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Abstract

Curriculum analytics (CA) studies educational program
structure and student data to ensure the quality of courses
inside a curriculum. Ensuring low variation in course dif-
ficulty over time is crucial to warrant equal treatment of
individual student cohorts and consistent degree outcomes.
Still, existing CA techniques (e.g., process mining/simulation
and curriculum-based prediction) are unable to capture such
temporal variations due to their central assumption of time-
invariant course behavior. In this paper, we introduce item re-
sponse theory (IRT) as a new methodology to the CA domain
to address the open problem of tracing changes in course dif-
ficulty over time. We show the suitability of IRT to capture
variance in course performance data and assess the validity
and reliability of IRT-based difficulty estimates. Using data
from 664 CS Bachelor students, we show how IRT can yield
valuable insights by revealing variations in course difficulty
over multiple years. Furthermore, we observe a systematic
shift in course difficulty during the COVID-19 pandemic.

1 Introduction
Maintaining low temporal variation in course difficulty in
academic and professional degree programs is an important
task to ensure equal treatment of individual student cohorts
and to ensure consistent and informative grade point aver-
age (GPA) scores. GPA scores are a central measure used in
decision processes by employers and academic institutions
and are known to be correlated with students’ future career
success (e.g., (Spurk and Abele 2011; Di Stasio 2014)).

The field of Curriculum Analytics (CA) studies educa-
tional program structure and student data to assess the qual-
ity of individual courses inside a curriculum and their re-
lationships to each other. Existing CA approaches that rely
on process mining and simulation techniques to monitor stu-
dent activities inside a curriculum, are known to suffer from
concept drift issues and are unable to capture differences be-
tween individual offerings of the same course (e.g., CS1 in
winter 2018 and CS1 in winter 2019) (Bogarı́n, Cerezo, and
Romero 2018). Similarly, CA approaches that make curricu-
lum structure-based predictions employ the IID assumption
and are unable to quantify the effects of distribution shift.
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This paper addresses the open question of tracing changes
in course difficulty inside educational degree programs over
time. We introduce item response theory (IRT)–originally
proposed for standardized testing (van der Linden and Ham-
bleton 2013)–as a promising new methodology for CA. We
assess the suitability of IRT for analyzing students’ multi-
year course performance data and show how IRT can yield
valuable insights regarding course difficulty variations using
data from a Computer Science (CS) Bachelor’s program. We
hope that IRT-based approaches can play an important role
in ensuring the consistency and fairness of educational de-
gree programs. The key contributions of this paper include:

• IRT for tracing course difficulty over time: We assess
the suitability of IRT methodology for CA by studying
variance in course performance data and by evaluating
the validity and reliability of resulting model parameters.
IRT explains performance data via parameters that cap-
ture latent course difficulty and student trait allowing us
to quantify variations in course difficulty over time.

• Case study: Evaluation of IRT methodology using 9
years of course grade data from a CS Bachelor’s pro-
gram. We estimate difficulty values for individual offer-
ings revealing substantial variations in course difficulty
over time. Furthermore, we observe a systematic change
in course difficulty during the COVID-19 pandemic.

2 Related Work
Curriculum Analytics (CA) is a subfield of Learning Ana-
lytics and Educational Data Mining that studies curriculum-
related data (e.g., information describing when individual
students take different courses and how well they perform
in them) intending to understand, modify, and improve ed-
ucational programs such as college degree and professional
certification programs (Bogarı́n, Cerezo, and Romero 2018).

Different metrics such as curriculum coherence (Mendez
et al. 2014) and student retention (Wong and Lavrencic
2016) have been proposed to monitor curriculum quality.
Other existing CA approaches can be classified into three
main categories based on underlying methodology: (i) pro-
cess mining, (ii) process simulation, and (iii) curriculum
structure-based prediction. Process mining techniques have
been proposed to create visualizations of the educational
process focusing on the order of interactions with individual



curriculum elements (e.g., (Trcka, Pechenizkiy, and van der
Aalst 2010; Bogarı́n, Cerezo, and Romero 2018)). As an ex-
tension to process mining, simulation approaches have been
explored to estimate effects of potential curriculum changes
(e.g., (Molontay et al. 2020; Baucks and Wiskott 2022)).
Lastly, different prediction techniques have been developed
to predict future student performance (Slim et al. 2014) and
to make personalized curriculum recommendations (Back-
enköhler et al. 2018; Jiang, Pardos, and Wei 2019).

