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Dimensionality of fields

all this was done primarily in fields defined 
over a single dimension… 

multi-dimensional fields are not per se 
fundamentally different…. 

in particular, they have the same kind of 
dynamics as one-dimensional fields 



example: retinal space
obviously two-dimensional

visual field location, although the RF of each neuron might be
broadly tuned to stimulus location.

For extrapolation, DPAs were obtained by replacing the neural
activity observed in other time intervals or in response to com-
posite stimuli.

Temporal evolution of the DPAs of elementary stimuli
The main emphasis of this study was to explore cortical interac-
tion processes. It appears conceivable that such processes can be
traced during the entire temporal structure of neuron responses
because of differences of time constants of excitatory and inhib-
itory contributions (Bringuier et al., 1999) and because of time-
delayed feedback (Dinse et al., 1990). Accordingly, as an impor-
tant prerequisite, time-resolved DPAs were constructed for a
number of subsequent time intervals after stimulus onset using
the firing rates within each time slice as weights. Figures 3 and 4

illustrate the temporal evolution of the DPAs from 30 to 80 msec
after stimulus onset for two selected elementary stimuli. There is
a remarkable spatial coherence of activity within the ensemble.
The gradual build-up and decay of activation were quite uniform
across the distributions of all elementary stimuli.

On average, the DPAs constructed by Gaussian interpolation
reached maximal level of activation 54 ! 4 msec after stimulus
onset as compared to 53 ! 5 msec for the OLE-derived DPAs
(see Fig. 9B). To quantitatively assess the accuracy with which the
DPAs represent the location of the elementary stimuli position
during the entire time course of responses analyzed (30–80
msec), we compared the position of the maximum of each DPA to
the respective stimulus position. Figure 5 plots these constructed
positions against the real stimulus positions. Results from both
reconstruction methods revealed that the DPAs represent stimu-
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Figure 3. Two-dimensional DPAs of adjacent elementary stimuli (top and bottom) derived by Gaussian interpolation. The DPAs were obtained for
consecutive intervals of 10 msec duration covering the period from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2 B. Each example
was normalized separately. As for the OLE-derived DPAs (compare Fig. 4), the distributions grow and decay gradually, and their maximum is always
located near the position of the stimulus. Although the two stimuli are at neighboring locations, differences of the spatial representations are apparent
throughout the time course of the response. For all elementary stimuli, the average latency of maximal activation was 54 ! 4 msec.
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Figure 4. The temporal evolution of two OLE-derived DPAs of the same elementary stimuli (A, B, vertical lines indicate position) as shown in Figure
3. The DPAs are depicted in 10 msec time intervals covering the period from 30 to 80 msec. The distributions grow and decay, gradually reaching
maximum activity at 53 ! 5 msec (average of all seven elementary stimuli) after stimulus onset. The position of the maximum of each distribution closely
approximates the stimulus position of the elementary stimulus throughout the time course of the neural population response, yet less accurately in the
late time epoch.

9020 J. Neurosci., October 15, 1999, 19(20):9016–9028 Jancke et al. • Population Dynamics within Parametric Space
time

[Jancke et al., 1999]



example: visual feature map
orientation-retinal location

[Jancke, JNeursci (2000)]



example: visual feature maps

the neural field 
representation a single 
feature (e.g. orientation) as 
well as retinal location is at 
least three-dimensional

cannot be mapped onto 
cortical surfaces without 
cuts ... 



Dynamic fields of higher dimensionality

2-dimensional1-dimensional

1, 2, 3, 4… dimensions: peak/
blob states … 

dynamics scale with dimensions 
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

3-dimensional



Nodes… 

0-dimensional

represent discrete categories by virtue of their coupling 
to feature fields/feedforward NN

typically embedded in populations of nodes that are 
inhibitorily coupled enabling selection among categories
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Nodes… 

may also play a specific role to organizes fields within 
architectures.. 

=> we’ll address this when talking about sequences
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What do higher 
dimensional fields 

represent?



