Mathematics and Computer Science for Modeling Unit 3: Linear Algebra

Daniel Sabinasz based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

October 4, 2022

Course Structure

Unit	Title	Topics
1	Intro to Programming in Python	Variables, if Statements, Loops, Func-
		tions, Lists
-	Full-Time Programming Session	Deepen Programming Skills
2	Functions in Math	Function Types and Properties, Plotting
		Functions, Lists
3	Linear Algebra	Vectors, Trigonometry, Matrices
4	Calculus	Derivative Definition, Calculating
		Derivatives

Course Structure

Unit	Title	Topics
5	Integration	Geometrical Definition, Calculating In-
		tegrals, Numerical Integration
6	Differential Equations	Properties of Differential Equations,
		Euler Approximation, Braitenberg
		Vehicle
-	Programming Session & Recap	Repetition, Questions, Test Topics
-	07.10.22: Test	

Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics_ and_computer_science_for_modeling_summer_term_2022

1. Linear Algebra

- > Angles and Trigonometry
- ➤ Vectors
- > Matrices

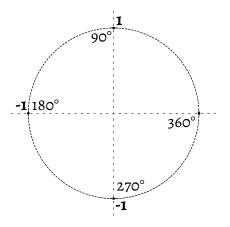
$$\frac{75.39}{24} = 3.14159... = \pi$$

$$\frac{75.39}{24} = 3.14159... = \pi$$
 and $\frac{56.54}{18} = 3.14159... = \pi$

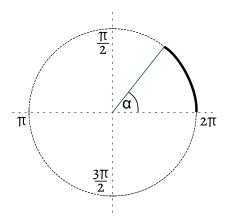
$$\frac{75.39}{24} = 3.14159... = \pi \text{ and } \frac{56.54}{18} = 3.14159... = \pi$$

Circumference of a circle: $2\pi r$

 Defining a full angle as 360° is common but actually arbitrary

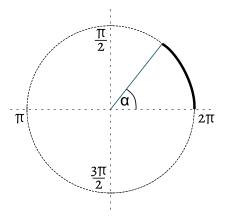


- Defining a full angle as 360° is common but actually arbitrary
- Less arbitrary is the use of the actual length of the enclosed arc-segment called the Radian



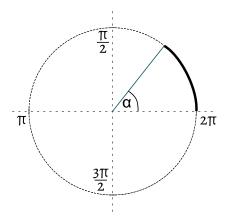
- Defining a full angle as 360° is common but actually arbitrary
- Less arbitrary is the use of the actual length of the enclosed arc-segment called the Radian

Thus
$$360^\circ = 2\pi$$
, $90^\circ = \frac{\pi}{2}$,
 $180^\circ = \pi \dots$



- Defining a full angle as 360° is common but actually arbitrary
- Less arbitrary is the use of the actual length of the enclosed arc-segment called the Radian

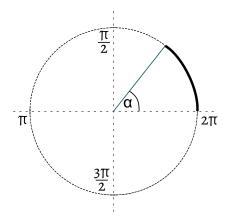
Thus
$$360^\circ = 2\pi$$
, $90^\circ = \frac{\pi}{2}$,
 $180^\circ = \pi \dots$



- Defining a full angle as 360° is common but actually arbitrary
- Less arbitrary is the use of the actual length of the enclosed arc-segment called the Radian

Thus
$$360^\circ = 2\pi$$
, $90^\circ = \frac{\pi}{2}$,
 $180^\circ = \pi \dots$

- Rad x to Degree: $x \cdot \frac{180^{\circ}}{\pi}$
- Degree *d* to Rad: $d \cdot \frac{\pi}{180^\circ}$



• Degree to Radians: $d \cdot \frac{\pi}{180^{\circ}}$

$$\alpha_{\rm deg} = 34^{\circ}$$

• Degree to Radians: $d \cdot \frac{\pi}{180^{\circ}}$

$$\alpha_{\rm deg} = 34^{\circ}$$
$$= 34^{\circ} \cdot \frac{\pi}{180^{\circ}}$$

Degree to Radians:
$$d \cdot \frac{\pi}{180^{\circ}}$$

 $\alpha_{deg} = 34^{\circ}$
 $= 34^{\circ} \cdot \frac{\pi}{180^{\circ}}$
 $= \frac{34^{\circ} \cdot \pi}{180^{\circ}} = \frac{106.81^{\circ}}{180^{\circ}} = 0.593 = \alpha_{rad}$

