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Dynamical systems: Tutorial

® the word “dynamics”
M time-varying measures
M range of a quantity

M forces causing/accounting for movement => dynamical
systems

B dynamical systems are the universal language
of science

B physics, engineering, chemistry, theoretical biology,
economics, quantitative sociology, ...



time-variation and rate of change

Myvariable x(t);

M rate of change dx/dt



time-variation and rate of change

Mexample:

M variable x(t) = position

M rate of change dx/dt = velocity
Mexample

M variable v(t) = velocity

M rate of change ?



time-variation and rate of change

B trajectory: time course of a dynamical variable

M rate of change: slope of the trajectory

AU time, t

//.;ti;e—’:




dynamical system: relationship between
a variable and its rate of change




linear dynamical system

A dx/dt = f(x)




solution of linear dynamical systems

x(t) = x(0)exp|—t/7]

A 1 dx/dt = -x




exponential relaxation to attractors

x(®) = x(O)exp[—t/7] () = x(0)exp[—t/7](~1/7)

A - dw/dt = x wx(t) = — x(0)exp|—t/7]

x(f) = — x(¢)




exponential relaxation to attractors

m=> time scale x(t) = x(0)exp[—1/7]
A 1 dx/dt = -x
A X(1)
x(0)
>
X X(0)/e
X(T) X(271




dx

Dynamical system  i= — =f)

dx/dt=f(x)

A




dx

Dynamical system  i= — =f)

BMthe present determines the future

dx/dt=f(x)

A
predicts

future initial
evolution condition




Dynamical system  i= % = f(x)

B x spans the state space (can be vector-valued
or even function valued)

Bf(x) is the “dynamics” of x (or vector-field)

B x(z) is a solution of the dynamical systems
with initial condition x, <= the rate of
change of x(¢) obeys x(#) = f(x) and
x(0) = x,



Different forms of dynamical
systems

B one-dimensional differential equation: .. __
one . X = f(x)
initial value determines the future



Different forms of dynamical
systems

Mvector-valued differential equation

M3 vector of initial states determines the future:
systems of differential equations:

X = f(x) where X = (Xl, X9y oo ,.Xn)



Different forms of dynamical
systems

B continuously many variables
x(y) determine the future =
an initial function x(y)
determines the future (. 1) =f<x(y’ D,

ox(y, 1) >
oy

M partial differential equations x(y, 1) = [dy’g (x(y, 1), x(¥, t))
M integro-differential equations



Different forms of dynamical
systems

M2 piece of past trajectory
determines the future

M delay differential equations X(t) — f(;x(t — T))

M functional differential equations X(f) — J dt/f(x(t/))



Numerical solutions

EMsample time discretely, £;, with

1 € {0,1,....N},

Bfor example: 1, =1 At

®compute solution, x(t;) =

through time,

mfor example: x;

Euler)

Xitl

X;, by iterating

= x; + At f(x;) (forward

l

At

dx
——f(X) f(X)




B => code / simulation



attractor

B fixed point, to which neighboring initial conditions
converge = attractor

dx/dt=f(x)

A

attractor



fixed point

Bis a constant solution of the dynamical system

- P = (@
j::O:>f<£EO):O



stability

B mathematically really: asymptotic stability

M defined: a fixed point is asymptotically sta
when solutions of the dynamical system t

dle,
nat

start nearby converge in time to the fixed
point



stability

M the mathematical concept of stability (which
we do not use) requires only that nearby
solutions stay nearby

B Definition: a fixed point is unstable if it is not
stable in that more general sense,

B that is: if nearby solutions do not necessarily stay nearby (may
diverge)



linear approximation near attractor

\* dx/dt = f(x)
\

B non-linearity as a small
perturbation/
deformation of linear

system

B => non-essential non-
linearity




stability in a linear system

dr/dt=F(L)
Mif the slope of the A

linear system is
negative, the fixed
point is

(asymptotically
stable)




stability in a linear system

dA/dt=Ff(0)
Mif the slope of the 4

linear system is
positive, then the

fixed point is - —>
unstable




stability in a linear system

Bif the slope of the linear :jk/dt_f(K)
system is zero, then the
system is indifferent
(marginally stable: stable -6

but not asymptotically
stable)




stability in linear systems

M generalization to multiple dimensions

B if the real-parts of all Eigenvalues are negative: stable
B if the real-part of any Eigenvalue is positive: unstable

