Mathematics and Computer Science for Modeling
Unit 6: Differential Equations

Daniel Sabinasz
based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

October 6, 2022
Course Structure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro to Programming in Python</td>
<td>Variables, if Statements, Loops, Functions, Lists</td>
</tr>
<tr>
<td>-</td>
<td>Full-Time Programming Session</td>
<td>Deepen Programming Skills</td>
</tr>
<tr>
<td>2</td>
<td>Functions in Math</td>
<td>Function Types and Properties, Plotting Functions</td>
</tr>
<tr>
<td>3</td>
<td>Linear Algebra</td>
<td>Vectors, Trigonometry, Matrices</td>
</tr>
<tr>
<td>4</td>
<td>Calculus</td>
<td>Derivative Definition, Calculating Derivatives</td>
</tr>
</tbody>
</table>
Course Structure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Integration</td>
<td>Geometrical Definition, Calculating Integrals</td>
</tr>
<tr>
<td>6</td>
<td>Differential Equations</td>
<td>Properties of Differential Equations</td>
</tr>
<tr>
<td>-</td>
<td>07.10.22: Test</td>
<td></td>
</tr>
</tbody>
</table>
Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics_and_computer_science_for_modeling_summer_term_2022
Overview

1. Differential Equations
 ➤ Application: Dynamical Systems
 ➤ Solving Differential Equations
 ➤ Qualitative Analysis
Application: Dynamical Systems

- A **dynamical system** is a system of one or more variables that change in time.

- e.g., the location of a falling ball.

- Dynamical systems can often be described with a **differential equation** that describes the rate of change of the system at each point in time, e.g.,

\[h'(t) = -g \]

- **Solving** this differential equation means finding a function \(h(t) \) that describes the location of the ball at each point in time.

\[h(t) = h_0 - \frac{1}{2}gt^2 \]
Differential Equations

- Generally, a differential equation describes how the rate of change of a system depends on its current state. For example:

\[f'(x) = 4f(x) + 5 = g(f(x)) \quad \text{with} \quad g(x) = 4x + 5 \]
Differential Equations

- Generally, a differential equation describes how the rate of change of a system depends on its current state. For example:

\[f'(x) = 4f(x) + 5 = g(f(x)) \quad \text{with} \quad g(x) = 4x + 5 \]

- A differential equation describes how a system should change in a given state.
Solving Differential Equations

- Given a differential equation of the form \(f'(x) = g(f(x)) \) . . . the original function \(f(x) \) is usually not known.

- Solving a differential equation describes the process of finding an \(f(x) \) that satisfies the differential equation for all \(x \)
 - Example:
 \[
 f'(x) = 4f(x) + 5 \Rightarrow f(x) = \frac{e^{4x} + c}{4} - \frac{5}{4} \text{ and } f'(x) = e^{4x} + c
 \]

- Differential equations entail two equations
 1. The function \(g(f(x)) \) governing the rate of change
 2. The function \(f(x) \) describing the overall behavior
Derivative vs. Differential equation

- $f'(x) = cx$

- $f''(x) = cf(x)$
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change follows a fixed rule depending on x

- $f''(x) = cf(x)$
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$

- $f'(x) = cf(x)$
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no $f(x)$ is on the right side

- $f''(x) = cf(x)$
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no $f(x)$ is on the right side

- $f''(x) = cf(x)$
 - The rate of change is a scaled version of the function itself:
 $$g(f(x)) = cf(x)$$
Derivative vs. Differential equation

\[f'(x) = cx \]

- The rate of change follows a fixed rule depending on \(x \)
- The solution can be described by the antiderivative \(f(x) = \frac{1}{2}cx^2 \)
- This is not a differential equation as no \(f(x) \) is on the right side

\[f'(x) = cf(x) \]

- The rate of change is a scaled version of the function itself: \(g(f(x)) = cf(x) \)
- The only function that stays the same when differentiated is the exponential function \(e^x \)
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no $f(x)$ is on the right side

- $f'(x) = cf(x)$
 - The rate of change is a scaled version of the function itself:
 $g(f(x)) = cf(x)$
 - The only function that stays the same when differentiated is the exponential function e^x
 - Considering the chain rule the derivative of e^{cx} is exactly ce^{cx} therefore $f(x) = ce^{cx}$
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no $f(x)$ is on the right side

- $f'(x) = cf(x)$
 - The rate of change is a scaled version of the function itself:
 $g(f(x)) = cf(x)$
 - The only function that stays the same when differentiated is the exponential function e^x
 - Considering the chain rule the derivative of e^{cx} is exactly ce^{cx} therefore $f(x) = ce^{cx}$
 - Usually a differential equation is not that easily solvable
Dynamical Systems Theory

- Mathematicians want to find solutions to particular differential equations

- **Dynamical Systems Theory** is concerned with analyzing the qualitative behavior of the system
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]

Phase Plot
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]

Phase Plot
Attractors

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Attractors

\[f'(x) = y' = \frac{dy}{dx} = -f(x) - 2 \]
Attractors

\[f'(x) = y' = \frac{dy}{dx} = -f(x) + 1 \]
Repellors

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]

- **E1**
- **S1**
- **E2**
- **S2**
- **E3**
- **S3**