
Gregor Schöner, INI, RUB

Summary: main
conceptual points

Dynamical systems

functional link between state and its
rate of change

2

time, t

u

u

time, t

u

u

Dynamical system

present determines the future

x

dx/dt=f(x)

initial
condition

predicts
future

evolution

2

Dynamical systems

fixed point = constant solution

neighboring initial conditions converge = attractor

x

dx/dt=f(x)

attractor

2

Bifurcations are instabilities

In families of dynamical systems, which depend
(smoothly) on parameters, the solutions change
qualitatively at bifurcations

at which fixed points change stability

2

ẋ = ↵� x2

x

dx/dt

α

fixed point

α positive

α =0

α negative

unstable

stable

x0 =
p

↵

behavioral variables

time courses from dynamical system:
attractors

tracking attractors

bifurcations for flexibility

Basic ideas of attractor dynamics
approach

3

vehicle moving in
2D: heading
direction

constraints:
obstacle avoidance
and target
acquisition

Behavioral variables: example

ψ
tar

ψ
obs

robot

target

obstacle

arbitrary, but fixed
reference axis

∆ψ

3

behavioral constraint: target acquisition

Behavioral dynamics: example

vehicle

target

ψ

ψ
tar

φ

dφ/dt

attractor

3

behavioral constraint: obstacle avoidance

Behavioral dynamics: example

ψ
obs

robot

obstacle

arbitrary, but fixed
reference axis

∆ψ

φ

ψ
obs

φ

dφ/dt

repellor

3

each contribution is
a “force-let” with

specified value

strength

range

Behavioral dynamics

ψ
tar

φ

dφ/dt

~strength

range

specified value

3

constraints not in conflict

Behavioral dynamics: bifurcations

φ

dφ/dttarget
obstacle

obstacle

3

constraints in conflict

Behavioral dynamics

φ

dφ/dttarget
obstacle

obstacle

3

transition from “constraints not in conflict”
to “constraints in conflict” is a bifurcation

Behavioral dynamics

repellor

attractor

attractor

increasing distance
between obstacles

bifurcation
Φ

3

vehicle

target
obstacle

heading direction

φ

dφ/dt

dφ/dt

φ

In a stable state at all times 3

model-experiment match: goal
Dynamical Model of Steering 19

(a)

(b)

Figure 5. Paths produced by model to goals located at (a) 5◦, 10◦,
15◦, 20◦, and 25◦ and 4 m and (b) 2, 4, and 8 m in the 20◦ condition
in Simulation #1.

We tested the model using configurations of goals
and obstacles similar to those in Fig. 9. Keeping the
initial goal angle constant at 15◦ and the initial obsta-
cle distance constant at 4 m, we varied the initial goal
distance between 5 m and 9 m, and the initial offset an-
gle between 1◦ and 15◦. We found effects of both initial
goal distance and initial offset angle. Using the fixed
parameters determined in Simulations #1 and #2, the
agent selects an outside route for offset angles ≤7◦, and
an inside path for angles ≥10◦. For angles between 7◦

and 10◦, the agent takes an outside route for larger goal
distances and switches to an inside route for smaller
goal distances (Fig. 10).

(a)

(b)

Figure 6. Model trajectories in Simulation #1 (turning rate (φ̇) vs.
goal angle (φ − ψg)). Curves correspond to (a) initial goal angle in
the 4 m condition and (b) initial goal distance in the 20◦ condition.

The effect of initial goal distance is a consequence
of the fact that the attractive strength of the goal, and
hence angular acceleration toward the goal, increases
as the goal gets nearer. The effect of offset angle is
a consequence of the trade-off between the attractive
strength of the goal, which increases with angle, and the
repulsive strength of the obstacle, which decreases with
angle. Initially, the goal component dominates, turning
the agent in the direction of the goal. The resulting de-
crease in both goal and obstacle angle decreases the
attractive strength of the goal and increases the repul-
sive strength of the obstacle. Whether the agent follows
an inside or outside route depends on which component
dominates as the agent heads toward the obstacle. For
large offset angles, the goal angle is relatively large

