Summary: main conceptual points

Gregor Schöner, INI, RUB

Dynamical system

Dynamical systems

fixed point = constant solution

neighboring initial conditions converge = attractor

Bifurcations are instabilities

In families of dynamical systems, which depend (smoothly) on parameters, the solutions change qualitatively at bifurcations

at which fixed points change stability

Basic ideas of attractor dynamics approach

behavioral variables

- time courses from dynamical system: attractors
- tracking attractors
- bifurcations for flexibility

Behavioral variables: example

3

vehicle moving in
 2D: heading
 direction

constraints:
 obstacle avoidance
 and target
 acquisition

Behavioral dynamics: example

behavioral constraint: target acquisition

obs

arbitrary, but fixed reference axis

robot

Behavioral dynamics

specified value

📕 strength

🗧 range

Behavioral dynamics: bifurcations 3

constraints not in conflict

Behavioral dynamics

Constraints in conflict

Behavioral dynamics

transition from "constraints not in conflict" to "constraints in conflict" is a bifurcation

In a stable state at all times

model-experiment match: goal

3

model-experiment match: obstacle

2nd order attractor dynamics to explain human navigation

[Fajen Warren...]

Obstacle avoidance: sub-symbolic 4

obstacles need not be segmented

do not care if obstacles are one or multiple: avoid them anyway...

[from: Bicho, Jokeit, Schöner]

[Bicho, Schöner, 97]

Potential field approach

5

spurious attractors in potential 5 field approach

Dead-reckoning/path integration

if the agent knows its current velocity=heading direction + speed (and keeps track of time), it can estimate its change of position by integration

[McNaughton et al., Nature reviews neuroscience 2006]

Landmark recognition

- empirical evidence that views serve to estimate ego-position and pose
- evidence for
 views used
 from animal
 behavior
 and neural
 data

[Peer, Epstein, 2021]

Maps

when can we say does an animal use a map?

rather than use stimulus-response chaining

=> when it can take short-cuts

[Peer et al, 2020]

[Poucet, 1993]

Spaces for robotic motion planning 7

kinematic model $\mathbf{x} = \mathbf{f}(\theta)$ $\dot{\mathbf{x}} = \mathbf{J}(\theta)\dot{\theta}$

inverse kinematic model $\theta = \mathbf{f}^{-1}(\mathbf{x})$ $\dot{\theta} = \mathbf{J}^{-1}(\theta)\dot{\mathbf{x}}$

- transform end-effector to configuration space through inverse kinematics
- problems of singularities and multiple "leafs" of inverse...

Forward kinematics

where is the hand, given the joint angles..

 $\mathbf{x} = \mathbf{f}(\theta)$

 $x = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)$ $y = l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2)$

Workspace / Singularities

- where the Eigenvalue of the Jacobian becomes zero (real part)...
- so that movement in a particular direction is not possible...
- typically at extended postures or inverted postures
- at limits of workspace

Redundant kinematics

use pseudo-inverses that minimize a functional (e.g., total joint velocity or total momentum)

Human motor control

posture resists when pushed => is actively controlled = stabilized by feedback

invariant characteristic

🛋 one lambda per muscle

co-contraction controls stiffness

based on spinal reflexes

stretch reflex

[Kandel, Schartz, Jessell, Fig. 37-11]

Timing

compute parameters to achieve a particular movement time T, with zero velocity at target

[Lynch, Park, 2017 (Chapter 9)]

Relative vs. absolute timing

Theoretical account for absolute timing

- (neural) oscillator autonomously generates timing signal, from which timing events emerge
- => limit cycle oscillators
- = clocks

Neural oscillator

$$\tau \dot{u} = -u + h_u + w_{uu} f(u) - w_{uv} f(v)$$

$$\tau \dot{v} = -v + h_v + w_{vu} f(u),$$

Coordination from coupling

coordination=stable relative timing emerges from coupling of neural oscillators

[Schöner: Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]

Rigid bodies: constraints

constraints reduce the effective numbers of degrees of freedom...

$$F_i = m_i \ddot{r}_i \qquad r_i \in \mathbb{R}^3, i = 1, \dots, n.$$
$$g_j(r_1, \dots, r_n) = 0 \qquad j = 1, \dots, k.$$

Open-chain manipulator

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta,\dot{\theta}) = \tau$$

inertial centrifugal/ gravitational active torques

Robotic control

[Lunch, Park, 2017]

Motion control single joint

$$= \tau = M\ddot{\theta} + mgr\cos(\theta) + b\dot{\theta}$$

feedback PID controller

$$\tau = K_p \theta_e + K_d \dot{\theta}_e + K_i \int \theta(t') dt'$$

Figure 11.12: Block diagram of a PID controller.

[Lunch, Park, 2017]

Control of multi-joint arm

generate joint torques that produce a desired motion... θ_d

$$\blacksquare \operatorname{error} \theta_e = \theta - \theta_d$$

PID control
$$\tau = K_p \theta_e + K_e \dot{\theta}_d + K_i \int \theta_e(t') dt'$$

=> controlling joints independently

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta,\dot{\theta}) = \tau$$