Mathematics and Computer Science for Modeling Unit 2: Functions in Math

Daniel Sabinasz based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

September 30, 2022

Course Structure

Unit	Title	Topics
1	Intro to Programming in Python	Variables, if Statements, Loops, Func-
		tions, Lists
-	Full-Time Programming Session	Deepen Programming Skills
2	Functions in Math	Function Types and Properties, Plotting
		Functions, Lists
3	Linear Algebra	Vectors, Trigonometry, Matrices
4	Calculus	Derivative Definition, Calculating
		Derivatives

Course Structure

Unit	Title	Topics
5	Integration	Geometrical Definition, Calculating In-
		tegrals, Numerical Integration
6	Differential Equations	Properties of Differential Equations,
		Euler Approximation, Braitenberg
		Vehicle
-	Programming Session & Recap	Repetition, Questions, Test Topics
-	07.10.22: Test	

Lecture Slides/Material

Use the following URL to access the lecture slides:

 $https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics_and_computer_science_for_modeling_summer_term_2022$

1. Sets and Number Systems

2. Functions in Math

- > Definition
- > Function Types
- Parametrization
- ➤ Multiple Arguments
- Properties

1. Sets and Number Systems

2. Functions in Math

- Definition
- > Function Types
- Parametrization
- ➤ Multiple Arguments
- > Properties

Sets

- For practical purposes, think of a **set** as a container of objects
- e.g., the set of natural numbers

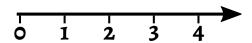
Sets

- Notation: $\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, \dots\}$
- ▶ Something is either in the set or not in the set
- If something is in the set, we call it an **element** of the set
- ightharpoonup e.g., 5 is an element of $\mathbb N$, but -3 is not an element of $\mathbb N$
- ▶ Write $5 \in \mathbb{N}$ and $-3 \notin \mathbb{N}$

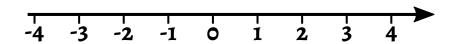
Sets

- Instead of listing all the elements, you can describe in natural language what the elements should be
- e.g., $A = \{x \mid x \text{ is an even number}\} = \{0, 2, 4, 6, 8, \ldots\}$

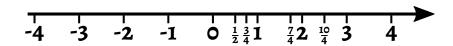
- ▶ **Natural Numbers**: $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- ▶ Integer Numbers: \mathbb{Z} =
- Rational Numbers:
- ► Real Numbers: ℝ



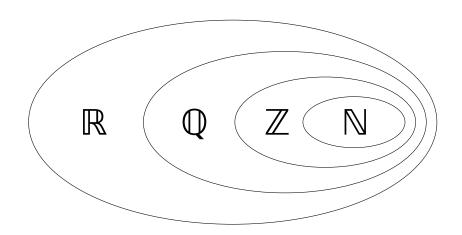
- ▶ **Natural Numbers**: $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- ▶ Integer Numbers: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- Rational Numbers: Q
- Real Numbers: R



- ▶ **Natural Numbers**: $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- ▶ Integer Numbers: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- **Rational Numbers**: $\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } b \neq 0 \}$
- Real Numbers: R



- ▶ **Natural Numbers**: $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- ► Integer Numbers: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- **Rational Numbers**: $\mathbb{Q} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$
- **Real Numbers**: $\mathbb{R} = \mathbb{Q} \cup \text{irrational numbers}$



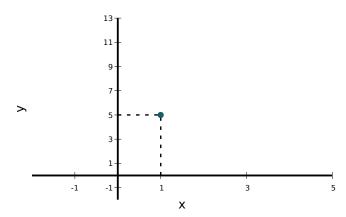
1. Sets and Number Systems

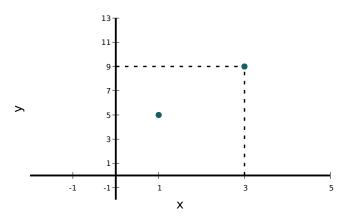
2. Functions in Math

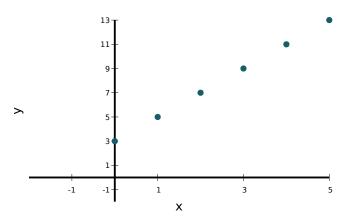
- > Definition
- > Function Types
- Parametrization
- ➤ Multiple Arguments
- Properties

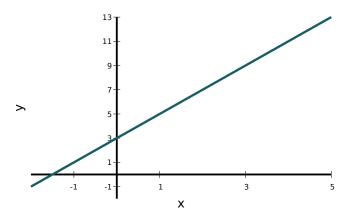
Function Intuition

- Function example: f(x) = 2x + 3
- A function, written like this, can be thought of as a formula that can be evaluated to give the value of the function
- ▶ e.g.,
 - $f(1) = 2 \cdot 1 + 3 = 5$
 - $f(2) = 2 \cdot 2 + 3 = 6$









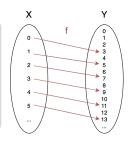
Function Definition

Function

X and Y are two sets.