Combining different feature dimensions

neurons tuned to multiple dimensions 

e.g. receptive field + direction tuning 

=> combines visual space and orientation

“anatomical” binding

[Hubel, Wiesel, 1962]



Combining different feature dimensions

example: a joint 
representation of color 
and visual space “binds” 
these two dimensions

Space-Color Field
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color processing in visual cortex not
fully understood, but population
code over hue values is a reasonable
simplification

qualitatively same e↵ects as in 3D
field, but easier to visualize in 2D
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[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Extract bound features

project to lower-
dimensional fields 

by summing along the 
marginalized dimensions

(or by taking the soft-
max)

Read-out from high-dimensional field
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fields of di↵erent dimensionality
can interact with each other

read-out of one feature
dimension: integrate over
discarded dimensions

e.g. spatial readout:

IS(x) =

Z
f (uv (x , y))dy

often additional Gaussian
convolution in read-out for
smoothness (reflects synaptic
spread in biological system)
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[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Assemble bound representations
project lower-dimension field onto higher-
dimensional field as “ridge input” 
Ridge Inputs to Multi-Dimensional Fields

−30° −20° −10° 0° 10° 20° 30°

0

10

−10

010 −10
activation

co
lo

r (
hu

e 
va

lu
e)

spatial location

co
lo

r f
ie

ld

space-color field

0

90

180

270

360

visual scene

spatial field

−30° −20° −10° 0° 10° 20° 30°

0

10

−10

010 −10
activation

spatial location

co
lo

r f
ie

ld

space-color field

visual scene

spatial field

projection from 1D to 2D: ridge input
does only specify value in one dimension, homogeneous in the other
should typically not induce a peak by itself
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[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Assemble bound representationsRidge Intersections
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intersection of 1D ridges can
specify location in 2D

binding problem when multiple
items are present
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[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Feature Conjunctions and Feature Binding
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multiple ridges create additional
intersections

1D fields with multiple peaks do
not specify which features
belong together

combined representation
necessary to resolve feature
binding problem

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 13 / 37

binding problem: 
multiple ridges along 
lower-dimensional space 
lead to a 
correspondence 
problem

=> assemble one bound 
object at a time… 

=> sequentiality bottle-
neck!

Assemble bound representations

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Search
Visual Search
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combine top-down feature input
(1D) with bottom-up localized
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read out spatial position of
matching item
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ridge input along one 
dimension extracts 
from bound 
representation matching 
objects

other dimensions of 
those objects can then 
be extracted

e.g. visual search 

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Visual search

[Grieben et al. Attention, 
Perception & Psychophysics 

2020; CogSci 2021]
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A neural dynamic process model of combined bottom-up and top-down 
guidance in triple conjunction visual search
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Methods

Results

Conclusion

The neural dynamic process model
The surprising efficiency of triple conjunction search (Found, 
1998) has created a puzzle for modelers who link visual fea-
ture binding to selective attention, igniting an ongoing deba-
te on whether features are bound with or without attention. 
Nordfang and Wolfe (2014) identified feature sharing and 
grouping as important factors in solving the puzzle and the-
reby established new constraints for models of visual search. 
Here we extend our neural dynamic model of scene percep-
tion and visual search (Grieben et al., 2020) to account for 
these constraints without the need for preattentive binding. In 
the model, parallel neural processes evolve in continuous time 
from which selection events emerge sequentially through dy-
namic instabilities. 

Dynamic Field Theory (DFT) (Schöner et al., 2016) is a mathe-
matical framework that uses graded patterns of activation in 
neural populations evolving in continuous time to account for 
perception, action, and embodied cognition. Functional states 
are stable patterns of population activation. Peaks are the units 
of representation in DFT. Dynamic instabilities are the basis for 
the emergence of sequences of processing steps in which ac-
tivation patterns transition between stable states. Fields may 
operate in different dynamic regimes. In the self-stabilized re-
gime, peaks are stabilized against decay and changes in in-
put. In the selective regime, only a single peak is stable at a 
time. In the regime of sustained activation, peaks may persist 
when the localized input is removed. Networks of fields are 
defined by directional coupling among fields or nodes (0D).