Degree to Radians:
$$d \cdot \frac{\pi}{180^{\circ}}$$

 $\alpha_{deg} = 34^{\circ}$
 $= 34^{\circ} \cdot \frac{\pi}{180^{\circ}}$
 $= \frac{34^{\circ} \cdot \pi}{180^{\circ}} = \frac{106.81^{\circ}}{180^{\circ}} = 0.593 = \alpha_{rad}$

Degree to Radians:
$$d \cdot \frac{\pi}{180^{\circ}}$$

 $\alpha_{deg} = 34^{\circ}$
 $= 34^{\circ} \cdot \frac{\pi}{180^{\circ}}$
 $= \frac{34^{\circ} \cdot \pi}{180^{\circ}} = \frac{106.81^{\circ}}{180^{\circ}} = 0.593 = \alpha_{rad}$

$$\alpha_{\rm rad} = \frac{3}{4}\pi$$

Degree to Radians:
$$d \cdot \frac{\pi}{180^{\circ}}$$

 $\alpha_{deg} = 34^{\circ}$
 $= 34^{\circ} \cdot \frac{\pi}{180^{\circ}}$
 $= \frac{34^{\circ} \cdot \pi}{180^{\circ}} = \frac{106.81^{\circ}}{180^{\circ}} = 0.593 = \alpha_{rad}$

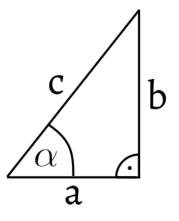
$$\alpha_{\rm rad} = \frac{3}{4}\pi$$
$$= \frac{3}{4}\pi \cdot \frac{180^{\circ}}{\pi}$$

Degree to Radians:
$$d \cdot \frac{\pi}{180^{\circ}}$$

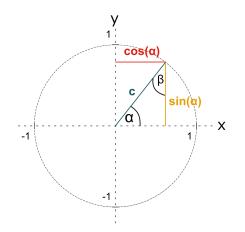
 $\alpha_{deg} = 34^{\circ}$
 $= 34^{\circ} \cdot \frac{\pi}{180^{\circ}}$
 $= \frac{34^{\circ} \cdot \pi}{180^{\circ}} = \frac{106.81^{\circ}}{180^{\circ}} = 0.593 = \alpha_{rad}$

$$\alpha_{\rm rad} = \frac{3}{4}\pi$$
$$= \frac{3}{4}\pi \cdot \frac{180^{\circ}}{\pi}$$
$$= \frac{3}{4} \cdot 180^{\circ} = 135^{\circ} = \alpha_{\rm deg}$$

Sine and Cosine



Sine and Cosine



The sine and cosine of an angle can be interpreted as the x and y coordinates of the location on the unit circle at angle α.

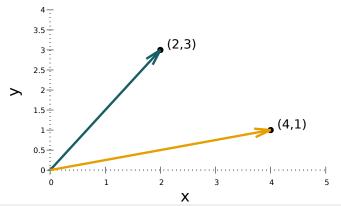
$$\begin{aligned} x &= \cos(\alpha) \iff \alpha = \cos^{-1}(x) \\ y &= \sin(\alpha) \iff \alpha = \sin^{-1}(x) \end{aligned}$$

Click here for interactive demo.