A **function** $f: X \to Y$ is a mathematical object that assigns each element $x \in X$ exactly one element $y \in Y$.

$$x \rightarrow y = f(x)$$



- x is called the **function argument**
- y is called the **function value**
- X is called the **domain**
- Y is called the codomain
- ► The **image** W of f(x) are all values in Y that can be assumed by the function.

Matplotlib

matpletlib

Matplotlib allows to plot functions:

```
import matplotlib.pyplot as plt
numbers = [2*x+3 \text{ for } x \text{ in range}(6)]
plt.plot(numbers)
plt.show()
```

Functions in Math -

Function Types

Linear Functions

$$y = mx + b$$

Functions in Math -

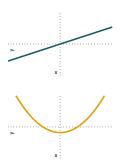
Function Types

Linear Functions

$$y = mx + b$$

Power Functions

$$y = ax^n$$

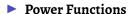


Functions in Math

Function Types

Linear Functions

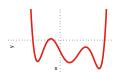
$$y = mx + b$$



$$y = ax^n$$

$$y = \sum_{i=0}^{n} a_i x^i$$

 $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$
describes a polynomial of degree n , where $a_n \neq 0$



The Summation Symbol

- $\sum_{i=0}^{n} T(i)$ denotes a sum of multiple terms
- The bottom row defines an indexing variable, here i, and specifies an initial value, here 0
- That variable takes on increasing values (0, 1, 2, 3, ..., n)
- The top row specifies the maximum value for i, here n
- ightharpoonup T(i) specifies a term for each i
- $\triangleright \sum_{i=0}^{n} T(i)$ sums up T(i) for each i
- Thus, $\sum_{i=0}^{n} T(i) = T(0) + T(1) + T(2) + \ldots + T(n)$
- e.g., $\sum_{i=0}^{5} i = 0 + 1 + 2 + 3 + 4 + 5$

Exponentials Functions

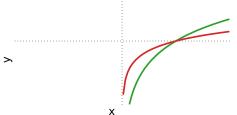
Exponential Functions

$f(x) = e^x \qquad g(x) = 10^x$

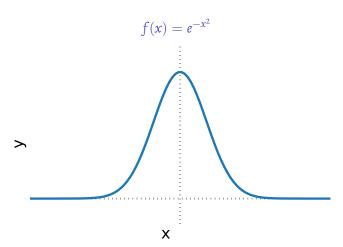
Х

Logarithmic Functions

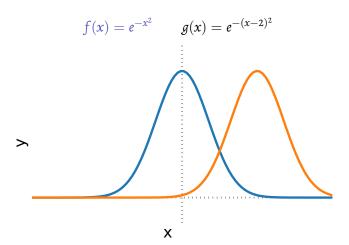
$$h(x) = ln(x)$$
 $j(x) = log_{10}(x)$



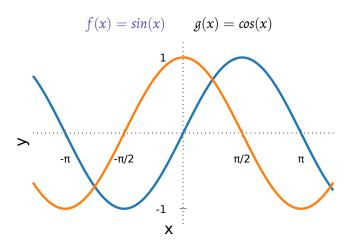
The Gaussian Function



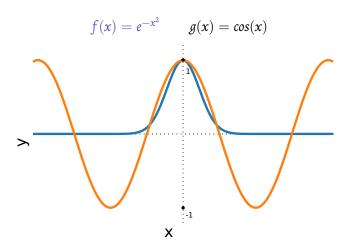
The Gaussian Function



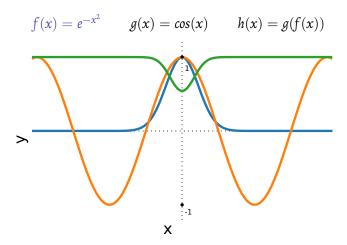
Trigonometric Functions



Chaining Functions



Chaining Functions



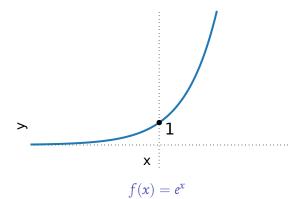
Functions in Math -

Chaining Functions

$$f(x) = e^{-x^2} \qquad g(x) = \cos(x) \qquad h(x) = g(f(x)) \qquad j(x) = f(g(x))$$

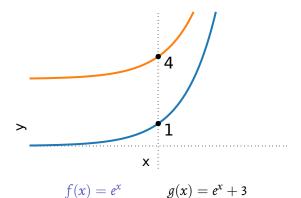
Function Translation

- ► Translation in *y*-direction: $\hat{f}(x) = f(x) + b$
- ► Translation in *x*-direction: $\hat{f}(x) = f(x a)$