In this paper, we address the open question of how to
trace changes in course difficulty inside a curriculum over
time which is crucial for ensuring equal treatment of indi-
vidual student cohorts and consistent GPA scores. Existing
process mining and simulation approaches assume that indi-
vidual courses behave the same over time and are known
to suffer from concept drift issues (Bogarı́n, Cerezo, and
Romero 2018). Similarly, prior prediction studies build on
the IID assumption and are unable to quantify the effects of
distribution shift (i.e., varying course difficulty). While de-
scriptive statistics such as course pass rates (PR) and student
retention can be used to monitor courses over time, they pro-
vide limited information regarding underlying factors–i.e., is
a metric change due to a variation in the course or cohort?

IRT has been proposed in the context of standardized test-
ing to address fundamental limitations of classical test the-
ory (i.e., (i) the inability to compare student scores obtained
from different tests and (ii) the dependence of item parame-
ters on the test taker cohort) (van der Linden and Hambleton
2013). Outside the domain of standardized testing IRT based
approaches have for example been used for adjusting high
school GPAs based on subject difficulty (Hansen, Sadler,
and Sonnert 2019) and for health assessments (Thomas
2011). Related to CA multiple IRT-based approaches have
been proposed to model students’ university course satisfac-
tion in a single year (e.g., (Bacci and Gnaldi 2015)) and over
multiple years (e.g., (Sulis, Porcu, and Tedesco 2011; Sulis,
Porcu, and Capursi 2019)) based on students’ teaching eval-
uation (SET) surveys. While student satisfaction is an impor-
tant metric, concerns have been raised about the low correla-
tion between SET evaluations and learning outcomes (Uttl,
White, and Gonzalez 2017).

Closest to the spirit of this paper is a work by Bacci et al.
(2017) which proposed a multidimensional latent class IRT
(LC-IRT) model to classify first-year students into different
performance groups using exam enrollment and exam grade
data. They studied data from 861 incoming Economics and
Business students going through six courses during the sin-
gle academic year 2013/2014. Students were split into four
groups by their last name and each group was taught courses
by different lecturers. As part of their work Bacci et al.
(2017) pointed out variations in course difficulty between in-
dividual groups. In contrast, our work focuses on accurately
tracing changes in course difficulty over multiple years us-
ing data from a Computer Science Bachelor’s program con-
sisting of 19 courses over nine years. We show that IRT
can yield valuable insights from students’ multi-year per-
formance data. Bacci et al. (2017) trained a comparatively
more complex IRT model, but reported difficulties with fit-
ting course discrimination parameters even when working

with a small number of courses. In our work, we employed
the simpler Rasch model (Rasch 1960) as it yielded the high-
est confidence regarding difficulty parameter fit.

3 Methodology
Focusing on the CA domain, we introduce the IRT frame-
work. We then define a multi-step IRT-based methodology
(i.e., (i) dimensionality assessment, (ii) model selection, and
(iii) validity/reliability assessment) for tracing course diffi-
culty changes over time which we later evaluate on data from
a CS bachelor’s program. Importantly, IRT assumes that a
student’s latent trait does not vary over time (detailed dis-
cussion in Section 5). With this assumption, IRT’s suitabil-
ity for describing data from a multi-year program is not ob-
vious. Therefore, we also evaluate the suitability of the IRT
framework for CA using reliability and validity methods.

3.1 Item Response Theory
In the following, we assume a curriculum consisting of a
number of courses offered repeatedly in different semesters
with dichotomous grades (”pass”/”fail”). We use the term
course offerings (CO) to refer to one course in one semester.
Focusing on CA, the idea underlying IRT is to relate each
student’s average course PR to the overall probabilities with
which students pass individual COs. The relationship be-
tween student and CO PRs can be modeled by fitting a sig-
moid function for each CO known as item response function
(IRF). The inverse image (x-axis) of the IRF consists of stu-
dent trait values, which can be thought of as a form of stu-
dent PRs. The image (y-axis) of the IRF is the probability of
passing a certain CO.