16 Fajen et al.

Human Experiments

Three experiments were designed to reveal the fac-
tors that influence how humans turn toward goals and
away from obstacles during walking (see Fajen and
Warren, 2003), for details). The studies were con-
ducted in the Virtual Environment Navigation Lab
(VENLab) at Brown University. The VENLab consists
of a 12 m × 12 m room in which subjects are able to
walk around freely while wearing a head-mounted dis-
play (HMD). A hybrid inertial and ultrasonic tracker
mounted in the ceiling tracks the position and orien-
tation of the HMD. This information is fed back to a
high-performance graphics workstation, which updates
the visual display presented in the HMD. This facility
allows us to manipulate both the structure of the en-
vironment and the visual information presented to the
observer in real-time, while simultaneously recording
ongoing behavior in naturalistic tasks.

The first experiment examined the simple case of
walking toward a goal, while the second examined
avoiding a single obstacle en route to a goal. In
Experiment 1, observers began each trial by walking
in a specified direction. After walking 1 m, a goal
appeared at an angle of φ − ψg = 5◦, 10◦, 15◦, 20◦,
or 25◦ from the heading direction and a distance of
dg = 2, 4, or 8 m. Observers were simply asked to
walk to the goal. The major findings of Experiment 1
were that the turning rate and angular acceleration to-
ward goals increased with goal angle (see Fig. 2(a))
but decreased with goal distance (see Fig. 2(b)). In
Experiment 2, observers began walking toward a goal
located straight ahead at a distance of 10 m. After
walking 1 m, the obstacle appeared at an angle of
φ − ψo = 1◦, 2◦, 4◦, or 8◦ from the heading direction
and a distance of do = 3, 4, or 5 m. The major findings
of Experiment 2 were that the turning rate and angular
acceleration away from obstacles decreased with both
obstacle angle (see Fig. 3(a)) and obstacle distance (see
Fig. 3(b)).

The Model

These empirical observations were used to specify
the dynamical model of steering and obstacle avoid-
ance. First, for purposes of simplicity, we assumed that
damping would be proportional to turning rate, such
that fd (φ̇) = bφ̇, for some constant b > 0. The goal
function fg(φ−ψg , dg) was chosen to reflect the find-
ings that the influence of the goal on angular accelera-

(a)

(b)

Figure 2. Human trajectories for turning toward a goal in
Experiment 1 (turning rate (φ̇) vs. goal angle (φ − ψg)). Curves
correspond to (a) different initial goal angles in the 4 m condition
and (b) different initial goal distances in the 20◦ condition.

tion increases with goal angle and decreases with goal
distance:

fg(φ − ψg, dg) = kg(φ − ψg)(e−c1dg + c2) (2)

Thus, in the model the goal’s influence increases lin-
early with goal angle up to 180◦ (see Fig. 4(a)) and de-
creases exponentially with goal distance (see Fig. 4(b)).
Note that this influence asymptotes to some minimum
non-zero value as goal distance increases, enabling the
agent to steer toward distant goals. The “stiffness” pa-
rameter kg is a gain term for the goal component, c1 sets
the rate of exponential decay with goal distance, and c2

scales the minimum acceleration toward distant goals.

experiment model

3

model-experiment match: obstacle
experiment model

20 Fajen et al.

Figure 7. Paths produced by model around obstacles located at 4◦

and 3, 4 or 5 m in Simulation #2.

(a)

(b)

Figure 8. Model trajectories in Simulation #2 (turning rate (φ̇) vs.
goal angle (φ−ψg)). Curves correspond to (a) initial obstacle angle in
the 4 m condition and (b) initial obstacle distance in the 4◦ condition.

Figure 9. Configuration of goal and obstacle used in Simulation
#3a.

as the agent turns toward the obstacle. Hence, goal at-
traction overcomes obstacle repulsion resulting in an
inside route. For small offset angles, the goal angle is
relatively small as the agent turns toward the obstacle.
Hence, obstacle repulsion overcomes goal attraction,
forcing the agent along an outside route. Thus, the deep
structure of the observed route selection is represented
in the behavioral dynamics.

To evaluate the model’s predictive ability, we tested
for these effects of initial offset angle and initial goal
distance in humans. As in Experiments 1 and 2, subjects
began walking in a specified direction. After walking

Figure 10. Paths produced by the model to goals located at 15◦ and
5, 7, or 9 m. Goal-obstacle offset angle is 8◦ and obstacle distance is
4 m.