Feed-forward feature maps
The bottom-up pathway of the mo-
del is a parallel preattentive pro-
cess purely driven by input.
(A1) Visual input may come from 
a live camera image or from ran-
domly generated search displays. 
(A2) Three features are extracted 
in parallel: color, orientation, and 
shape. 
(B) The neural activation pattern 
across the entire neural population 
for each feature is represented in 
the respective scene space/fea-
ture map. These neural represen-
tations are defined over the two 
dimensions of visual space and 
over one feature dimension.
(C) The activation of the scene 
space/feature map fields is mar-
ginalized along the feature dimen-
sion, using a 3D center-surround 
filter as the projection kernel, re-
sulting in a conspicuity map for 
each feature. Due to the inhibitory 
part of the center-surround kernel 
the relative bottom-up salience of 
an object decreases linearly with 
the number of features shared with 
its flankers. The locally excitatory 
part of the center-surround kernel 
gives objects that are surrounded 
by empty space or by flankers 
that share no features with them 
a competitive advantage. The-
se conspicuity maps are integra-
ted in a spatial salience map. The 
output of this field is the nonlinear 
bottom-up salience map that is re-
sponsible for the grouping effect. 

Feature matching 
(F) This sub-network compares (in 
parallel) expected feature (G) and 
attended feature (E). The mismatch 
detection field generates a peak 
if expected and attended feature 
fields have peaks at different lo-
cations along the feature dimen-
sion. A peak in all three fields (at-
tended feature, expected feature, 
and mismatch detection) signals a 
no match. Absence of a peak in 
the mismatch detection field, with 
peaks in the two other fields, sig-
nals a match. 
Attentional selection
(D) The scene spatial selection 
field receives weighted bottom-
up bias, and weighted top-down 
bias. This field operates in the dy-
namic regime of selection. This 
provides the neural substrate for 
feature binding through selection. 
(H) The three space/feature over-
lap fields receive sub-threshold 
input from the feature maps (B) 
and feature input from the target 
search cue (G). Peaks form where 
activation overlaps.
(H1) The feature guidance field 
receives the marginalized activa-
tion of these fields (H) as spatial in-
put. The resting level of this field is 
down-regulated dynamically via 
inhibitory connections from (G) so 
that it decreases linearly with the 
number of cued features. The out-
put of this field provides the non-
linear top-down bias and is re-
sponsible for the sharing effect.

Visual search
Visual search is initiated as soon as a peak is 
formed in the scene spatial selection field (D). It 
terminates when all three features at the atten-
ded location match the features of the search cue 
(G). Responsible for this termination is the fea-
ture matching sub-network (F), whose condition 
of satisfaction (CoS) node is activated when this 
match occurs. If at least one features mismatch is 
detected, the condition of dissatisfaction (CoD) 
node is activated and inhibits the intention node. 
This in turn destabilizes the scene spatial selec-
tion sub-network (D), which deactivates the CoD 
itself. The intention node is released from inhibi-
tion and a new attentional selection takes place. 
That selection is biased away from previously at-
tended locations through inhibitory input to the 
scene spatial selection field (D) from the inhibiti-
on of return field (D1) that contains self-sustained 
peaks at previously attended locations.
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tractor groups sharing zero features (D(0)), one feature (D(1)), 
two features (D(2)) or with distractor groups composed of items 
with zero, one, and two shared feature values (D(012), 26D). 
Three, 12, or 26 different distractor groups were used. 
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of representation in DFT. Dynamic instabilities are the basis for 
the emergence of sequences of processing steps in which ac-
tivation patterns transition between stable states. Fields may 
operate in different dynamic regimes. In the self-stabilized re-
gime, peaks are stabilized against decay and changes in in-
put. In the selective regime, only a single peak is stable at a 
time. In the regime of sustained activation, peaks may persist 
when the localized input is removed. Networks of fields are 
defined by directional coupling among fields or nodes (0D).