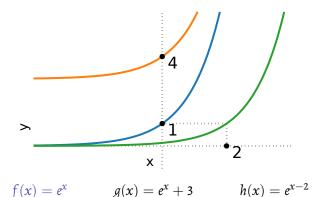
Function Translation

- ► Translation in *y*-direction: $\hat{f}(x) = f(x) + b$
- ► Translation in *x*-direction: $\hat{f}(x) = f(x a)$

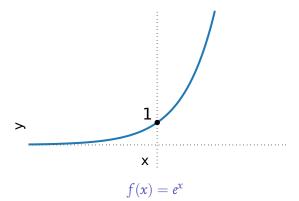


Function Translation

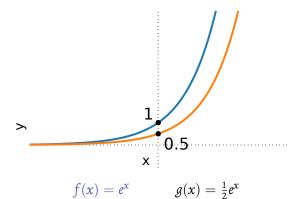
- ► Translation in *y*-direction: $\hat{f}(x) = f(x) + b$
- ► Translation in *x*-direction: $\hat{f}(x) = f(x a)$



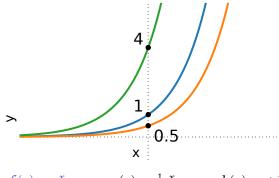
- ► Stretching/Compression in **y-direction**: $\hat{f}(x) = df(x)$, d > 0
- Stretching/Compression in *x***-direction**: $\hat{f}(x) = f(cx), c > 0$



- Stretching/Compression in **y-direction**: $\hat{f}(x) = df(x), d > 0$
- Stretching/Compression in *x***-direction**: $\hat{f}(x) = f(cx), c > 0$



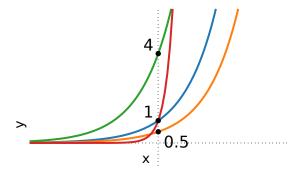
- Stretching/Compression in **y-direction**: $\hat{f}(x) = df(x), d > 0$
- Stretching/Compression in *x***-direction**: $\hat{f}(x) = f(cx), c > 0$



$$f(x) = e^x g(x) = \frac{1}{2}e^x h(x) = 4e^x$$

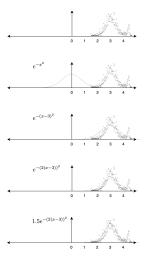
Functions in Math

- Stretching/Compression in **y-direction**: $\hat{f}(x) = df(x)$, d > 0
- Stretching/Compression in *x***-direction**: $\hat{f}(x) = f(cx), c > 0$



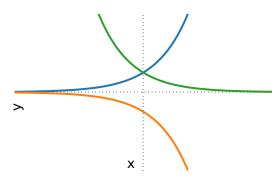
$$f(x) = e^x$$
 $g(x) = \frac{1}{2}e^x$ $h(x) = 4e^x$ $j(x) = e^{4x}$

Example



Function Reflection

- ► Reflection across the **y-axis**: $\hat{f}(x) = f(-x)$
- Reflection across the *x***-axis**: $\hat{f}(x) = -f(x)$



$$f(x) = e^x g(x) = -e^x$$

$$h(x) = e^{-x}$$

Exercise 1

1. Give an example for a natural number, a negative integer, a rational number and an irrational number

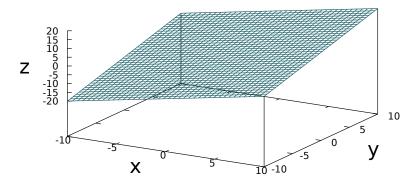
Functions in Math

- 2. Which of the following is true? (a) Every real number is rational. (b) Every integer is rational. (c) Every natural number is a real number.
- **3.** Let $f: \mathbb{N} \to \mathbb{R}, x \to 2x + 3$. Identify the function argument, the function value, the domain, the codomain and the image.
- **4.** Create a function $\hat{f}(x)$ by translating $f(x) = e^x$ by -2 in y-direction and by 3 in x-direction.
- **5.** Create a function $\hat{f}(x)$ by stretching $f(x) = e^x$ along the y-axis and compressing it along the x-axis.
- **6.** Create a function $\hat{f}(x)$ by compressing $f(x) = e^x$ along the y-axis and stretching it along the x-axis.

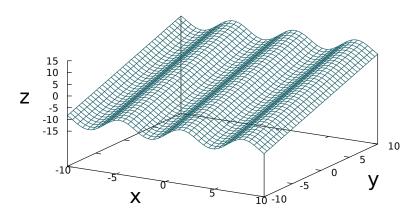
Exercise 2

- **1.** Write a python function that calculates f(x) = 4x + 3 and plot it.
- **2.** Define a second function $g(x, a_0, a_1, a_2, a_3)$ that calculates a polynomial of degree 3 with variable coefficients a_0 to a_3 and plot g(x, 3, 0, 2, 1)
- **3.** Calculate f(x) or g(x, 3, 0, 2, 1) for x values from 0 to 20. Store the result in a list.
- **4.** (optional) Define a function 'polynomial(a, x)' that receives a list of coefficients 'a' $(a_0, a_1, a_2, ..., a_n)$ with a flexible number of items and computes $\sum_{i=0}^{n} a_i x^i$.

