Course Structure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro to Programming in Python</td>
<td>Variables, if Statements, Loops, Functions, Lists</td>
</tr>
<tr>
<td>-</td>
<td>Full-Time Programming Session</td>
<td>Deepen Programming Skills</td>
</tr>
<tr>
<td>2</td>
<td>Functions in Math</td>
<td>Function Types and Properties, Plotting Functions, Lists</td>
</tr>
<tr>
<td>3</td>
<td>Linear Algebra</td>
<td>Vectors, Trigonometry, Matrices</td>
</tr>
<tr>
<td>4</td>
<td>Calculus</td>
<td>Derivative Definition, Calculating Derivatives</td>
</tr>
</tbody>
</table>
Course Structure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Integration</td>
<td>Geometrical Definition, Calculating Integrals, Numerical Integration</td>
</tr>
<tr>
<td>6</td>
<td>Differential Equations</td>
<td>Properties of Differential Equations, Euler Approximation, Bratenberg Vehicle</td>
</tr>
<tr>
<td>-</td>
<td>Programming Session & Recap</td>
<td>Repetition, Questions, Test Topics</td>
</tr>
<tr>
<td>-</td>
<td>07.10.22: Test</td>
<td></td>
</tr>
</tbody>
</table>
Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics_and_computer_science_for_modeling_summer_term_2022
1. Linear Algebra
 ➤ Angles and Trigonometry
 ➤ Vectors
 ➤ Matrices
The number π
The number π

\[75.39 \text{ cm} \]
The number π
The number π
The number π

\[
\frac{75.39}{24} = 3.14159\ldots = \pi \quad \text{and} \quad \frac{56.54}{18} = 3.14159\ldots = \pi
\]
The number π

$$\frac{75.39}{24} = 3.14159... = \pi \quad \text{and} \quad \frac{56.54}{18} = 3.14159... = \pi$$

Circumference of a circle: $2\pi r$
Measuring Angles

- Defining a full angle as 360° is common but actually arbitrary.

\[
\begin{align*}
\text{Rad} \times \text{to Degree:} & \quad x \cdot \frac{180^\circ}{\pi} \\
\text{Degree} \text{d} \text{to Rad:} & \quad d \cdot \frac{\pi}{180^\circ}
\end{align*}
\]
Measuring Angles

- Defining a full angle as 360° is common but actually arbitrary.
- Less arbitrary is the use of the actual length of the enclosed arc-segment called the **Radian**.
Measuring Angles

- Defining a full angle as 360° is common but actually arbitrary.

- Less arbitrary is the use of the actual length of the enclosed arc-segment called the Radian.

- Thus $360^\circ = 2\pi$, $90^\circ = \frac{\pi}{2}$, $180^\circ = \pi$...
Measuring Angles

- Defining a full angle as 360° is common but actually arbitrary.

- Less arbitrary is the use of the actual length of the enclosed arc-segment called the **Radian**.

- Thus $360^\circ = 2\pi$, $90^\circ = \frac{\pi}{2}$, $180^\circ = \pi$...

- Rad x to Degree: $x \cdot \frac{180^\circ}{\pi}$
Measuring Angles

▶ Defining a full angle as 360° is common but actually arbitrary

▶ Less arbitrary is the use of the actual length of the enclosed arc-segment called the **Radian**

▶ Thus $360^\circ = 2\pi$, $90^\circ = \frac{\pi}{2}$, $180^\circ = \pi \ldots$

▶ Rad x to Degree: $x \cdot \frac{180^\circ}{\pi}$

▶ Degree d to Rad: $d \cdot \frac{\pi}{180^\circ}$
Angle Conversion Examples

- Degree to Radians: \(d \cdot \frac{\pi}{180^\circ} \)

\[\alpha_{\text{deg}} = 34^\circ \]
Angle Conversion Examples

Degree to Radians: \(d \cdot \frac{\pi}{180^\circ} \)

\[
\alpha_{\text{deg}} = 34^\circ \\
= 34^\circ \cdot \frac{\pi}{180^\circ}
\]
Angle Conversion Examples