Feed-forward feature maps
The bottom-up pathway of the mo-
del is a parallel preattentive pro-
cess purely driven by input.
(A1) Visual input may come from 
a live camera image or from ran-
domly generated search displays. 
(A2) Three features are extracted 
in parallel: color, orientation, and 
shape. 
(B) The neural activation pattern 
across the entire neural population 
for each feature is represented in 
the respective scene space/fea-
ture map. These neural represen-
tations are defined over the two 
dimensions of visual space and 
over one feature dimension.
(C) The activation of the scene 
space/feature map fields is mar-
ginalized along the feature dimen-
sion, using a 3D center-surround 
filter as the projection kernel, re-
sulting in a conspicuity map for 
each feature. Due to the inhibitory 
part of the center-surround kernel 
the relative bottom-up salience of 
an object decreases linearly with 
the number of features shared with 
its flankers. The locally excitatory 
part of the center-surround kernel 
gives objects that are surrounded 
by empty space or by flankers 
that share no features with them 
a competitive advantage. The-
se conspicuity maps are integra-
ted in a spatial salience map. The 
output of this field is the nonlinear 
bottom-up salience map that is re-
sponsible for the grouping effect. 

Feature matching 
(F) This sub-network compares (in 
parallel) expected feature (G) and 
attended feature (E). The mismatch 
detection field generates a peak 
if expected and attended feature 
fields have peaks at different lo-
cations along the feature dimen-
sion. A peak in all three fields (at-
tended feature, expected feature, 
and mismatch detection) signals a 
no match. Absence of a peak in 
the mismatch detection field, with 
peaks in the two other fields, sig-
nals a match. 
Attentional selection
(D) The scene spatial selection 
field receives weighted bottom-
up bias, and weighted top-down 
bias. This field operates in the dy-
namic regime of selection. This 
provides the neural substrate for 
feature binding through selection. 
(H) The three space/feature over-
lap fields receive sub-threshold 
input from the feature maps (B) 
and feature input from the target 
search cue (G). Peaks form where 
activation overlaps.
(H1) The feature guidance field 
receives the marginalized activa-
tion of these fields (H) as spatial in-
put. The resting level of this field is 
down-regulated dynamically via 
inhibitory connections from (G) so 
that it decreases linearly with the 
number of cued features. The out-
put of this field provides the non-
linear top-down bias and is re-
sponsible for the sharing effect.

Visual search
Visual search is initiated as soon as a peak is 
formed in the scene spatial selection field (D). It 
terminates when all three features at the atten-
ded location match the features of the search cue 
(G). Responsible for this termination is the fea-
ture matching sub-network (F), whose condition 
of satisfaction (CoS) node is activated when this 
match occurs. If at least one features mismatch is 
detected, the condition of dissatisfaction (CoD) 
node is activated and inhibits the intention node. 
This in turn destabilizes the scene spatial selec-
tion sub-network (D), which deactivates the CoD 
itself. The intention node is released from inhibi-
tion and a new attentional selection takes place. 
That selection is biased away from previously at-
tended locations through inhibitory input to the 
scene spatial selection field (D) from the inhibiti-
on of return field (D1) that contains self-sustained 
peaks at previously attended locations.
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The neural dynamic process model
The surprising efficiency of triple conjunction search (Found, 
1998) has created a puzzle for modelers who link visual fea-
ture binding to selective attention, igniting an ongoing deba-
te on whether features are bound with or without attention. 
Nordfang and Wolfe (2014) identified feature sharing and 
grouping as important factors in solving the puzzle and the-
reby established new constraints for models of visual search. 
Here we extend our neural dynamic model of scene percep-
tion and visual search (Grieben et al., 2020) to account for 
these constraints without the need for preattentive binding. In 
the model, parallel neural processes evolve in continuous time 
from which selection events emerge sequentially through dy-
namic instabilities. 