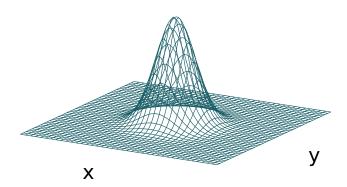
$$f(x,y) = x + y$$



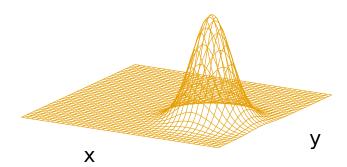
$$f(x,y) = \sin(x) + y$$



$$f(x,y) = e^{-(x^2 + y^2)}$$



$$f(x,y) = e^{-((x-2)^2 + (y+1)^2)}$$



Properties

Injective, Surjective and Bijective Functions

- An image f is **injective**, if two different elements $x_1 \neq x_2$ are always projected to two different elements $y_1 \neq y_2$
- ▶ An image f is **surjective**, if for each element $y \in Y$ one $x \in X$ exists, such that y = f(x)
- ► An image *f* is **bijective**, if it is injective and surjective

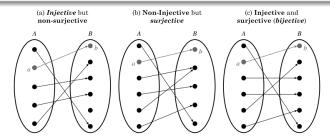
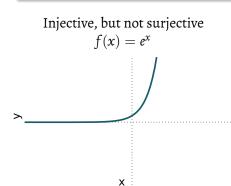


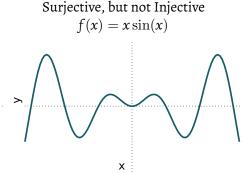
Image source:

https://commons.wikimedia.org/wiki/File:Injective,_Surjective,_Bijective.svg

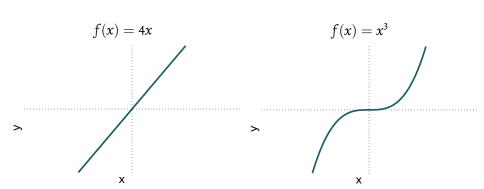
Injective, Surjective and Bijective Functions

- An image f is **injective**, if two different elements $x_1 \neq x_2$ are always projected to two different elements $y_1 \neq y_2$
- ▶ An image f is **surjective**, if for each element $y \in Y$ one $x \in X$ exists, such that y = f(x)





Bijective Function Example



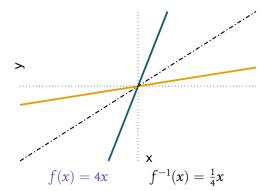
Functions in Math

Inverse Function

Definition

Given a bijective function $f: X \to Y$, $f^{-1}: Y \to X$ denotes the **inverse** function of f.

It holds that $f^{-1}(f(x)) = x$ for all $x \in X$.

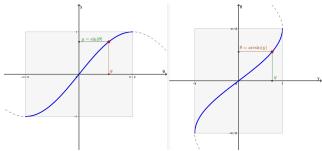


Inverse Function

Definition

Given a bijective **function** $f: X \to Y$, $f^{-1}: Y \to X$ denotes the **inverse function** of f.

It holds that $f^{-1}(f(x)) = x$ for all $x \in X$.



https://www.geogebra.org/m/Efs8QRRF

Image source:

Monotonicity

Definition

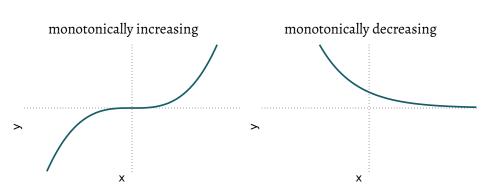
▶ A function $f : \mathbb{R} \to \mathbb{R}$ is called **monotonically increasing**, if for all x_1, x_2 order is preserved by applying f:

$$x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$$

▶ A function $f : \mathbb{R} \to \mathbb{R}$ is called **monotonically decreasing**, if for all x_1, x_2 order is reversed by applying f:

$$x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2)$$

Monoticity Examples



Functions Exercise 3

- 1. Write a python function that calculates $f(x, y) = 4x^2 + 2(y 2)^2$ and plot it.
- **2.** Determine the inverse $f^{-1}(x)$ of f(x) = 2x + 3
- 3. For each of the following functions, determine if they are monotonically increasing, monotonically decreasing or neither: $f(x) = x^2$, $f(x) = -x^5$, $f(x) = x^7$