- **Degree to Radians:** \(d \cdot \frac{\pi}{180^\circ} \)

\[
\alpha_{\text{deg}} = 34^\circ
\]

\[
= 34^\circ \cdot \frac{\pi}{180^\circ}
\]

\[
= \frac{34^\circ \cdot \pi}{180^\circ} = \frac{106.81^\circ}{180^\circ} = 0.593 = \alpha_{\text{rad}}
\]
Angle Conversion Examples

- **Degree to Radians:** $d \cdot \frac{\pi}{180\degree}$

 $\alpha_{\text{deg}} = 34\degree$

 $= 34\degree \cdot \frac{\pi}{180\degree}$

 $= \frac{34\degree \cdot \pi}{180\degree} = \frac{106.81\degree}{180\degree} = 0.593 = \alpha_{\text{rad}}$

- **Radians to Degree:** $x \cdot \frac{180\degree}{\pi}$
Angle Conversion Examples

▶ **Degree to Radians:** \(d \cdot \frac{\pi}{180^\circ} \)

\[
\alpha_{\text{deg}} = 34^\circ \\
= 34^\circ \cdot \frac{\pi}{180^\circ} \\
= \frac{34^\circ \cdot \pi}{180^\circ} = \frac{106.81^\circ}{180^\circ} = 0.593 = \alpha_{\text{rad}}
\]

▶ **Radians to Degree:** \(x \cdot \frac{180^\circ}{\pi} \)

\[
\alpha_{\text{rad}} = \frac{3}{4}\pi
\]
Angle Conversion Examples

▶ Degree to Radians: \(d \cdot \frac{\pi}{180^\circ} \)

\[
\alpha_{\text{deg}} = 34^\circ \\
= 34^\circ \cdot \frac{\pi}{180^\circ} \\
= \frac{34^\circ \cdot \pi}{180^\circ} = \frac{106.81^\circ}{180^\circ} = 0.593 = \alpha_{\text{rad}}
\]

▶ Radians to Degree: \(x \cdot \frac{180^\circ}{\pi} \)

\[
\alpha_{\text{rad}} = \frac{3}{4}\pi \\
= \frac{3}{4}\pi \cdot \frac{180^\circ}{\pi} = \frac{180^\circ}{4} = 45^\circ
\]
Angle Conversion Examples

- **Degree to Radians:** \(d \cdot \frac{\pi}{180^\circ} \)

\[
\alpha_{\text{deg}} = 34^\circ \\
= 34^\circ \cdot \frac{\pi}{180^\circ} \\
= \frac{34^\circ \cdot \pi}{180^\circ} = \frac{106.81^\circ}{180^\circ} = 0.593 = \alpha_{\text{rad}}
\]

- **Radians to Degree:** \(x \cdot \frac{180^\circ}{\pi} \)

\[
\alpha_{\text{rad}} = \frac{3}{4} \pi \\
= \frac{3}{4} \cdot \frac{180^\circ}{\pi} \\
= \frac{3}{4} \cdot 180^\circ = 135^\circ = \alpha_{\text{deg}}
\]
Sine and Cosine

- $a^2 + b^2 = c^2$

- $\sin(\alpha) = \frac{b}{c} = \frac{\text{opposite}}{\text{hypotenuse}}$

- $\cos(\alpha) = \frac{a}{c} = \frac{\text{adjacent}}{\text{hypotenuse}}$

- $\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{b}{a} = \frac{\text{opposite}}{\text{adjacent}}$
Sine and Cosine

The sine and cosine of an angle can be interpreted as the x and y coordinates of the location on the unit circle at angle α.

\[
x = \cos(\alpha) \iff \alpha = \cos^{-1}(x)
\]

\[
y = \sin(\alpha) \iff \alpha = \sin^{-1}(x)
\]

Click here for interactive demo.
Vectors in the Cartesian Coordinate System

- A vector $\mathbf{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$ is a geometric object that has length and direction.

