Mathematics and Computer Science for Modeling Unit 6: Differential Equations

Daniel Sabinasz

based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

October 6, 2022

Course Structure

Unit	Title	Topics
1	Intro to Programming in Python	Variables, if Statements, Loops, Func-
		tions, Lists
-	Full-Time Programming Session	Deepen Programming Skills
2	Functions in Math	Function Types and Properties, Plotting
		Functions
3	Linear Algebra	Vectors, Trigonometry, Matrices
4	Calculus	Derivative Definition, Calculating
		Derivatives

Course Structure

Unit	Title	Topics
5	Integration	Geometrical Definition, Calculating In-
		tegrals
6	Differential Equations	Properties of Differential Equations
-	07.10.22: Test	

Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics_and_computer_science_for_modeling_summer_term_2022

Overview

1. Differential Equations

- > Application: Dynamical Systems
- > Solving Differential Equations
- ➤ Qualitative Analysis

Application: Dynamical Systems

A **dynamical system** is a system of one or more variables that change in time

Differential Equations -

- e.g., the location of a falling ball
- Dynamical systems can often be described with a differential **equation** that describes the rate of change of the system at each point in time, e.g.,

$$h'(t) = -g$$

Solving this differential equation means finding a function h(t) that describes the location of the ball at each point in time.

$$h(t) = h_0 - \frac{1}{2}gt^2$$

 Generally, a differential equation describes how the rate of change of a system depends on its current state. For example:

$$f'(x) = 4f(x) + 5 = g(f(x))$$
 with $g(x) = 4x + 5$

 Generally, a differential equation describes how the rate of change of a system depends on its current state. For example:

$$f'(x) = 4f(x) + 5 = g(f(x))$$
 with $g(x) = 4x + 5$

A differential equation describes how a system should change in a given state.

Solving Differential Equations

- ▶ Given a differential equation of the form $f'(x) = g(f(x)) \dots$ the original function f(x) is usually not known.
- Solving a differential equation describes the process of finding an f(x)that satisfies the differential equation for all x
 - Example:

$$f'(x) = 4f(x) + 5 \Rightarrow f(x) = \frac{e^{4x+c}}{4} - \frac{5}{4} \text{ and } f'(x) = e^{4x+c}$$

- Differential equations entail two equations
 - 1. The function g(f(x)) governing the rate of change
 - 2. The function f(x) describing the overall behavior

$$ightharpoonup f'(x) = cx$$

$$f'(x) = cf(x)$$

- ightharpoonup f'(x) = cx
 - The rate of change follows a fixed rule depending on x

$$f'(x) = cf(x)$$

- ightharpoonup f'(x) = cx
 - The rate of change follows a fixed rule depending on x
 - ► The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
- ightharpoonup f'(x) = cf(x)

- ightharpoonup f'(x) = cx
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- ightharpoonup f'(x) = cf(x)

- ightharpoonup f'(x) = cx
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- ightharpoonup f'(x) = cf(x)
 - The rate of change is a scaled version of the function itself: g(f(x)) = cf(x)

- ightharpoonup f'(x) = cx
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- ightharpoonup f'(x) = cf(x)
 - The rate of change is a scaled version of the function itself: g(f(x)) = cf(x)
 - The only function that stays the same when differentiated is the exponential function e^x

- ightharpoonup f'(x) = cx
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$

Differential Equations -

- This is not a differential equation as no f(x) is on the right side
- ightharpoonup f'(x) = cf(x)
 - The rate of change is a scaled version of the function itself: g(f(x)) = cf(x)
 - The only function that stays the same when differentiated is the exponential function e^x
 - Considering the chain rule the derivative of e^{cx} is exactly ce^{cx} therefore $f(x) = ce^{cx}$

- ightharpoonup f'(x) = cx
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$

Differential Equations -

- This is not a differential equation as no f(x) is on the right side
- ightharpoonup f'(x) = cf(x)
 - The rate of change is a scaled version of the function itself: g(f(x)) = cf(x)
 - The only function that stays the same when differentiated is the exponential function e^x
 - Considering the chain rule the derivative of e^{cx} is exactly ce^{cx} therefore $f(x) = ce^{cx}$
 - Usually a differential equation is not that easily solvable

Dynamical Systems Theory

- Mathematicians want to find solutions to particular differential equations
- ▶ **Dynamical Systems Theory** is concerned with analyzing the qualitative behavior of the system

Phase Plot

Attractors

$$f'(x) = y' = \frac{dy}{dx} = -f(x)$$

Attractors

$$f'(x) = y' = \frac{dy}{dx} = -f(x) - 2$$

Attractors

$$f'(x) = y' = \frac{dy}{dx} = -f(x) + 1$$

Repellors

$$f'(x) = y' = \frac{dy}{dx} = -f(x)$$

Differential Equations -

