses inside a curriculum. Ensuring low variation in course difficulty over time is crucial to warrant equal treatment of individual student cohorts and consistent degree outcomes. Still, existing CA techniques (e.g., process mining/simulation and curriculum-based prediction) are unable to capture such temporal variations due to their central assumption of time-invariant course behavior. In this paper, we introduce item response theory (IRT) as a new methodology to the CA domain to address the open problem of tracing changes in course difficulty over time. We show the suitability of IRT to capture variance in course performance data and assess the validity and reliability of IRT-based difficulty estimates. Using data from 664 CS Bachelor students, we show how IRT can yield valuable insights revealing variations in course difficulty over multiple years. Furthermore, we observe a systematic shift in course difficulty during the COVID-19 pandemic.

1 Introduction

Maintaining low temporal variation in course difficulty in academic and professional degree programs is an important task to ensure equal treatment of individual student cohorts and to ensure consistent and informative grade point average (GPA) scores. GPA scores are a central measure used in decision processes by employers and academic institutions and are known to be correlated with students’ future career success (e.g., (Spurk and Abele 2011; Di Stasio 2014)).

The field of Curriculum Analytics (CA) studies educational program structure and student data to assess the quality of individual courses inside a curriculum and their relationships to each other. Existing CA approaches that rely on process mining and simulation techniques to monitor student activities inside a curriculum, are known to suffer from concept drift issues and are unable to capture differences between individual offerings of the same course (e.g., CS1 in winter 2018 and CS1 in winter 2019) (Bogarín, Cerezo, and Romero 2018). Similarly, CA approaches that make curriculum structure-based predictions employ the IID assumption and are unable to quantify the effects of distribution shift. Still, existing CA techniques (e.g., process mining/simulation and curriculum-based prediction) are unable to capture such temporal variations due to their central assumption of time-invariant course behavior. In this paper, we introduce item response theory (IRT) as a new methodology to the CA domain to address the open problem of tracing changes in course difficulty over time. We show the suitability of IRT to capture variance in course performance data and assess the validity and reliability of IRT-based difficulty estimates. Using data from 664 CS Bachelor students, we show how IRT can yield valuable insights revealing variations in course difficulty over multiple years. Furthermore, we observe a systematic shift in course difficulty during the COVID-19 pandemic.

2 Related Work

Curriculum Analytics (CA) is a subfield of Learning Analytics and Educational Data Mining that studies curriculum-related data (e.g., information describing when individual students take different courses and how well they perform in them) intending to understand, modify, and improve educational programs such as college degree and professional certification programs (Bogarín, Cerezo, and Romero 2018). Different metrics such as curriculum coherence (Mendez et al. 2014) and student retention (Wong and Lavrenvic 2016) have been proposed to monitor curriculum quality. Other existing CA approaches can be classified into three main categories based on underlying methodology: (i) process mining, (ii) process simulation, and (iii) curriculum structure-based prediction. Process mining techniques have been proposed to create visualizations of the educational process focusing on the order of interactions with individual
curriculum elements (e.g., (Trcka, Pechenizkiy, and van der Aalst 2010; Bogarín, Cerezo, and Romero 2018)). As an extension to process mining, simulation approaches have been explored to estimate effects of potential curriculum changes (e.g., (Molontay et al. 2020; Baucks and Wiskott 2022)). Lastly, different prediction techniques have been developed to predict future student performance (Slim et al. 2014) and to make personalized curriculum recommendations (Backenköhler et al. 2018; Jiang, Pardos, and Wei 2019).

In this paper, we address the open question of how to trace changes in course difficulty inside a curriculum over time which is crucial for ensuring equal treatment of individual student cohorts and consistent GPA scores. Existing process mining and simulation approaches assume that individual courses behave the same over time and are known to suffer from concept drift issues (Bogarín, Cerezo, and Romero 2018). Similarly, prior prediction studies build on the IID assumption and are unable to quantify the effects of distribution shift (i.e., varying course difficulty). While descriptive statistics such as course pass rates (PR) and student retention can be used to monitor courses over time, they provide limited information regarding underlying factors—i.e., is a metric change due to a variation in the course or cohort?