Dynamical Model of Steering 17

(a)

(b)

Figure 3. Human trajectories for turning away from an obstacle
in Experiment 2 (turning rate (φ̇) vs. goal angle (φ − ψg)). Curves
correspond to (a) different initial obstacle angles in the 4 m condition
and (b) different initial obstacle distances in the 4◦ condition.

Likewise, the obstacle function fo(φ − ψo, do) was
chosen to reflect the findings that the influence of the
obstacle on angular acceleration decreases with both
obstacle angle and distance:

fo(φ − ψo, do) = ko(φ − ψo)
(

e−c3|φ−ψo|
)

(e−c4do) (3)

In this case, the obstacle’s influence decreases expo-
nentially with obstacle angle (see Fig. 4(c)) as well as
with obstacle distance (see Fig. 4(d)). The parameter
ko is a gain term for the obstacle component, c3 sets the
rate of decay with obstacle angle, and c4 sets the rate
of decay with obstacle distance. Note that for small
obstacle angles, acceleration away from the obstacle

increases with obstacle angle, such that the function is
continuous and there is a repellor at an obstacle angle
of zero. Unlike the goal component, the obstacle influ-
ence decreases to zero as distance goes to infinity. When
parameterized to fit the human data, these two exponen-
tials imply that only obstacles within ±30◦ of the head-
ing direction and less than 4 m ahead exert an appre-
ciable influence on steering behavior. Note that the ex-
ponential terms introduce nonlinearity into the system.

Thus, the full model is:

φ̈ = −bφ̇ − kg(φ − ψg)(e−c1dg + c2)

+ ko(φ − ψo)
(

e−c3|φ−ψo|
)

(e−c4do) (4)

In principle, additional obstacles in the environment
can be included by simply adding terms to the equa-
tion. The model thus scales linearly with the complex-
ity of the scene, and doesn’t blow up in complicated
environments (Large et al., 1999). Furthermore, only
obstacles near the heading direction and a few meters
ahead need to be evaluated, making the model compu-
tationally quite tractable. The agent therefore does not
need a memory representation of the entire scene; as
long as the goal location is available to the agent’s sen-
sors, route selection is performed simply on the basis
of the obstacles within a small spatial window ahead.

Simulations

We simulated the model under a variety of conditions
to test its success in steering toward goals, avoiding
obstacles and selecting routes. The conditions used for
the first two sets of simulations were identical to those
used in the two preceding human experiments, and their
purpose was to test the adequacy of Eq. (4) as a model
of human behavior. The next step was to test the model
in more complex scenes containing one or more ob-
stacles in which multiple routes around the obstacle(s)
are possible. These simulations were intended to reveal
how goal and obstacle components interact to perform
route selection.

Simulation #1: Steering Toward a Goal

We simulated the model under the same conditions used
in Experiment 1 on steering toward a goal, to identify
the single set of parameters for the goal component
that best fit the data. Simulations were compared with
the mean time series of goal angle in the human data

3

2nd order attractor dynamics to
explain human navigation

Dynamical Model of Steering 17

(a)

(b)

Figure 3. Human trajectories for turning away from an obstacle
in Experiment 2 (turning rate (φ̇) vs. goal angle (φ − ψg)). Curves
correspond to (a) different initial obstacle angles in the 4 m condition
and (b) different initial obstacle distances in the 4◦ condition.

Likewise, the obstacle function fo(φ − ψo, do) was
chosen to reflect the findings that the influence of the
obstacle on angular acceleration decreases with both
obstacle angle and distance:

fo(φ − ψo, do) = ko(φ − ψo)
(

e−c3|φ−ψo|
)

(e−c4do) (3)

In this case, the obstacle’s influence decreases expo-
nentially with obstacle angle (see Fig. 4(c)) as well as
with obstacle distance (see Fig. 4(d)). The parameter
ko is a gain term for the obstacle component, c3 sets the
rate of decay with obstacle angle, and c4 sets the rate
of decay with obstacle distance. Note that for small
obstacle angles, acceleration away from the obstacle

increases with obstacle angle, such that the function is
continuous and there is a repellor at an obstacle angle
of zero. Unlike the goal component, the obstacle influ-
ence decreases to zero as distance goes to infinity. When
parameterized to fit the human data, these two exponen-
tials imply that only obstacles within ±30◦ of the head-
ing direction and less than 4 m ahead exert an appre-
ciable influence on steering behavior. Note that the ex-
ponential terms introduce nonlinearity into the system.