- Think of it as an arrow from the origin to the point (v_x, v_y).

\[
\begin{align*}
\text{X} & \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\text{Y} & \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \quad 3.5 \quad 4 \\
& \quad (2,3) \quad (4,1)
\end{align*}
\]
Vectors in more dimensions

- Vectors can be defined in higher-dimensional coordinate systems as well

- e.g., in 3D: \(\mathbf{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} \)
Vector Addition

\[
\begin{pmatrix}
 a_x \\
 a_y
\end{pmatrix} + \begin{pmatrix}
 b_x \\
 b_y
\end{pmatrix} = \begin{pmatrix}
 a_x + b_x \\
 a_y + b_y
\end{pmatrix} = \begin{pmatrix}
 c_x \\
 c_y
\end{pmatrix}
\]
Scalar Multiplication

\[sa = s \begin{pmatrix} a_x \\ a_y \end{pmatrix} = \begin{pmatrix} sa_x \\ sa_y \end{pmatrix} \]

Diagram:
- Vector \(a \) is twice the length of vector \(b \).
- \(a = 2b \)
Exercise 1

1. Compute the circumference of a circle with radius 2 cm
2. Convert an angle of 45° to radians
3. Convert $\frac{3\pi}{2}$ radians to degrees
4. Given a right triangle with $a = 2$, $b = 3$, compute the angle between a and c
5. Let $\mathbf{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Compute $2(\mathbf{v} + \mathbf{w})$.
Length of a vector

- The length of a vector can be calculated using the Pythagorean theorem:

\[\|v\| = \sqrt{v_x^2 + v_y^2} \]

- Graphical Interpretation:
Scalar Product

The **scalar product** \(< \mathbf{a}, \mathbf{b} >\) or \(\mathbf{a} \cdot \mathbf{b}\) of two vectors is defined as:

\[
< \mathbf{a}, \mathbf{b} > = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix} = a_1 b_1 + a_2 b_2 + \ldots
\]

and results in a **scalar** value.
Scalar Product

- The scalar product is related to the angle between the two vectors:

\[
\langle \mathbf{a}, \mathbf{b} \rangle = |\mathbf{a}| |\mathbf{b}| \cos(\alpha) \quad \iff \quad \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{|\mathbf{a}| |\mathbf{b}|} = \cos(\alpha)
\]

- Graphical Interpretation:
Scalar Product: Special Cases

- If both vectors a and b point in the same direction:
 \[< a, b > = |a||b|cos(0) = |a||b| \]

- If both vectors a and b are orthogonal to each other:
 \[< a, b > = |a||b|cos(90^\circ) = 0 \]
Angle between Vectors

- The scalar product can be used to calculate the angle between two vectors.

\[
\langle a, b \rangle = |a||b|\cos(\alpha)
\]

\[
\alpha = \cos^{-1}\left(\frac{\langle a, b \rangle}{|a||b|}\right)
\]

\[
\alpha = \cos^{-1}\left(\frac{1 \times 1 + 1 \times 0}{\sqrt{2} \times 1}\right)
\]

\[
\alpha = \frac{\pi}{4} = 45^\circ
\]

October 4, 2022
Exercise 2

1. Let \(\mathbf{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \) and \(\mathbf{w} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \). Compute the scalar product \(\langle \mathbf{v}, \mathbf{w} \rangle \) and the vector lengths \(||\mathbf{v}|| \) and \(||\mathbf{w}|| \). Next, find the angle between these two vectors.

2. Compute \(3 \langle 2 \left(\mathbf{w} + \begin{pmatrix} 1 \\ -4 \end{pmatrix} \right), \begin{pmatrix} -2 \\ -2 \end{pmatrix} \rangle \)

3. (optional) Write a python function that can find the angle between two vectors, given as lists. Test the program on the vectors of 1.
Matrices

A matrix is an array or table of numbers arranged in rows and columns:

\[
A = \begin{pmatrix}
1.5 & 2.5 & 4 \\
-1 & 3 & 2 \\
0 & -5 & 2
\end{pmatrix}
\]
Motivation: Linear transformation

- Matrices can specify **linear transformations**

- The n-th column of the matrix is a vector that specifies to where the n-th dimension of space is mapped (direction and scaling/compression factor)

Rotation by 45°

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Scaling

$$\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}$$
Matrix-vector multiplication

Vectors can be multiplied by a matrix, which applies the transformation:

\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
= x
\begin{pmatrix}
a_{11} \\
a_{21}
\end{pmatrix}
+ y
\begin{pmatrix}
a_{12} \\
a_{22}
\end{pmatrix}
= \begin{pmatrix}
a_{11}x + a_{12}y \\
a_{21}x + a_{21}y
\end{pmatrix}
\]

Rotation by 45°

\[
\begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\begin{pmatrix}
1.0 \\
0.4
\end{pmatrix}
\]