Dynamic Field Theory (DFT) (Schöner et al., 2016) is a mathe-
matical framework that uses graded patterns of activation in 
neural populations evolving in continuous time to account for 
perception, action, and embodied cognition. Functional states 
are stable patterns of population activation. Peaks are the units 
of representation in DFT. Dynamic instabilities are the basis for 
the emergence of sequences of processing steps in which ac-
tivation patterns transition between stable states. Fields may 
operate in different dynamic regimes. In the self-stabilized re-
gime, peaks are stabilized against decay and changes in in-
put. In the selective regime, only a single peak is stable at a 
time. In the regime of sustained activation, peaks may persist 
when the localized input is removed. Networks of fields are 
defined by directional coupling among fields or nodes (0D).

Feed-forward feature maps
The bottom-up pathway of the mo-
del is a parallel preattentive pro-
cess purely driven by input.
(A1) Visual input may come from 
a live camera image or from ran-
domly generated search displays. 
(A2) Three features are extracted 
in parallel: color, orientation, and 
shape. 
(B) The neural activation pattern 
across the entire neural population 
for each feature is represented in 
the respective scene space/fea-
ture map. These neural represen-
tations are defined over the two 
dimensions of visual space and 
over one feature dimension.
(C) The activation of the scene 
space/feature map fields is mar-
ginalized along the feature dimen-
sion, using a 3D center-surround 
filter as the projection kernel, re-
sulting in a conspicuity map for 
each feature. Due to the inhibitory 
part of the center-surround kernel 
the relative bottom-up salience of 
an object decreases linearly with 
the number of features shared with 
its flankers. The locally excitatory 
part of the center-surround kernel 
gives objects that are surrounded 
by empty space or by flankers 
that share no features with them 
a competitive advantage. The-
se conspicuity maps are integra-
ted in a spatial salience map. The 
output of this field is the nonlinear 
bottom-up salience map that is re-
sponsible for the grouping effect. 

Feature matching 
(F) This sub-network compares (in 
parallel) expected feature (G) and 
attended feature (E). The mismatch 
detection field generates a peak 
if expected and attended feature 
fields have peaks at different lo-
cations along the feature dimen-
sion. A peak in all three fields (at-
tended feature, expected feature, 
and mismatch detection) signals a 
no match. Absence of a peak in 
the mismatch detection field, with 
peaks in the two other fields, sig-
nals a match. 
Attentional selection
(D) The scene spatial selection 
field receives weighted bottom-
up bias, and weighted top-down 
bias. This field operates in the dy-
namic regime of selection. This 
provides the neural substrate for 
feature binding through selection. 
(H) The three space/feature over-
lap fields receive sub-threshold 
input from the feature maps (B) 
and feature input from the target 
search cue (G). Peaks form where 
activation overlaps.
(H1) The feature guidance field 
receives the marginalized activa-
tion of these fields (H) as spatial in-
put. The resting level of this field is 
down-regulated dynamically via 
inhibitory connections from (G) so 
that it decreases linearly with the 
number of cued features. The out-
put of this field provides the non-
linear top-down bias and is re-
sponsible for the sharing effect.

Visual search
Visual search is initiated as soon as a peak is 
formed in the scene spatial selection field (D). It 
terminates when all three features at the atten-
ded location match the features of the search cue 
(G). Responsible for this termination is the fea-
ture matching sub-network (F), whose condition 
of satisfaction (CoS) node is activated when this 
match occurs. If at least one features mismatch is 
detected, the condition of dissatisfaction (CoD) 
node is activated and inhibits the intention node. 
This in turn destabilizes the scene spatial selec-
tion sub-network (D), which deactivates the CoD 
itself. The intention node is released from inhibi-
tion and a new attentional selection takes place. 
That selection is biased away from previously at-
tended locations through inhibitory input to the 
scene spatial selection field (D) from the inhibiti-
on of return field (D1) that contains self-sustained 
peaks at previously attended locations.
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sion. A peak in all three fields (at-
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Binding

“anatomical” binding does not scale

binding through space

localist vs. distributed representations

learning 



Scaling feature dimensions
2 spatial dimensions

depth 

orientation

color

texture

movement direction

size 

etc… 

e.g.  dimensions

 neurons per 
dimension

!

more than there 
are in the entire 
brain!