Thus, the full model is:

φ̈ = −bφ̇ − kg(φ − ψg)(e−c1dg + c2)

+ ko(φ − ψo)
(

e−c3|φ−ψo|
)

(e−c4do) (4)

In principle, additional obstacles in the environment
can be included by simply adding terms to the equa-
tion. The model thus scales linearly with the complex-
ity of the scene, and doesn’t blow up in complicated
environments (Large et al., 1999). Furthermore, only
obstacles near the heading direction and a few meters
ahead need to be evaluated, making the model compu-
tationally quite tractable. The agent therefore does not
need a memory representation of the entire scene; as
long as the goal location is available to the agent’s sen-
sors, route selection is performed simply on the basis
of the obstacles within a small spatial window ahead.

Simulations

We simulated the model under a variety of conditions
to test its success in steering toward goals, avoiding
obstacles and selecting routes. The conditions used for
the first two sets of simulations were identical to those
used in the two preceding human experiments, and their
purpose was to test the adequacy of Eq. (4) as a model
of human behavior. The next step was to test the model
in more complex scenes containing one or more ob-
stacles in which multiple routes around the obstacle(s)
are possible. These simulations were intended to reveal
how goal and obstacle components interact to perform
route selection.

Simulation #1: Steering Toward a Goal

We simulated the model under the same conditions used
in Experiment 1 on steering toward a goal, to identify
the single set of parameters for the goal component
that best fit the data. Simulations were compared with
the mean time series of goal angle in the human data

attractor goal heading

repellor obstacle heading

damping term 18 Fajen et al.

Figure 4. Plots of (a) goal angle term, (b) goal distance term, (c) obstacle angle term, and (d) obstacle distance term from Eq. (4).

using a least-squares analysis, as the four parameters
were systematically varied. The best fit (r2 = 0.982)
was found with parameter values of b = 3.25, kg =
7.50, c1 = 0.40, and c2 = 0.40. Using these settings,
the model produced paths to the goal that were virtu-
ally identical with human subjects (Fig. 5), turning at
a rate that depended on goal angle and distance in a
similar manner. Specifically, turning rate and angular
acceleration increased with goal angle (Fig. 6(a)) and
decreased with goal distance (Fig. 6(b)).

Simulation #2: Avoiding an Obstacle

Adding a single obstacle component, we simulated the
model under the conditions used in Experiment 2. We
used the parameter settings found in the previous sim-
ulation for the goal component, and fit the three pa-
rameters for the obstacle component in the same man-
ner as before. The best fitting obstacle values (mean
r2 = 0.975) were ko = 198.0, c3 = 6.5, and c4 = 0.8.
Using these settings, the model successfully detoured
around the obstacle to the goal on paths very similar to
those of human subjects (Fig. 7). The turning rate and
acceleration away from the obstacle decreased with ob-
stacle angle (see Fig. 8(a)) and decreased with obstacle
distance (see Fig. 8(b)), reproducing the characteris-
tics of human obstacle avoidance behavior. Thus, the

model exhibits both a good quantitative and qualitative
fit to the human behavior observed in Experiments 1
and 2.

Simulation #3: Route Selection

To see whether the model could predict the routes hu-
mans would select through somewhat more complex
scenes, we performed simulations with a variety of
other goal and obstacle configurations. Because the
model functions in real-time, behavior is determined
entirely by the interaction of goal and obstacle compo-
nents, whose influence changes with the position, head-
ing and turning rate of the agent. How might goal and
obstacle components interact to determine the route?