B if the real-part of any Eigenvalue is zero: marginally stable in that
direction (stability depends on other eigenvalues)



stability in nonlinear systems

B stability is a local property of the fixed point

B => linear stability theory

B the eigenvalues of the linearization around the fixed point determine
stability

B all real-parts negative: stable
B any real-part positive: unstable

B any real-part zero: undecided: now nonlinearity decides (non-
hyberpolic fixed point)



stability in nonlinear systems

\* d/dt = f())
\

M all real-parts negative: stable

M any real-part positive: 4 divdt = (1)
unstable




stability in nonlinear systems

4 dwdt = ()) 4 dwdt = 1())
7—_4} —H—T)
B any real-part zero: &
undecided: now
nonlinearity decides R
di/dt = () 4 dwdt = 1())

(non-hyberpolic fixed
point)




bifurcations

B ook now at families of dynamical systems, which
depend (smoothly) on parameters

B ask: as the parameters change (smoothly), how do
the solutions change (smoothly?)

B smoothly: topological equivalence of the dynamical systems at
neighboring parameter values

B bifurcation: dynamical systems NOT topological equivalent as
parameter changes infinitesimally



bifurcation

A dx/dt=f(x)

T I\

attractor 1 attractor 2



bifurcation

B bifurcation=qualitative change of dynamics (change in
number; nature, or stability of fixed points) as the
dynamics changes smoothly

A dx/dt=f(x)

2 | >

T |

attractor 1 attractor 2




tangent bifurcation

B the simplest bifurcation (co-dimension 0): an attractor collides
with a repellor and the two annihilate

A dx/dt=f(x)

\

T T

attractor 1 attractor 2




local bifurcation

A dx/dt=f(x)

\

T T

attractor 1 attractor 2




reverse bifurcation

B changing the dynamics in the opposite direction

A dx/dt=f(x)

| |

attractor 1 attractor 2



bifurcations are instabilities

B that is, an attractor becomes unstable before
disappearing

B (or the attractor appears with reduced stability)

B formally: a zero-real part is a necessary condition
for a bifurcation to occur



tangent bifurcation

B normal form of tangent bifurcation
T = — x°

B (=simplest polynomial equation whose flow is
topologically equivalent to the bifurcation)

dx/dt fixed point  zy = Vo
A

A

N stable
o posmvg(

o
ﬂ > >
/\a 0 unstable

U'negative




Hopf theorem

B when a single (or pair of complex conjugate)

eigenvalue crosses the imaginary axis, one of four
bifurcations occur

B tangent bifurcation
B transcritical bifurcation

B pitchfork bifurcation

B Hopf bifurcation



transcritical bifurcation

B normal form T = ar — 1

A dx/dt A fixed point

o. negative | o positive

X
»

stable

nstable

o.=0




pitchfork bifurcation

B normal form

dx/dt
A

\ >

anegative =0

r=ar —I

stable

\ o positive

A

fixed point

T = —2xor = —2\/ax
o

unstable



Hopf: need higher dimensions



2D dynamical system:

vector-field
A X2
\ \ \i v r/
. \ \ \ v /
T = fi(xy1, 12)
9 = fo(xq,x9) I NN : rd
_— v V ! ~




1 = fi(z1,22)
To = fo(x1,x9)

vector-field

initial
condition
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fixed point, stability, attractor

1 = fi(z1, 29)
To = fo(x1,x9)

initial
condition

AN
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Hopf bifurcation

3

r=qQr—r

B nhormal form .
¢ =w

A dr/dt
X
A
stable o
nstable

y




forward dynamics

B given known equation, determined fixed points /
limit cycles and their stability

B more generally: determine invariant solutions
(stable, unstable and center manifolds)



inverse dynamics

B given solution, find the equation...

B this is the problem faced in design of behavioral
dynamics...



inverse dynamics: design

Bin the design of behavioral dynamics... you may be
given:

B attractor solutions/stable states

B and how they change as a function of parameters/
conditions

B => identify the class of dynamical systems using the
4 elementary bifurcations

B and use normal form to provide an exemplary
representative of the equivalence class of dynamics