8

100

102*8 = 1016

=>

=> only small sets of 
feature dimensions 
can be bound 
“anatomically” 



Localist vs. distributed

scaling problem arises in 
localist representations

distributed 
representations scale 
better

σ(u)

u

x�x�

�(x�x�)

but: localist representations enable stable states and 
thus cognitive function: detection, selection, working 
memory, (and sequence generation)

that is why DFT sticks to the costly localist picture



Localist vs. distributed

Hopfield networks have 
attractors for distributed 
representations, but these 
(and the synaptic weights) 
are specific to each 
memorized pattern

so the  Hopfield networks lack flexibility that enables 
cognition…

Figure 3 Three neural network architectures that use local learning rules. (a) Pattern association introduced with a single output neuron;
(b) pattern association network; (c) autoassociation network; (d) competitive network. (After Rolls & Treves 1998, Figure 1.7)
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Binding through space

many 3 to 4 dimensional feature 
fields

all of which share the one 
dimension: visual space (~all 
neurons have receptive fields)

bind through space à la Feature 
Integration Theory (Treisman) 

Visual search and working memory: theory and experiment 15
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

[Grieben et al. Attention, Perception & Psychophysics 2020]



Binding through space

Atten Percept Psychophys

Fig. 8 The fields involved in the exploration and memorization sub-task are highlighted within the complete neural dynamic architecture

while in visual working memory and beyond item location
is represented independently of gaze. The coordinate
transform that achieves this invariance is prohibitively
costly if performed directly on the bound visual objects
(Schneegans et al., 2016). Instead, the transformation is
only performed for the spatial dimension of the fields, and
the feature information is added back in as modeled here.
For this paper, however, we omit coordinate transforms by
assuming that all representations share the original retinal
frame (i.e., that of the fixed camera), which is equivalent to
assuming the absence of eye or head movements.

The memory space/feature maps provide three-
dimensional input to an analogous set of three memory
space/feature selection fields (G). In these fields, one item
from the input is selected and brought above threshold,
again based on overlap with column input from the scene
spatial selection field. The result is an isolated representa-
tion of the memory item at the attended location. Projections
from both this representation and the scene space/feature
selection fields converge onto a neural feature matching
mechanism (H , see “Match and mismatch detection”),
which detects whether the attended item’s features have
been successfully committed to scene working memory.
When this detection occurs, the task node is deactivated
through an inhibitory connection (red line in Fig. 8). This
concludes one step in the exploration sequence. By default,
that is, unless another task becomes active (see below),
the task node is then reactivated, thus initiating another

cycle of attentional selection and commitment to working
memory.

Task 2: Retaining feature cues

Figure 9 highlights the sub-network that is responsible for
retaining a feature cue for visual search. It is activated by
the “retain” task node, which may itself be activated from
different sources depending on the cognitive task at hand. In
the current context, the task node is activated by the onset
detector (D3 in Fig. 9) when it detects a change in the visual
scene.

Analogously to exploration, the retain process consists
of storing currently attended feature values in self-sustained
fields, the search cue fields (I ), which are one-dimensional
since only the feature values of the cue are relevant (not its
position).

To forward feature values from the scene space/feature
selection fields to the search cue fields, the retain node
homogeneously boosts activation in the retain gate fields
(I1), enabling them to build peaks and thus pass on
activation.

The retain sub-task is terminated once the content of
the search-cue fields matches the features of the currently
attended item. Upon deactivation of the retain node, peaks
in the attention field and the gating fields decay, whereas in
the search cue fields the cue’s feature values are retained for
later use.