Scaling

\[
\begin{pmatrix}
0.5 & 0 \\
0 & 0.5
\end{pmatrix}
\begin{pmatrix}
1.0 \\
0.4
\end{pmatrix}
\]
Matrix-vector multiplication

This works with an arbitrary number of dimensions:

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= x
\begin{pmatrix}
a_{11} \\
a_{21} \\
a_{31}
\end{pmatrix}
+ y
\begin{pmatrix}
a_{12} \\
a_{22} \\
a_{32}
\end{pmatrix}
+ z
\begin{pmatrix}
a_{13} \\
a_{23} \\
a_{33}
\end{pmatrix}
= \begin{pmatrix}
a_{11}x + a_{12}y + a_{13}z \\
a_{21}x + a_{22}y + a_{23}z \\
a_{31}x + a_{32}y + a_{33}z
\end{pmatrix}
\]
Matrix addition

- Matrices can be added:

\[
\begin{pmatrix}
1 & 0 & 2 \\
3 & 2 & 4 \\
1 & 5 & 7
\end{pmatrix}
+
\begin{pmatrix}
2 & 1 & 4 \\
6 & 0 & -3 \\
0 & -5 & 2
\end{pmatrix}
=
\begin{pmatrix}
1+2 & 0+1 & 2+4 \\
3+6 & 2+0 & 4-3 \\
1+0 & 5-5 & 7+2
\end{pmatrix}
=
\begin{pmatrix}
3 & 1 & 6 \\
9 & 2 & 1 \\
1 & 0 & 9
\end{pmatrix}
Scalar multiplication

Matrices can be multiplied by a scalar:

\[
2 \cdot \begin{pmatrix}
 1 & 0 & 2 \\
 3 & 2 & 4 \\
 1 & 5 & 7 \\
\end{pmatrix} = \begin{pmatrix}
 2 \cdot 1 & 2 \cdot 0 & 2 \cdot 2 \\
 2 \cdot 3 & 2 \cdot 2 & 2 \cdot 4 \\
 2 \cdot 1 & 2 \cdot 5 & 2 \cdot 7 \\
\end{pmatrix} = \begin{pmatrix}
 2 & 0 & 4 \\
 6 & 4 & 8 \\
 2 & 10 & 14 \\
\end{pmatrix}
\]
Matrix multiplication

► Matrices can be multiplied with each other:

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
 b_{11} \\
 b_{21} \\
 b_{31}
\end{pmatrix},
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
 b_{12} \n b_{22} \n b_{32}
\end{pmatrix},
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
 b_{13} \n b_{23} \n b_{33}
\end{pmatrix}
\]

► Note: a vector is also a matrix

► matrix-vector multiplication is a special case of matrix-matrix multiplication
Matrix multiplication

Matrix multiplication is associative: \((AB)C = A(BC)\)

It follows that linear transformations can be composed by multiplication

Example: Rotation followed by scaling

\[
\begin{pmatrix}
0.5 & 0 \\
0 & 0.5
\end{pmatrix}
\begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
= \begin{pmatrix}
\frac{0.5}{\sqrt{2}} & -\frac{0.5}{\sqrt{2}} \\
\frac{0.5}{\sqrt{2}} & \frac{0.5}{\sqrt{2}}
\end{pmatrix}
\]
Exercise 3

1. Create a 2x2 matrix that scales a vector by 2 along the first dimension and by 0.5 along the second dimension. Test the matrix by scaling the vector \((5, 10)\).

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 4 \\
5 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
2 \\
-1
\end{pmatrix}
\]

2. Compute \[
\begin{pmatrix}
1 & 2 \\
2 & 1
\end{pmatrix} + \begin{pmatrix}
3 & -1 \\
2 & 2
\end{pmatrix}
\]

3. Compute \[
2 \left(\begin{pmatrix}
1 & 2 \\
2 & 1
\end{pmatrix} \right)
\]

4. Create a matrix that rotates a vector by 90° by composing the rotation matrix for 45° rotations two times.

5. (optional) Create a matrix that rotates a vector by 270°. Do not calculate such a matrix by composing it of other matrices. Instead, directly write down the required matrix entries. Start by thinking about what this rotation means geometrically.

6. (optional) Write a python program that can multiply a vector by a matrix. Represent the vector as a list and the matrix as a list of lists, where each inner