IRT has been proposed in the context of standardized testing to address fundamental limitations of classical test theory (i.e., the inability to compare student scores obtained from different tests and the dependence of item parameters on the test taker cohort) (van der Linden and Hambleton 2013). Outside the domain of standardized testing IRT-based approaches have for example been used for adjusting high school GPAs based on subject difficulty (Hansen, Sadler, and Sonnert 2019) and for health assessments (Thomas 2011). Related to CA multiple IRT-based approaches have been proposed to model students’ university course satisfaction in a single year (e.g., (Bacci and Gnaldi 2015)) and over multiple years (e.g., (Sulis, Porcu, and Tedesco 2011; Sulis, Porcu, and Capursi 2019)) based on students’ teaching evaluations (SET) surveys. While student satisfaction is an important metric, concerns have been raised about the low correlation between SET evaluations and learning outcomes (Uttl, White, and Gonzalez 2017).

Closest to the spirit of this paper is a work by Bacci et al. (2017) which proposed a multidimensional latent class IRT (LC-IRT) model to classify first-year students into different performance groups using exam enrollment and exam grade data. They studied data from 861 incoming Economics and performance groups using exam enrollment and exam grade (LC-IRT) model to classify first-year students into different (2017) which proposed a multidimensional latent class IRT (Backenköhler et al. 2018; Jiang, Pardos, and Wei 2019).
of latent dimensions required to explain the data relates to the number of distinct traits that describe a student’s ability to complete COs successfully. To assess the number of dimensions we perform principal component analysis (PCA) on the grade point CO response matrix $X^{[0,100]}$ (Mair 2018). Because the PCA algorithm demands a complete CO response matrix we need to address the sparsity common in course examination data. We assume that skills associated with individual courses are content-based and do not change from offering to offering (e.g., the content of the CS1 course is time-invariant). This assumption allows us to aggregate the data from different offerings of the same course to form a denser course response matrix. The remaining missing values (e.g., due to drop-out students) are filled using multiple iterative PCA imputation (MIPCA) (Josse, Husson et al. 2011), leaving us with a dense aggregated course response matrix $agg(X^{[0,100]})$ with 19 courses. MIPCA allows us to perform PCA on a complete matrix and can estimate imputation-induced uncertainty in the recovered principal components (PCs). Finally, we use a Scree plot visualizing the eigenvalues of the covariance matrix $C_{agg}(X^{[0,100]})$ of the aggregated course response matrix as a complementary criterion for assessing latent dimensionality (Mair 2018).

3.3 Model Selection

After determining an upper bound on the number of latent dimensions, we fit corresponding Rasch, Birnbaum, and multidimensional IRT models. We select the final model using common information criteria—i.e., Akaike information criterion (AIC) (Akaike 1998), Bayesian information criterion (BIC) (Schwarz 1978) and sample size adjusted Bayesian information criterion (SABIC). These criteria quantify the trade-off between model fit (log-likelihood) and potential overfitting (number of model parameters).

3.4 Validity and Reliability Assessment

One core assumption underlying IRT is that the latent student trait stays constant over time which is natural in the standardized testing domain. In the CA context, it is not obvious that IRT is suitable to model data from a multi-year degree program. We, therefore, need to ensure the validity and reliability of the parameters recovered by IRT for CA.

We study concurrent validity by considering correlations between IRT parameters and student GPAs and CO PRs. In line with GPA adjustment research (e.g., (Hansen, Sadler, and Sonnert 2019)) we expect a positive correlation between student trait parameters and GPAs, and a negative correlation between CO difficulty parameters and PRs.

We evaluate the reliability of the difficulty parameter estimation via a simulation study. Following common methodology (e.g., (Sahin and Anil 2017; Mair 2018)) we generate a ground truth IRT model by sampling student trait and CO difficulty values from a standard Gaussian and simulate student responses for different expected CO sizes ($\{50, 75, 100, 150, 200, 250, 300\}$). To mimic missing responses we randomly mask individual response matrix entries with a probability equal to the missing value ratio of our real data (29%). The number of simulated students is chosen to meet the expected CO size. Following recommendations by Pekmezci and Avşar (2021), we generate data for 1,000 seeds. We report root mean square error (RMSE) and Pearson correlation metrics of the learned difficulty parameters using ground truth.

4 Experiments

4.1 Dataset Description

The dataset used for our study provides exam scores from a CS Bachelor’s program at an anonymous university in Germany. Between 2013 and 2022, exam data from 1098 students was collected for 19 compulsory courses including data from graduated, enrolled, and dropout students. The grading scale of each exams is $[0, 100]$. An exam is considered passed if at least 50 percent is achieved and failed otherwise. Except for the project-based software engineering course, each course grade was determined via a single written examination at the end of the semester which emphasizes the importance of these individual assessments.