Vectors in the Cartesian Coordinate System

• A vector $\mathbf{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$ is a geometric object that has **length** and **direction**

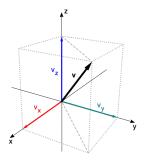
Think of it as an arrow from the origin to the point (v_x, v_y)



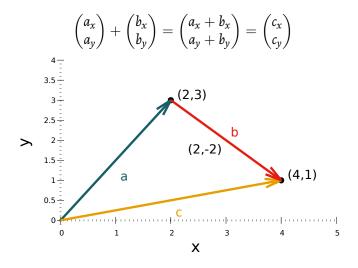
Vectors in more dimensions

> Vectors can be defined in higher-dimensional coordinate systems as well

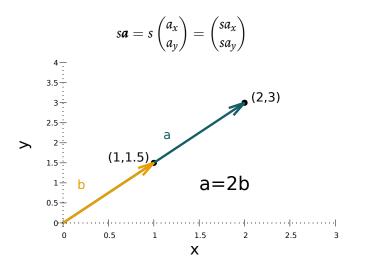
• e.g., in 3D:
$$\mathbf{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$$



Vector Addition



Scalar Multiplication



Exercise 1

- 1. Compute the circumference of a circle with radius 2 cm
- 2. Convert an angle of 45° to radians
- 3. Convert $\frac{3\pi}{2}$ radians to degrees
- 4. Given a right triangle with a = 2, b = 3, compute the angle between a and c

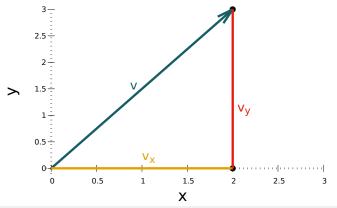
5. Let
$$\boldsymbol{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 and $\boldsymbol{w} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Compute $2(\boldsymbol{v} + \boldsymbol{w})$.

Length of a vector

▶ The length of a vector can be calculated using the Pythagorean theorem:

$$||\mathbf{v}|| = \sqrt{\mathbf{v}_x^2 + \mathbf{v}_y^2}$$

Graphical Interpretation:



Scalar Product

The scalar product $\langle a, b \rangle$ or $a \cdot b$ of two vectors is defined as:

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \begin{pmatrix} a_1 \\ a_2 \\ \dots \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \\ \dots \end{pmatrix} \rangle = a_1 b_1 + a_2 b_2 + \dots$$

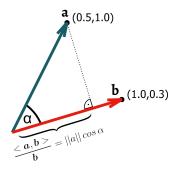
and results in a **scalar** value.

Scalar Product

The scalar product is related to the angle between the two vectors:

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = |\boldsymbol{a}||\boldsymbol{b}|\cos(\alpha) \iff \frac{\langle \boldsymbol{a}, \boldsymbol{b} \rangle}{|\boldsymbol{a}||\boldsymbol{b}|} = \cos(\alpha)$$

Graphical Interpretation:



Scalar Product: Special Cases

▶ If both vectors **a** and **b** point in the same direction:

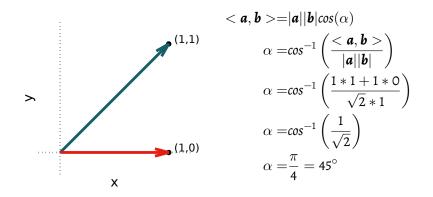
$$< \boldsymbol{a}, \boldsymbol{b}>= |\boldsymbol{a}||\boldsymbol{b}|cos(0) = |\boldsymbol{a}||\boldsymbol{b}|$$

▶ If both vectors **a** and **b** are orthogonal to each other:

$$|\langle \boldsymbol{a}, \boldsymbol{b} \rangle = |\boldsymbol{a}| |\boldsymbol{b}| cos(90^\circ) = 0$$

Angle between Vectors

The scalar product can be used to calculate the angle between two vectors



Exercise 2

I. Let $\mathbf{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Compute the scalar product $\langle v, w \rangle$ and the vector lengths ||v|| and ||w||. Next, find the angle between these two vectors.

2. Compute 3 < 2
$$\left(w + \begin{pmatrix} 1 \\ -4 \end{pmatrix}\right), \begin{pmatrix} -2 \\ -2 \end{pmatrix} >$$

3. (optional) Write a python function that can find the angle between two vectors, given as lists. Test the program on the vectors of 1.