Simulation #3a: Relative Position of Goal and One
Obstacle. Consider the situation in which the direc-
tion of the obstacle lies in between the direction of
heading and the direction of the goal (see Fig. 9). In
this case, the agent could take either an outside (left)
path or an inside (right) path around an obstacle. If
the agent’s behavior is determined by the interaction
of goal and obstacle components, and if the relative
“attraction” of the goal and “repulsion” of the obstacle
depend on their locations, then the offset angle between
the obstacle and goal and the goal distance should in-
fluence the agent’s route.

inertial term

[Fajen Warren…]

3

obstacles need not be segmented

do not care if obstacles are one or multiple:
avoid them anyway…

Obstacle avoidance: sub-symbolic

robot

obstacle

ψ
obs

θ
obs

φ∆ψ

ψ
obs

φ

dφ/dt

repellor

4

[from: Bicho, Jokeit, Schöner]

PALADYN Journal of Behavioral Robotics

Figure 3. The range of the repulsive forcelet is limited based on sensor range
and on the constraint of passing next to the virtual obstacle without
contact.

Only the known and constant difference, φ − ψ� = −θ� enters
into this equation, so that the calibration of the external refer-
ence frame (the current value of φ itself) does not matter. The
strength of repulsion, λ�, from the virtual obstacle at direction
ψ�, is a decreasing function of the distance, �� sensed at the
sensor �:

λ� = β1 · exp
�
− ��

β2

�
(9)

The constant β1 is the maximum repulsion strength of this contri-
bution and β2 controls its rate of decay with increasing distance.
Thus, when no obstacle is within the range of the distance sen-
sor, the corresponding forcelet inside an attractive region and
the net contribution is zero.
The angular range over which the forcelet exerts its effect is
governed by σ� wich we define as a function:

σ� = arctan
�
tan

�
∆θ
2

�
+ Rrobot

Rrobot + ��

�
� (10)

where ∆θ = 30o is the angular sector at which the sensor is
sensitive, and �� is the sensed distance. The angle subtended
by half the vehicle’s width Rrobot at the sensed distance is added
on each side of the sensor sector to warrant clear passage.
Thus, the angular range over which a forcelet acts decreases
with increasing distance This is illustrated in Figure 3.
The contributions from all seven sensors are summed:

�φ
�� = �obs(φ) =

7�

�=1

�obs��(φ) (11)

In contrast to higher-level implementations where one obstacle
contribution in fact represents exactly one obstacle, we are in-
clined to ask whether extended obstacles that can appear on
more than one sensor in this low-level implementation will lead
to a sensible avoidance behavior: The extended obstacle ”bleeds

Figure 4. On the top: with respect to Figure 6 the robot turned left 5π/12 rad.
From this rotation results three virtual obstacles now at directions ψ2 ,
ψ3 and ψ4 . In this figure φ = 2π/3 rad, ψ2 = π/3 rad, ψ3 = π/2 rad
and ψ4 = 2π/3 rad. Distances are 40, 30 and 40 cm respectively. On
the bottom: three repulsive forcelets are erected at these directions.
The bold line represents the resultant obstacle avoidance dynamics.
attractor is near π/2.

Figure 5. Each sensor i (� = 1� � � � � 7), which is mounted at angle θ� from the
frontal direction, specifies an obstacle at direction ψ� = φ + θ� in
an external reference frame. In the Figure, sensors 5 and 6 specify
virtual obstacles at ψ5 and ψ6 respectively.

over” to other sensors with different distance values �� and an-
gular range coefficients σ� weighting the superposition in Equa-
tion 11 in a non-trivial manner. As a method to test this inquiry
we propose to analyze the superposition of Equation 11 under
rotation of the vehicle on the spot.
Figures 6 and 4 exemplarily illustrate that the summed obsta-
cle contributions depend little on the current orientation of the
vehicle. When the vehicle is oriented as shown in Figure 5, two

Figure 6. In the situation depicted in Figure ?? two virtual obstacles are
detected at directions ψ5 and ψ6 . In that figure φ = π/4 rad,
ψ5 = 5π/12 rad and ψ6 = 7π/12 rad, sensed distances are both
35 cm. Two repulsive forcelets centered at these directions are there-
fore erected (solid thin lines). The solid bold line shows the resultant
obstacle dynamics. The resultant repeller is at π/2 rad.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 7:

7

PALADYN Journal of Behavioral Robotics

Figure 3. The range of the repulsive forcelet is limited based on sensor range
and on the constraint of passing next to the virtual obstacle without
contact.