For CO j the position of its IRF on the x-axis (i.e., the
trait value at which the IRF has the largest slope) indicates
the CO difficulty denoted as δj . The slope of the IRF de-
scribes the CO discrimination property denoted as αj . Given
student trait θi, CO difficulty and discrimination, we define
the probability of passing a CO j as

P(Xi,j = 1 | θi, αj , δj) =
1

1− e−αj(θi−δj)
, (1)

where Xi,j is the dichotomous response of student i to CO
j. X is the potentially sparse CO response matrix capturing
all responses. The IRT model defined by Equation 1 can be
fitted using maximum likelihood estimation. If we optimize
only the difficulty parameters δj and fix all αj = 1, we refer
to it as Rasch or 1-parameter logistic model (1PL) (Rasch
1960). If all αj are free, we call it Birnbaum or as 2-
parameter logistic model (2PL) (Birnbaum 1968).

The Birnbaum model has been generalized to a multidi-
mensional IRT model (Chalmers 2012) which characterizes
CO discrimination and student traits using multidimensional
parameter vectors. This multidimensional model explains
observational data via multiple latent variables, which can
be interpreted as distinct student skills. In the following, we
refer to the 2-dimensional IRT model as 2PL-2DIM.

3.2 Dimensionality Assessment
In our setting, IRT explains student course performance data
via student trait and CO difficulty parameters. The number



of latent dimensions required to explain the data relates to
the number of distinct traits that describe a student’s ability
to complete COs successfully. To assess the number of di-
mensions we perform principal component analysis (PCA)
on the grade point CO response matrix X [0,100] (Mair 2018).
Because the PCA algorithm demands a complete CO re-
sponse matrix we need to address the sparsity common in
course examination data. We assume that skills associated
with individual courses are content-based and do not change
from offering to offering (e.g., the content of the CS1 course
is time-invariant). This assumption allows us to aggregate
the data from different offerings of the same course to form a
denser course response matrix. The remaining missing val-
ues (e.g., due to drop-out students) are filled using multi-
ple iterative PCA imputation (MIPCA) (Josse, Husson et al.
2011), leaving us with a dense aggregated course response
matrix agg(X [0,100]) with 19 courses. MIPCA allows us
to perform PCA on a complete matrix and can estimate
imputation-induced uncertainty in the recovered principal
components (PCs). Finally, we use a Scree plot visualizing
the eigenvalues of the covariance matrix Cagg(X[0,100]) of the
aggregated course response matrix as a complementary cri-
terion for assessing latent dimensionality (Mair 2018).

3.3 Model Selection
After determining an upper bound on the number of la-
tent dimensions, we fit corresponding Rasch, Birnbaum,
and multidimensional IRT models. We select the final
model using common information criteria–i.e., Akaike in-
formation criterion (AIC) (Akaike 1998), Bayesian infor-
mation criterion (BIC) (Schwarz 1978) and sample size ad-
justed Bayesian information criterion (SABIC). These crite-
ria quantify the trade-off between model fit (log-likelihood)
and potential overfitting (number of model parameters).

3.4 Validity and Reliability Assessment
One core assumption underlying IRT is that the latent stu-
dent trait stays constant over time which is natural in the
standardized testing domain. In the CA context, it is not ob-
vious that IRT is suitable to model data from a multi-year
degree program. We, therefore, need to ensure the validity
and reliability of the parameters recovered by IRT for CA.

We study concurrent validity by considering correlations
between IRT parameters and student GPAs and CO PRs. In
line with GPA adjustment research (e.g., (Hansen, Sadler,
and Sonnert 2019)) we expect a positive correlation between
student trait parameters and GPAs, and a negative correla-
tion between CO difficulty parameters and PRs.

We evaluate the reliability of the difficulty parameter esti-
mation via a simulation study. Following common method-
ology (e.g., (Sahin and Anil 2017; Mair 2018)) we gen-
erate a ground truth IRT model by sampling student trait
and CO difficulty values from a standard Gaussian and
simulate student responses for different expected CO sizes
({50, 75, 100, 150, 200, 250, 300}). To mimic missing re-
sponses we randomly mask individual response matrix en-
tries with a probability equal to the missing value ratio of
our real data (29%). The number of simulated students is

chosen to meet the expected CO size. Following recommen-
dations by Pekmezci and Avşar (2021), we generate data for
1,000 seeds. We report root mean square error (RMSE) and
Pearson correlation metrics of the learned difficulty param-
eters using ground truth.