Before obtaining the data, anonymization was performed by removing all demographic information and by adding a uniform stochastic noise between $[-5, 5]$ to each grade. We performed the following preprocessing steps: Considering IRT’s local independence assumption, we focused on students’ first exam attempts and omitted reattempts. Further, students with < 5 observed grades > 0 were omitted, and we omitted COs with less than 20 students to promote a stable difficulty parameter fit. This resulted in a dataset with 664 students and 127 COs. Since we use dichotomous IRT models, we converted the grade point to ‘pass’/‘fail’ data.

4.2 Dimensionality Assessment

To inform the model selection, we investigate how many latent dimensions are required to explain variance captured in the course response matrix. After aggregating responses from different COs (see Subsection 3.2), the missing value ratios of individual courses vary between 7% and 44%. We observe more missing values in courses recommended for later semesters. We generate 1,000 dense response matrices by filling missing values with different MIPCA imputations. Focusing on one of the imputed matrices, we visualize the eigenvalues of its corresponding covariance matrix in a Scree plot (Figure 1). We see one large eigenvalue above 12. All other eigenvalues are significantly smaller and do not vary much in magnitude which suggests one or two latent dimensions represented by the first and second PC.

While the Scree plot focused on a single imputation, we now study the amount of uncertainty induced by multiple MIPCA imputations. Figure 2 visualizes the individual courses in the latent space defined by the first (x-axis) and second (y-axis) PC. The spread in the individual course representations shows the degree of uncertainty induced by the MIPCA imputations. We observe that representations tend to vary more for courses with more missing values. Overall, however, the amount of induced uncertainty in the course representations is small, indicating that the recovered PCs are robust towards the exact imputation that is performed. For the dimensionality assessment, we observe that most
Figure 1: Scree plot visualizing the eigenvalues of the student course grade covariance matrix for a single imputation.

course representations are aligned with the first PC and exhibit less variation in the second PC. Further, we see that PC 1 captures 60.48% and PC 2 captures 6.42% of the variance (Figure 2 axis). This also aligns with the eigenvalues relationships we observed in Figure 1. We thus consider one and two latent dimensions in following model selection.

4.3 Model Selection

We train Rasch, Birnbaum, and 2PL-2DIM IRT models and compare their fits using the information criteria AIC, BIC, and SABIC (Table 1). While the lower AIC score indicates that the 2PL-2DIM model is preferred, the lower BIC and SABIC scores, which are more conservative regarding the number of model parameters, indicate that the Rasch model is more suitable. In addition, the Rasch model performs better than the Birnbaum model in all three criteria. Thus, we focus on the Rasch model in the following experiments.

<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>BIC</th>
<th>SABIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasch</td>
<td>8439.35</td>
<td>9015.13</td>
<td>8608.73</td>
</tr>
<tr>
<td>Birnbaum</td>
<td>8445.11</td>
<td>9587.67</td>
<td>8781.21</td>
</tr>
<tr>
<td>2PL-2DIM</td>
<td>8372.75</td>
<td>10082.10</td>
<td>8875.58</td>
</tr>
</tbody>
</table>

Table 1: Information criteria for different IRT models.

4.4 Validity and Reliability Assessment

We examine the student trait and course difficulty parameters learned by the Rasch model. To assess concurrent validity, we relate student trait estimates to student GPAs (Figure 3) and CO difficulty estimates to CO PRs (Figure 4). We see a strong positive correlation between student trait and GPA with a Pearson coefficient of $r = 0.931$ ($p < 0.001$). We see a strong negative correlation between CO difficulty and PR with a Pearson coefficient of $r = -0.908$ ($p < 0.001$). This meets our intuition that a higher student trait value relates to a higher GPA and a higher CO difficulty value relates to a lower PR. In Figure 4, we observe that COs with very high PRs (> 95%) visually stand out from the rest of the distribution. We examined the individual COs more closely and marked COs that fall into the period 2020-2022 as pandemic COs in red. A strong accumulation of pandemic COs among the COs with PRs > 95% is visible.

