Mathematics and Computer Science for Modeling
Unit 5: Integration

Daniel Sabinasz
based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

October 6, 2022
Course Structure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro to Programming in Python</td>
<td>Variables, if Statements, Loops, Functions, Lists</td>
</tr>
<tr>
<td></td>
<td>Full-Time Programming Session</td>
<td>Deepen Programming Skills</td>
</tr>
<tr>
<td>2</td>
<td>Functions in Math</td>
<td>Function Types and Properties, Plotting Functions</td>
</tr>
<tr>
<td>3</td>
<td>Linear Algebra</td>
<td>Vectors, Trigonometry, Matrices</td>
</tr>
<tr>
<td>4</td>
<td>Calculus</td>
<td>Derivative Definition, Calculating Derivatives</td>
</tr>
</tbody>
</table>
Course Structure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Integration</td>
<td>Geometrical Definition, Calculating Integrals</td>
</tr>
<tr>
<td>6</td>
<td>Differential Equations</td>
<td>Properties of Differential Equations</td>
</tr>
<tr>
<td>-</td>
<td>07.10.22: Test</td>
<td></td>
</tr>
</tbody>
</table>
Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics_and_computer_science_for_modeling_summer_term_2022
Overview

1. Motivation

2. Mathematics
 ➤ Approximating the Area under a Curve
 ➤ Calculating the Area under a curve
 ➤ Improper Integrals

3. Exercise
From Velocity to Position

You drove 30 km/h for 6 hours. How far did you drive?
From Velocity to Position

You drove 30 km/h for 6 hours. How far did you drive?

\[
30 \frac{\text{km}}{\text{h}} \times 6 \text{h} = 180 \text{km}
\]
From Velocity to Position

You drove 30 km/h for 6 hours. How far did you drive?

\[30 \frac{\text{km}}{\text{h}} \times 6 \text{h} = 180 \text{km} \]
From Velocity to Position

Let’s say you slowed down for the last 3 hours. How far did you get?
From Velocity to Position

Let’s say you slowed down for the last 3 hours. How far did you get?

$$30 \frac{\text{km}}{\text{h}} \times 3\text{h} + 20 \frac{\text{km}}{\text{h}} \times 3\text{h} = 150\text{km}$$
From Velocity to Position

What if you mixed it up to not get bored?
From Velocity to Position

What if you mixed it up to not get bored?

$$30 \frac{\text{km}}{\text{h}} \times 1\text{h} + 40 \frac{\text{km}}{\text{h}} \times 2\text{h} + 10 \frac{\text{km}}{\text{h}} \times 1\text{h} + 20 \frac{\text{km}}{\text{h}} \times 2\text{h} = 160\text{km}$$
From Velocity to Position

But how about something realistic?
Approximation

- Not all areas can be calculated with rectangles
Approximation

- Not all areas can be calculated with rectangles
- One can however approximate them
Approximation

- Not all areas can be calculated with rectangles
- One can however approximate them
Approximation

- Not all areas can be calculated with rectangles
- One can however approximate them
- The more rectangles the better the approximation becomes
Approximation

- Not all areas can be calculated with rectangles
- One can however approximate them
- The more rectangles the better the approximation becomes
Midpoint Riemann Sum

Calculating Midpoints

The **Midpoint Riemann Sum** is a way of approximating an integral with finite sums. The area under the curve in a given interval \([x_i, x_{i+1}]\) can be approximated as the area of a rectangle with width \(\Delta x = x_{i+1} - x_i\) and height \(f\left(\frac{x_i + x_{i+1}}{2}\right)\):

\[
f\left(\frac{x_i + x_{i+1}}{2}\right) \Delta x
\]

The sum over all intervals yields an estimation of the area under the curve:

\[
I_M = \sum_{i}^{n} f\left(\frac{x_i + x_{i+1}}{2}\right) \Delta x
\]
Midpoint Sums
Midpoint Sums
Midpoint Sums
From Sums to Integrals

Midpoint Sum: $f\left(\frac{x_i+x_{i+1}}{2}\right) \Delta x$

The larger the number n of intervals, the smaller Δx and the better our approximation.