4 Experiments
4.1 Dataset Description
The dataset used for our study provides exam scores from a
CS Bachelor’s program at an anonymous university in Ger-
many. Between 2013 and 2022, exam data from 1098 stu-
dents was collected for 19 compulsory courses including
data from graduated, enrolled, and dropout students. The
grading scale of each exams is [0, 100]. An exam is con-
sidered passed if at least 50 percent is achieved and failed
otherwise. Except for the project-based software engineer-
ing course, each course grade was determined via a single
written examination at the end of the semester which em-
phasizes the importance of these individual assessments.

Before obtaining the data, anonymization was performed
by removing all demographic information and by adding a
uniform stochastic noise between [−5, 5] to each grade. We
performed the following preprocessing steps: Considering
IRT’s local independence assumption, we focused on stu-
dents’ first exam attempts and omitted reattempts. Further,
students with < 5 observed grades > 0 were omitted, and
we omitted COs with less than 20 students to promote a sta-
ble difficulty parameter fit. This resulted in a dataset with
664 students and 127 COs. Since we use dichotomous IRT
models, we converted the grade point to ’pass’/’fail’ data.

4.2 Dimensionality Assessment
To inform the model selection, we investigate how many la-
tent dimensions are required to explain variance captured
in the course response matrix. After aggregating responses
from different COs (see Subsection 3.2), the missing value
ratios of individual courses vary between 7% and 44%. We
observe more missing values in courses recommended for
later semesters. We generate 1,000 dense response matrices
by filling missing values with different MIPCA imputations.

Focusing on one of the imputed matrices, we visualize
the eigenvalues of its corresponding covariance matrix in a
Scree plot (Figure 1). We see one large eigenvalue above 12.
All other eigenvalues are significantly smaller and do not not
vary much in magnitude which suggests one or two latent
dimensions represented by the first and second PC.

While the Scree plot focused on a single imputation,
we now study the amount of uncertainty induced by mul-
tiple MIPCA imputations. Figure 2 visualizes the individual
courses in the latent space defined by the first (x-axis) and
second (y-axis) PC. The spread in the individual course rep-
resentations shows the degree of uncertainty induced by the
MIPCA imputations. We observe that representations tend
to vary more for courses with more missing values. Overall,
however, the amount of induced uncertainty in the course
representations is small, indicating that the recovered PCs
are robust towards the exact imputation that is performed.
For the dimensionality assessment, we observe that most
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Figure 1: Scree plot visualizing the eigenvalues of the stu-
dent course grade covariance matrix for a single imputation.

Figure 2: Scatter plot showing variance in course represen-
tations using first 2 PCs for different MIPCA imputations.

course representations are aligned with the first PC and ex-
hibit less variation in the second PC. Further, we see that
PC 1 captures 60.48% and PC 2 captures 6.42% of the vari-
ance (Figure 2 axis). This also aligns with the eigenvalues
relationships we observed in Figure 1. We thus consider one
and two latent dimensions in following model selection.

4.3 Model Selection

We train Rasch, Birnbaum, and 2PL-2DIM IRT models and
compare their fits using the information criteria AIC, BIC,
and SABIC (Table 1). While the lower AIC score indicates
that the 2PL-2DIM model is preferred, the lower BIC and
SABIC scores, which are more conservative regarding the
number of model parameters, indicate that the Rasch model
is more suitable. In addition, the Rasch model performs bet-
ter than the Birnbaum model in all three criteria. Thus, we
focus on the Rasch model in the following experiments.

Model AIC BIC SABIC
Rasch 8439.35 9015.13 8608.73

Birnbaum 8445.11 9587.67 8781.21
2PL-2DIM 8372.75 10082.10 8875.58

Table 1: Information criteria for different IRT models.
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Figure 3: Scatter plot indicating correlation between student
trait estimates based on Rasch model and student GPAs.

4.4 Validity and Reliability Assessment
We examine the student trait and course difficulty parame-
ters learned by the Rasch model. To assess concurrent valid-
ity, we relate student trait estimates to student GPAs (Fig-
ure 3) and CO difficulty estimates to CO PRs (Figure 4).
We see a strong positive correlation between student trait
and GPA with a Pearson coefficient of r = 0.931 (p <
0.001). We see a strong negative correlation between CO
difficulty and PR with a Pearson coefficient of r = −0.908
(p < 0.001). This meets our intuition that a higher student
trait value relates to a higher GPA and a higher CO difficulty
value relates to a lower PR. In Figure 4, we observe that COs
with very high PRs (> 95%) visually stand out from the rest
of the distribution. We examined the individual COs more
closely and marked COs that fall into the period 2020-2022
as pandemic COs in red. A strong accumulation of pandemic
COs among the COs with PRs > 95% is visible.

