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Sequences

M all behavior and thinking consist of sequences
of physical or mental acts

B sometimes in a fixed order as in action
routines, or highly trained action patterns

B but potentially highly flexible ... as in language,
thinking, problem solving ...



DFT challenge for sequences

B DFT postulates that all neural states
underlying behavior/mental process are
attractors that resist change...

B but generating sequences of such states
require change of state! Conflicting
constraints!

M answer: instabilities are induced systematically
to enable switching to a next/new attractor



Road .
2EE® Sequence generation

M an illustrative example

B the neural/mathematical mechanism



Sequence of physical acts

B task: search for objects of a given color in a given order

B | blue
‘ target 2

B 2 red ‘

M green

target |
obstacles
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objects once they
are detected

M ighore objects
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when their turn
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Implementation as an imitation task

B [earn a serially ordered B perform the serially
sequence from a single ordered sequence with
demonstration new timing
yellow-red-green-blue-red yellow-red-green-blue-red

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



red a distractor red a target

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



ordinal dynamics
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[Sandamirskaya, Schoner: Neural -
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Visual search
Camera image

B 2D visual input color vs.

horizontal space

M intensity of input from a
color histogram within
each horizontal location
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Visual search

B current color searched provides ridge input
into a color-space field

Color-space DF

search cue
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ordinal stack

intentional state
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transition . Ordinal nodes
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Learning Production

T | | 1 i T -

rfhv U Wr & 3 | l A
.-—I -

o

- activity

G B Y CoS
i +/detected

150
g
_C1OJ C
50 I
]
Obiject
0 detected
Q150
g | ' |
< ' | | y . D
C s : "
ke ! : . :
p= >
O
o

>
0.2 0.4 0.6 0.8 1.0 1.2 | .4 1.6 1.8 1.0 time\l100,s



A intention

Mathematical mechanism
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Sequence of instabilities

B the CoS is pre-shaped by the intention field, but is in
the sub-threshold state

B until a matching input pushes the CoS field through
the detection instability

B the CoS field inhibits the intention field that goes
through a reverse detection instability

B the removal of input from the intention to the CoS
field induce a reverse detection instability

M both fields are sub-threshold 17 anesens [\ mersion




CoS and efference copy

B one could think of the “prediction” implied in
the CoS as being a form of efference copy

B that does act inhibitorily...

B but it does so on the (motor)intention, not on
the perception of the outcome that is
predicted!




Generalization

B match-detection => CoS

B mis-match (or change) detection => CoD
(condition of dissatisfaction)

[Grieben, Schoner, CogSci 2021]
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Roadmap How is the next state selected?

B once the current state has been
de-activated...

B three notions

B gradient-based selection
B chaining

B positional representation

M an illustration



How is the next state selected?

B once the current state has been deactivated...

® 3 notions (~Henson Burgess 1997)

.................................................

................................................

M | gradient-based selection

B 2 chaining sz; " ; lé?

B 3 positional representation
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Gradient-based

M 2 field/set of nodes is released from inhibition
onhce the current state is deactivated...

M a new peak/node wins the selective
competition based on inputs...

B e.g. salience map for visual search

M e.g. overlapping input from multiple fields..

B return to previous states avoided by inhibition
of return . Vo

[Grieben, Schoner, CogSci 2021] X X
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Gradient-based

B this is used in many of the DFT architectures
M visual search
B relational grounding

B mental mapping

....................... ) A
@ ...................................................
Y IR y
[Grieben, Schoner, CogSci 2021] X pes o
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Chaining

B for fixed sequences...

B e.g. reach-grasp

B fixed order of mental operations... e.g. ground reference
object first, then target object

M |ess flexible (e.g.. when going through the same
state with different futures)

B could be thought to emerge with practice/habit
from the positional system
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Positional representation

® a neural representation of ordinal position is
organized to be sequentially activated...

B the contents at each ordinal position is determined by
neural projections from each ordinal node...

Ordinal nodes
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Ordinal nodes
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[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]
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Positional representation

M essentially chaining with flexible contents

B good for fast learning of sequences...
M e.g. imitation

M 2 Hippocampus function?

B but: must have potential synaptic links to
many representations...

B => such ordinal systems must exist for sub-
representations... embodiment effects...



Serial order d

[Tekulve et al,,
Frontiers in
Neurorobotics

(2019)]
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FIGURE 5 | Time course of learning a three element sequence with varying presentation time.
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FIGURE 6 | Time course of recalling a three element sequence through pointing at colored objects.
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Conclusion

M the principles of DFT

B localist representations form stable states
B that may made unstable in a controlled way

B through the “condition of satisfaction”

M enable the autonomous generation of
sequences of mental motor states

B => a fundamental first step toward higher cognition