Simulation Study Following Subsection 3.4 we conduct a simulation study to test how much data is required to ensure a reliable Rasch model fit. Figure 5 shows average RMSE and Pearson correlation values and corresponding 90% confidence intervals by comparing CO difficulty values learned from different amounts of student data to ground truth difficulty parameters. We observe RMSE values < 0.33 (when training on ≥ 75 students per CO) and correlation values > 0.7 (in all cases) indicating that we can achieve a satisfactory model fit using small-scale data (Sahin and Anil 2017).

4.5 Investigating Model Parameters

As additional comparison of IRT’s student trait and CO difficulty parameters to student GPAs and CO PRs, Table 2 shows that student trait and CO difficulty lead to a better model fit than GPA and PR when predicting CO outcomes.
Here, analog to the IRT model which is a logistic regression model that explains the data using student trait and CO difficulty values, we fitted a logistic regression that explains the data using student GPA scores and CO PRs. This is informative as it allows us to compare the predictive power of the two variable pairs. Although the IRT model only uses dichotomous (pass/fail) data to determine the student trait, it performs better for all metrics compared to the GPA model which has access to detailed point grade data.

To trace changes in course difficulty over time, we visualize the estimated CO difficulty values for each of the 19 compulsory courses for different semesters (Figure 6). We quantify the reliability of the model fitting process, by providing confidence intervals derived from the Fisher information matrix used in the Wald test (Agresti 2003). Again, we marked COs falling into the period 2020-2022 in red as pandemic COs. First, it can be seen that the difficulty of individual COs can vary over time. Looking at trends in difficulty, we observe that some courses became less difficult (e.g., CompSci II), some became more difficult (e.g., Mathematics I), some had low fluctuations (e.g., Privacy), and oth-

Figure 4: Scatter plot indicating correlation between CO difficulty estimates based on Rasch model and CO PR.

Figure 5: Simulation study across 1,000 simulated Rasch datasets. We provide average RMSE and Pearson correlation values by comparing learned difficulty to ground truth difficulty parameters and plot 90% confidence intervals.

Figure 6: Scatter plot visualizing changes in CO difficulty (as captured by Rasch IRT model parameters) over time together with 95% confidence intervals (as determined by Wald test). We observe different patterns in CO difficulty trends (stationary, increasing, decreasing, oscillation). Marked in red are pandemic COs (conducted after WS2019) which exhibit substantially lower difficulty values compared to their non-pandemic versions.
We observed a strong correlation between CO difficulty estimates and PRs (Figure 4). Remarkably, the Rasch model enables us to determine trait adjusted PRs that allow us to compare COs taken by different student cohorts (unadjusted PRs are confounded by the traits of their respective cohort). Here, the adjusted PR of a course is the mean probability for a student of average trait value (-0.007) of passing that course computed over all respective COs as determined by the Rasch model. Table 3 shows adjusted and un-adjusted PRs for all courses. We observe that adjusted PRs often do not vary much from unadjusted PRs (this might differ for individual COs). SoftEng, and OpSys show particularly small differences. In contrast, Databases, and Management show particularly large differences. In the first semester, we observe a general upwards correction in the adjustment PRs, and from the second semester on a downward correction.

5 Discussion and Future Work

Our experiments showed that item response theory (IRT) based methodology can provide valuable insights in the curriculum analytics (CA) domain. Particularly, IRT allows us to address the open problem of tracing changes in course difficulty over time. This includes instances where the institution consciously decides to alter the difficulty of a specific course, as well as situations where unintended difficulty changes occur. Our methodology can quantify the effects of policy changes and can in case of unintended variations raise a flag to start the search for underlying causal factors.

We observed that course difficulty values can exhibit different trends over time. Difficulty values can increase, decrease, or can show other types of fluctuations. Existing CA approaches cannot capture such temporal effects because they assume constant course properties. This is reflected in the concept drift issues of process mining and simulation techniques (Bogarin, Cerezo, and Romero 2018) and the IID assumption underlying prediction-based approaches. IRT-based techniques could be used to improve such methodological shortcomings in future work by accounting for course changes over time. In particular, this is useful when datasets are too small for temporal resolution with Markov/Bayes networks or deep learning techniques.