Simulation Study Following Subsection 3.4 we conduct a
simulation study to test how much data is required to ensure
a reliable Rasch model fit. Figure 5 shows average RMSE
and Pearson correlation values and corresponding 90% con-
fidence intervals by comparing CO difficulty values learned
from different amounts of student data to ground truth diffi-
culty parameters. We observe RMSE values < 0.33 (when
training on ≥ 75 students per CO) and correlation values
> 0.7 (in all cases) indicating that we can achieve a satisfac-
tory model fit using small-scale data (Sahin and Anil 2017).

4.5 Investigating Model Parameters
As additional comparison of IRT’s student trait and CO dif-
ficulty parameters to student GPAs and CO PRs, Table 2
shows that student trait and CO difficulty lead to a better
model fit than GPA and PR when predicting CO outcomes.
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Figure 5: Simulation study across 1,000 simulated Rasch
datasets. We provide average RMSE and Pearson correla-
tion values by comparing learned difficulty to ground truth
difficulty parameters and plot 90% confidence intervals.

Here, analog to the IRT model which is a logistic regression
model that explains the data using student trait and CO diffi-
culty values, we fitted a logistic regression that explains the
data using student GPA scores and CO PRs. This is infor-
mative as it allows us to compare the predictive power of
the two variable pairs. Although the IRT model only uses
dichotomous (pass/fail) data to determine the student trait, it
performs better for all metrics compared to the GPA model
which has access to detailed point grade data.

To trace changes in course difficulty over time, we visu-
alize the estimated CO difficulty values for each of the 19
compulsory courses for different semesters (Figure 6). We
quantify the reliability of the model fitting process, by pro-
viding confidence intervals derived from the Fisher infor-
mation matrix used in the Wald test (Agresti 2003). Again,
we marked COs falling into the period 2020-2022 in red as
pandemic COs. First, it can be seen that the difficulty of in-
dividual COs can vary over time. Looking at trends in dif-
ficulty, we observe that some courses became less difficult
(e.g., CompSci II), some became more difficult (e.g., Math-
ematics I), some had low fluctuations (e.g, Privacy), and oth-

Figure 6: Scatter plot visualizing changes in CO diffi-
culty (as captured by Rasch IRT model parameters) over
time together with 95% confidence intervals (as determined
by Wald test). We observe different patterns in CO diffi-
culty trends (stationary, increasing, decreasing, oscillation).
Marked in red are pandemic COs (conducted after WS2019)
which exhibit substantially lower difficulty values compared
to their non-pandemic versions.



Model ACC AUC NLL RMSE
Rasch 0.840 0.918 0.346 0.332

GPA + PR 0.813 0.893 0.390 0.356

Table 2: Model fit indicators for logistic regression models
using Rasch parameters and student GPA + CO PR.

Course Name Mean Size PR Adjusted PR
Mathematics I 82 0.641 0.719

Statistics 64 0.673 0.653
CompSci I 79 0.650 0.704

Programming 69 0.622 0.586
Economics 79 0.688 0.759

Mathematics II 69 0.650 0.641
CompNets 74 0.678 0.659
CompSci II 76 0.581 0.612

Obj Modeling 76 0.621 0.570
Management 59 0.620 0.424

DiscMath 69 0.620 0.573
CompArch 76 0.648 0.629

CompSci III 58 0.840 0.788
Data Structures 53 0.750 0.658

SoftEng 67 0.823 0.828
WebEng 74 0.771 0.842
OpSys 70 0.632 0.624
Privacy 72 0.661 0.611

Databases 83 0.585 0.490

Table 3: Mean PRs of compulsory CS courses over all
semesters and mean PRs adjusted using mean Rasch student
trait and course difficulties parameters. We see upward/-
downward adjustments during earlier/later semesters.

ers had high fluctuations (e.g., Programming and Statistics).
Focusing on the pandemic COs, we see a systematic down-
ward trend in CO difficulty. Only CompArch and Privacy
maintained their difficulty level during the pandemic. Lastly,
it is noticeable that the COs with very low difficulty (< −3)
(discussed in Subsection 4.4) have wider confidence inter-
vals indicating uncertainty in the estimation process.