[Grieben et al. Attention, Perception & Psychophysics 2020]



FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.

FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.

cue 
green

answer
“s”

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



attend to this itemshared space

[Schneegans et al.,Ch 8 of DFT Primer, 2016]



[Schneegans et al.,Ch 5 of DFT Primer, 2016]



bound 
through 
space

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Binding through space => 
sequential bottleneck

binding through space must occur one time at 
a time..… to avoid binding problem 

=> the sequential processing bottleneck may 
originate from this



allocentric space

[Schneegans et al.,Ch 8 of DFT Primer, 2016]

retinal space
coordinate
transform



Coordinate transforms 
and binding through space

coordinate transforms: 2 by 2 spatial dimensions

perform the coordinate transform in space only! 

no need to transport the feature values, which can be 
filled in by binding through space Case Study: Spatial Remapping during Saccades

transformation fieldA
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Generalization to other binding agents

than space… 

a binding agent must be a shared neural 
dimension… 

can be discrete/categorical in nature

e.g. can be an ordinal dimension, an “index”, a 
“label”

=> special lecture by Daniel Sabinasz on 
grounded cognition 



Coordinate transforms

are fundamental element to sensory-motor cognition

[but critical also to mental operations! ]

example: 
reaching is 
guided by body-
centered,  not by 
retinal visual 
representation



Coordinate transforms

are fundamental element to sensory-motor cognition

[but critical also to mental operations! ]

example: movement 
parameters are extracted by 
representing movement 
target in coordinates 
centered in the initial 
position of the hand

Movement preparation
movement is prepared before it is initiated: 

movement parameters like movement direction, amplitude, time, or 
force level can be predicted from the first 10 to 20 ms of 
movement  

movement parameters are about the hand’s 
movement in space 

[Erlhagen, Schöner, Psych Rev 2002]

movement
direction

movement
extent



Coordinate transforms

are fundamental element to sensory-motor cognition

[but critical also to mental operations! ]

worked example: 
from retinal to 
head-centered/
body-centered 
frame 

Eye Movements and Reference Frames

visual image visual image

visual scene visual scene

eye with 
ocular muscles

limited visual acuity in periphery of the retina, eye movements to
perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as
single variable in the following

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 23 / 37

[Schneegans Ch 7 of DFT Primer, 2016]



need a bound neural 
representation of 

retinal space

gaze angle 

obtained from ridge/slice 
input to bind these

project to body space

[Schneegans Ch 7 of DFT Primer, 2016]

Reference Frame Transformation

solution:

expand into combined, higher-dimensional field

then can implement arbitrary (smooth) mappings from this field to
target representation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 27 / 37

steer: gaze angle retinal space

body space

Retina => body space
transformation depends on the gaze angle = steering 
dimension

gain field: 
Andersen/Pouget



DNF Mechanism for Reference Frame Transformation
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Retina => body space



DNF Mechanism for Reference Frame Transformation
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Retina => body space



DNF Mechanism for Reference Frame Transformation
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Retina => body space



DNF Mechanism for Reference Frame Transformation
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Retina => body space



DNF Mechanism for Reference Frame Transformation
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Retina => body space



Retina => body space

bi-directional 
coupling

=> predict retinal 
coordinates

Multi-Directional Transformations
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[Schneegans, Schöner Biological Cybernetics 2012]

Spatial 
remapping 

during 
saccades



Accounts for predictive updatingCase Study: Spatial Remapping during Saccades
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[model: Schneegans, Schöner Biological Cybernetics 2012]

[neural data: Duhamel, Colby, Goldberg, 1992, LIP]



[Schneegans, Schöner, 2012]

Scaling

Case Study: Spatial Remapping during Saccades
transformation fieldA
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Summary: higher dimensions

representing different kinds of dimensions 
within a higher-dimensional field offers new 
(cognitive) functions

binding 

search

coordinate transforms