Definite Integral

The definite integral of a function $f(x)$ between the lower boundary a and the upper boundary b

$$\int_{a}^{b} f(x) \, dx$$

is defined as the size of the area between f and the x-axis inside the boundaries. Areas above the x-axis are considered positively and areas below negatively.
From Sums to Integrals

Midpoint Sum: \(f\left(\frac{x_i + x_{i+1}}{2}\right) \Delta x \)

The larger the number \(n \) of intervals, the smaller \(\Delta x \) and the better our approximation.

What if \(n \) becomes infinitely large and \(\Delta x \) becomes infinitely small?
From Sums to Integrals

Midpoint Sum: \(f\left(\frac{x_i + x_{i+1}}{2}\right) \Delta x \)

The larger the number \(n \) of intervals, the smaller \(\Delta x \) and the better our approximation.

What if \(n \) becomes infinitely large and \(\Delta x \) becomes infinitely small?

Definite Integral

The **definite integral** of a function \(f(x) \) between the **lower boundary** \(a \) and the **upper boundary** \(b \)

\[
\int_{a}^{b} f(x) \, dx
\]

is defined as the size of the area between \(f \) and the \(x \)-axis inside the boundaries. Areas above the \(x \)-axis are considered positively and areas below negatively.
Definite Integral

\[f(x) = \cos(x) \quad \int_{0}^{2\pi} \cos(x) \, dx \]
Indefinite Integral

\[f(x) = \cos(x) \quad \int_0^x \cos(x') \, dx' \]
Indefinite Integral

\[f(x) = \cos(x) \]

\[\int_{0}^{x} \cos(x') \, dx' \]
Indefinite Integral

\[f(x) = \cos(x) \quad \int_{0}^{x} \cos(x')dx' \]
Indefinite Integral

\[f(x) = \cos(x) \quad \int_{0}^{x} \cos(x') \, dx' \]
Indefinite Integral

\[f(x) = \cos(x) \]

\[\int_0^x \cos(x') dx' \]
Indefinite Integral

\[f(x) = \cos(x) \quad \int_0^x \cos(x') \, dx' = \sin(x) \]
Indefinite Integral

\[f(x) = \cos(x) \quad \int_0^x \cos(x') \, dx' = \int \cos(x') \, dx' \]
The Antiderivative

Definition

If \(f \) is a function with domain \([a, b] \rightarrow \mathbb{R}\) and there is a function \(F \), which is differentiable in the interval \([a, b]\) with the property that

\[
F'(x) = f(x),
\]

then \(F \) is considered an \textit{antiderivative} of \(f \).
The Antiderivative

Definition

If f is a function with domain $[a, b] \rightarrow \mathbb{R}$ and there is a function F, which is differentiable in the interval $[a, b]$ with the property that

$$F'(x) = f(x),$$

then F is considered an antiderivative of f.

Properties of an antiderivative

- Differentiation removes constants, therefore $F(x) + c$ for any constant c is also an antiderivative.

- Unlike with differentiation there are no fixed rules to compute an antiderivative from a given f.
A function and its antiderivative

\[f(x) = x \quad F(x) = \frac{1}{2}x^2 \]
The Fundamental Theorem of Calculus

First Fundamental Theorem of Calculus

One of the antiderivatives of a function can be obtained as the indefinite integral:

\[\int f(x')\,dx' = F(x) \]

- Intuition: The rate of change of the area under \(f(x) \) is \(f(x) \)
The Fundamental Theorem of Calculus

Second Fundamental Theorem of Calculus

If f is integrable and continuous in $[a, b]$, then the following holds for each antiderivative F of f

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Example:

- Area under $f(x) = x$ between values 1 and 2

$$\int_{1}^{2} x \, dx = \left[\frac{1}{2} x^2 \right]_{1}^{2} = \frac{1}{2} 2^2 - \frac{1}{2} 1^2 = 1.5$$
Definite Integral Example

\[f(x) = x \quad F(x) = \frac{1}{2}x^2 \quad \int_1^2 f(x)\,dx = F(2) - F(1) \]
The Integral is a Linear Operator

Integration Rules

- **Summation**

\[
\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)
\]
The Integral is a Linear Operator

Integration Rules

- **Summation**

\[\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x) \]

- **Scalar Multiplication**

\[\int_a^b cf(x) = c \int_a^b f(x) \]
The Integral is a Linear Operator

Integration Rules

- **Summation**

\[
\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)
\]

- **Scalar Multiplication**

\[
\int_a^b cf(x) = c \int_a^b f(x)
\]

- **Boundary Transformations**

\[
\int_a^b f(x) + \int_b^c f(x) = \int_a^c f(x) \quad \int_a^b f(x) = -\int_b^a f(x)
\]
Improper Integrals

Infinite Intervals

It is possible to calculate the area in infinitely large intervals. Intervals with an infinite boundary are called **Improper Integrals**

\[
\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx
\]

Example:

- Convergent improper integral

\[
\int_{1}^{\infty} x^{-2} \, dx = \lim_{b \to \infty} \int_{1}^{b} x^{-2} \, dx = \lim_{b \to \infty} \left[-x^{-1} \right]_{1}^{b} = \lim_{b \to \infty} (-b^{-1} + 1) = 1
\]
Exercise

Answer the following tasks using a piece of paper and a pocket calculator.

1. Given the Antiderivative \(F(x) = 12x^2 + 5x \) of the function \(f(x) \), calculate the area between \(f(x) \) and the x-axis in the interval of \([-3, 5]\).

2. Calculate \(\int_{0}^{\pi} \cos(x) \, dx \). Before applying the formula, look at a plot of \(\cos(x) \). What kind of result would you expect?
Exercise Solutions

1. The antiderivative is already given, therefore you only need to plug-in the beginning and the end of the interval.

\[
F(x) \bigg|_a^b = F(b) - F(a) = F(5) - F(3) = 12 \times 5^2 + 5 \times 5 - 12 \times (-3)^2 + 5 \times (-3) = 325 - 93 = 232
\]

2. Looking at the plot of \(\cos(x) \) you can see that exactly the same area is enclosed above the x-axis as below the x-axis, therefore the total area has to be zero.

To verify this analytically, you need to figure out the antiderivative of \(\cos(x) \) first. From the lecture you know that \(F(x) = \sin(x) \).

\[
F(x) \bigg|_a^b = F(b) - F(a) = \sin(\pi) - \sin(0) = 0 - 0 = 0
\]
Exercise Solutions

1. The antiderivative is already given, therefore you only need to plug-in the beginning and the end of the interval.

\[
[F(x)]_a^b = F(b) - F(a) = F(5) - F(3) \\
= 12 \times 5^2 + 5 \times 5 - (12 \times (-3)^2 + 5 \times (-3)) = 325 - 93 = 232
\]
Exercise Solutions

1. The antiderivative is already given, therefore you only need to plug-in the beginning and the end of the interval.

\[
[F(x)]_a^b = F(b) - F(a) = F(5) - F(3) = 12 \cdot 5^2 + 5 \cdot 5 - (12 \cdot (-3)^2 + 5 \cdot (-3)) = 325 - 93 = 232
\]

2. Looking at the plot of \(\cos(x) \) you can see that exactly the same area is enclosed above the x-axis as below the x-axis, therefore the total area has to be zero.

To verify this analytically, you need to figure out the antiderivative of \(\cos(x) \) first. From the lecture you know that \(F(x) = \sin(x) \).

\[
[F(x)]_a^b = F(b) - F(a) = F(\pi) - F(0) = \sin(\pi) - \sin(0) = 0 - 0 = 0
\]