We observed a strong correlation between CO difficulty
estimates and PRs (Figure 4). Remarkably, the Rasch model
enables us to determine trait adjusted PRs that allow us to
compare COs taken by different student cohorts (unadjusted
PRs are confounded by the traits of their respective cohort).
Here, the adjusted PR of a course is the mean probability
for a student of average trait value (-0.007) of passing that
course computed over all respective COs as determined by
the Rasch model. Table 3 shows adjusted and un-adjusted
PRs for all courses. We observe that adjusted PRs often do
not vary much from unadjusted PRs (this might differ for in-
dividual COs). SoftEng, and OpSys show particularly small
differences. In contrast, Databases, and Management show
particularly large differences. In the first semester, we ob-
serve a general upwards correction in the adjustment PRs,
and from the second semester on a downward correction.

5 Discussion and Future Work
Our experiments showed that item response theory (IRT)
based methodology can provide valuable insights in the cur-
riculum analytics (CA) domain. Particularly, IRT allows us
to address the open problem of tracing changes in course
difficulty over time. This includes instances where the in-
stitution consciously decides to alter the difficulty of a spe-
cific course, as well as situations where unintended difficulty
changes occur. Our methodology can quantify the effects of
policy changes and can in case of unintended variations raise
a flag to start the search for underlying causal factors.

We observed that course difficulty values can exhibit dif-
ferent trends over time. Difficulty values can increase, de-
crease, or can show other types of fluctuations. Existing
CA approaches cannot capture such temporal effects be-
cause they assume constant course properties. This is re-
flected in the concept drift issues of process mining and
simulation techniques (Bogarı́n, Cerezo, and Romero 2018)
and the IID assumption underlying prediction-based ap-
proaches. IRT-based techniques could be used to improve
such methodological shortcomings in future work by ac-
counting for course changes over time. In particular, this is
useful when datasets are too small for temporal resolution
with Markov/Bayes networks or deep learning techniques.

IRT is predicated on two key assumptions: (i) local in-
dependence and (ii) constant latent trait. In our context, the
local independence assumption posits that a student’s prob-
ability of passing a particular course offering (CO) is inde-
pendent of their performance in other COs, given their la-
tent trait. Considering this assumption, this study focused on
first-attempt examination data. Future work will employ the
Q3 criterion (Yen 1993) to quantify to what degree course
performance data meets this assumption. The constant la-
tent trait assumption posits that a student’s latent trait stays
constant across examination items. The construct has been
addressed by limiting exams to first attempts. Future work
will use split half reliability for further validation. However,
the resulting meaning of the trait as ”ability to pass courses
in a CS program on the first attempt” should be interpreted
with care as it might be more constant than certain specific
aspects of student knowledge. The primary aim of this study
was to quantify changes in course difficulty, thus the trait
values should be considered in this context when interpret-
ing the results. One limitation of our study is that we only
considered data from a single degree program at a single
university. Applying this methodology to other types of de-
gree programs (academic or professional) will be important
to assess the generalizability of the proposed methodology.

The pass rates (PR) of individual course offerings are con-
founded by the trait level of their respective student cohort.
The IRT framework allows us to define trait adjusted course
PRs, that quantify how well a student of average trait would
have performed in each course. The results suggest that in
the later semesters, the unadjusted PRs are too high pre-
sumably due to dropouts in earlier semesters. Adjusting PRs
via the application of polytomous IRT models (e.g., rating
scale and partial credit models (Mair 2018)), that can cap-
ture more information about grading criteria, is an interest-
ing direction for future work.



We saw a systematic drop in the difficulty of most
compulsory courses during the COVID-19 pandemic (Fig-
ure 6). This systematic shift raises the question of under-
lying causal factors. Two potentials explanations are: (i) A
lowered course niveau. (ii) A more beneficial learning envi-
ronment (e.g., online teaching, communication of learning
objectives). First would lead in the long run, to knowledge
gaps and could harm student’s academic and professional
advancement. The second would lead to opposite results.

Lastly, we hope that similar IRT-based approaches will
become standard CA tools to quantify and control variations
in course difficulty over time to ensure the equal treatment
of different student cohorts and consistent GPA scores.
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