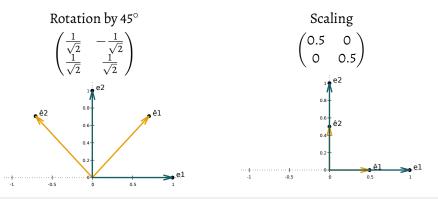
Matrices

A matrix is an array or table of numbers arranged in rows and columns:

$$\mathbf{A} = \begin{pmatrix} 1.5 & 2.5 & 4 \\ -1 & 3 & 2 \\ 0 & -5 & 2 \end{pmatrix}$$

Motivation: Linear transformation

- Matrices can specify linear transformations
- The *n*-th column of the matrix is a vector that specifies to where the *n*-th dimension of space is mapped (direction and scaling/compression factor)

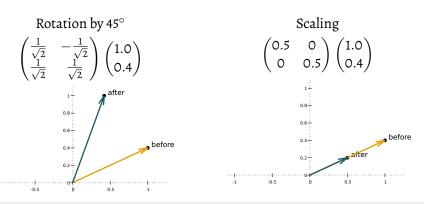


Matrix-vector multiplication

-1

• Vectors can be multiplied by a matrix, which applies the transformation:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} + y \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{21}y \end{pmatrix}$$



Matrix-vector multiplication

This works with an arbitrary number of dimensions:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + y \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} + z \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$$
$$= \begin{pmatrix} a_{11}x + a_{12}y + a_{13}z \\ a_{21}x + a_{22}y + a_{23}z \\ a_{31}x + a_{32}y + a_{33}z \end{pmatrix}$$

Matrix addition

Matrices can be added:

$$\begin{pmatrix} 1 & 0 & 2 \\ 3 & 2 & 4 \\ 1 & 5 & 7 \end{pmatrix} + \begin{pmatrix} 2 & 1 & 4 \\ 6 & 0 & -3 \\ 0 & -5 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1+2 & 0+1 & 2+4 \\ 3+6 & 2+0 & 4-3 \\ 1+0 & 5-5 & 7+2 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 1 & 6 \\ 9 & 2 & 1 \\ 1 & 0 & 9 \end{pmatrix}$$

Scalar multiplication

Matrices can be multiplied by a scalar:

$$2 \cdot \begin{pmatrix} 1 & 0 & 2 \\ 3 & 2 & 4 \\ 1 & 5 & 7 \end{pmatrix} = \begin{pmatrix} 2 \cdot 1 & 2 \cdot 0 & 2 \cdot 2 \\ 2 \cdot 3 & 2 \cdot 2 & 2 \cdot 4 \\ 2 \cdot 1 & 2 \cdot 5 & 2 \cdot 7 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 4 \\ 6 & 4 & 8 \\ 2 & 10 & 14 \end{pmatrix}$$

Matrix multiplication

Matrices can be multiplied with each other:

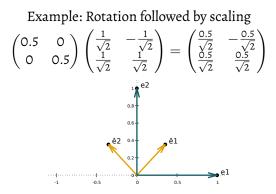
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{11} & b_{32} & b_{33} \end{pmatrix}$$

$$= \left(\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} b_{11} \\ b_{21} \\ b_{31} \end{pmatrix}, \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} b_{12} \\ b_{22} \\ b_{32} \end{pmatrix}, \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} b_{13} \\ b_{23} \\ b_{33} \end{pmatrix} \right)$$

- Note: a vector is also a matrix
- matrix-vector multiplication is a special case of matrix-matrix multiplication

Matrix multiplication

- Matrix multiplication is associative: (AB)C = A(BC)
- ▶ It follows that linear transformations can be composed by multiplication



Exercise 3

1. Create a 2x2 matrix that scales a vector by 2 along the first dimension and by 0.5 along the second dimension. Test the matrix by scaling the vector $\begin{pmatrix} 5\\10 \end{pmatrix}$.

2. Compute
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 5 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

3. Compute $2\left(\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} + \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}\right)$

- 4. Create a matrix that rotates a vector by 90° by composing the rotation matrix for 45° rotations two times.
- 5. (optional) Create a matrix that rotates a vector by 270°. Do not calculate such a matrix by composing it of other matrices. Instead, directly write down the required matrix entries. Start by thinking about what this rotation means geometrically.
- 6. (optional) Write a python program that can multiply a vector by a matrix. Represent the vector as a list and the matrix as a list of lists, where each inner