IRT is predicated on two key assumptions: (i) local independence and (ii) constant latent trait. In our context, the local independence assumption posits that a student’s probability of passing a particular course offering (CO) is independent of their performance in other COs, given their latent trait. Considering this assumption, this study focused on first-attempt examination data. Future work will employ the Q3 criterion (Yen 1993) to quantify to what degree course performance data meets this assumption. The constant latent trait assumption posits that a student’s latent trait stays constant across examination items. The construct has been addressed by limiting exams to first attempts. Future work will use split half reliability for further validation. However, the resulting meaning of the trait as "ability to pass courses in a CS program on the first attempt” should be interpreted with care as it might be more constant than certain specific aspects of student knowledge. The primary aim of this study was to quantify changes in course difficulty, thus the trait values should be considered in this context when interpreting the results. One limitation of our study is that we only considered data from a single degree program at a single university. Applying this methodology to other types of degree programs (academic or professional) will be important to assess the generalizability of the proposed methodology.

The pass rates (PR) of individual course offerings are confounded by the trait level of their respective student cohort. The IRT framework allows us to define trait adjusted CO PRs, that quantify how well a student of average trait would have performed in each course. The results suggest that in the later semesters, the unadjusted PRs are too high presumably due to dropouts in earlier semesters. Adjusting PRs via the application of polytomous IRT models (e.g., rating scale and partial credit models (Mair 2018)), that can capture more information about grading criteria, is an interesting direction for future work.

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Mean Size</th>
<th>PR</th>
<th>Adjusted PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics I</td>
<td>82</td>
<td>0.641</td>
<td>0.719</td>
</tr>
<tr>
<td>Statistics</td>
<td>64</td>
<td>0.673</td>
<td>0.653</td>
</tr>
<tr>
<td>CompSci I</td>
<td>79</td>
<td>0.650</td>
<td>0.704</td>
</tr>
<tr>
<td>Programming</td>
<td>69</td>
<td>0.622</td>
<td>0.586</td>
</tr>
<tr>
<td>Economics</td>
<td>79</td>
<td>0.688</td>
<td>0.759</td>
</tr>
<tr>
<td>Mathematics II</td>
<td>69</td>
<td>0.650</td>
<td>0.641</td>
</tr>
<tr>
<td>CompNets</td>
<td>74</td>
<td>0.678</td>
<td>0.659</td>
</tr>
<tr>
<td>CompSci II</td>
<td>76</td>
<td>0.581</td>
<td>0.612</td>
</tr>
<tr>
<td>Obj Modeling</td>
<td>76</td>
<td>0.621</td>
<td>0.570</td>
</tr>
<tr>
<td>Management</td>
<td>59</td>
<td>0.620</td>
<td>0.424</td>
</tr>
<tr>
<td>DiscMath</td>
<td>69</td>
<td>0.620</td>
<td>0.573</td>
</tr>
<tr>
<td>CompArch</td>
<td>76</td>
<td>0.648</td>
<td>0.629</td>
</tr>
<tr>
<td>CompSci III</td>
<td>58</td>
<td>0.840</td>
<td>0.788</td>
</tr>
<tr>
<td>Data Structures</td>
<td>53</td>
<td>0.750</td>
<td>0.658</td>
</tr>
<tr>
<td>SoftEng</td>
<td>67</td>
<td>0.823</td>
<td>0.828</td>
</tr>
<tr>
<td>WebEng</td>
<td>74</td>
<td>0.771</td>
<td>0.842</td>
</tr>
<tr>
<td>OpSys</td>
<td>70</td>
<td>0.632</td>
<td>0.624</td>
</tr>
<tr>
<td>Privacy</td>
<td>72</td>
<td>0.661</td>
<td>0.611</td>
</tr>
<tr>
<td>Databases</td>
<td>83</td>
<td>0.585</td>
<td>0.490</td>
</tr>
</tbody>
</table>

Table 3: Mean PRs of compulsory CS courses over all semesters and mean PRs adjusted using mean Rasch student trait and course difficulties parameters. We see upward/downward adjustments during earlier/later semesters.
We saw a systematic drop in the difficulty of most compulsory courses during the COVID-19 pandemic (Figure 6). This systematic shift raises the question of underlying causal factors. Two potential explanations are: (i) A lowered course level. (ii) A more beneficial learning environment (e.g., online teaching, communication of learning objectives). First would lead in the long run, to knowledge gaps and could harm student’s academic and professional advancement. The second would lead to opposite results.

Lastly, we hope that similar IRT-based approaches will become standard CA tools to quantify and control variations in course difficulty over time to ensure the equal treatment of different student cohorts and consistent GPA scores.

References