Only the known and constant difference, φ − ψ� = −θ� enters
into this equation, so that the calibration of the external refer-
ence frame (the current value of φ itself) does not matter. The
strength of repulsion, λ�, from the virtual obstacle at direction
ψ�, is a decreasing function of the distance, �� sensed at the
sensor �:

λ� = β1 · exp
�
− ��

β2

�
(9)

The constant β1 is the maximum repulsion strength of this contri-
bution and β2 controls its rate of decay with increasing distance.
Thus, when no obstacle is within the range of the distance sen-
sor, the corresponding forcelet inside an attractive region and
the net contribution is zero.
The angular range over which the forcelet exerts its effect is
governed by σ� wich we define as a function:

σ� = arctan
�
tan

�
∆θ
2

�
+ Rrobot

Rrobot + ��

�
� (10)

where ∆θ = 30o is the angular sector at which the sensor is
sensitive, and �� is the sensed distance. The angle subtended
by half the vehicle’s width Rrobot at the sensed distance is added
on each side of the sensor sector to warrant clear passage.
Thus, the angular range over which a forcelet acts decreases
with increasing distance This is illustrated in Figure 3.
The contributions from all seven sensors are summed:

�φ
�� = �obs(φ) =

7�

�=1

�obs��(φ) (11)

In contrast to higher-level implementations where one obstacle
contribution in fact represents exactly one obstacle, we are in-
clined to ask whether extended obstacles that can appear on
more than one sensor in this low-level implementation will lead
to a sensible avoidance behavior: The extended obstacle ”bleeds

Figure 4. On the top: with respect to Figure 6 the robot turned left 5π/12 rad.
From this rotation results three virtual obstacles now at directions ψ2 ,
ψ3 and ψ4 . In this figure φ = 2π/3 rad, ψ2 = π/3 rad, ψ3 = π/2 rad
and ψ4 = 2π/3 rad. Distances are 40, 30 and 40 cm respectively. On
the bottom: three repulsive forcelets are erected at these directions.
The bold line represents the resultant obstacle avoidance dynamics.
attractor is near π/2.

Figure 5. Each sensor i (� = 1� � � � � 7), which is mounted at angle θ� from the
frontal direction, specifies an obstacle at direction ψ� = φ + θ� in
an external reference frame. In the Figure, sensors 5 and 6 specify
virtual obstacles at ψ5 and ψ6 respectively.

over” to other sensors with different distance values �� and an-
gular range coefficients σ� weighting the superposition in Equa-
tion 11 in a non-trivial manner. As a method to test this inquiry
we propose to analyze the superposition of Equation 11 under
rotation of the vehicle on the spot.
Figures 6 and 4 exemplarily illustrate that the summed obsta-
cle contributions depend little on the current orientation of the
vehicle. When the vehicle is oriented as shown in Figure 5, two

Figure 6. In the situation depicted in Figure ?? two virtual obstacles are
detected at directions ψ5 and ψ6 . In that figure φ = π/4 rad,
ψ5 = 5π/12 rad and ψ6 = 7π/12 rad, sensed distances are both
35 cm. Two repulsive forcelets centered at these directions are there-
fore erected (solid thin lines). The solid bold line shows the resultant
obstacle dynamics. The resultant repeller is at π/2 rad.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

PALADYN Journal of Behavioral Robotics

Figure 3. The range of the repulsive forcelet is limited based on sensor range
and on the constraint of passing next to the virtual obstacle without
contact.

Only the known and constant difference, φ − ψ� = −θ� enters
into this equation, so that the calibration of the external refer-
ence frame (the current value of φ itself) does not matter. The
strength of repulsion, λ�, from the virtual obstacle at direction
ψ�, is a decreasing function of the distance, �� sensed at the
sensor �:

λ� = β1 · exp
�
− ��

β2

�
(9)

The constant β1 is the maximum repulsion strength of this contri-
bution and β2 controls its rate of decay with increasing distance.
Thus, when no obstacle is within the range of the distance sen-
sor, the corresponding forcelet inside an attractive region and
the net contribution is zero.
The angular range over which the forcelet exerts its effect is
governed by σ� wich we define as a function:

σ� = arctan
�
tan

�
∆θ
2

�
+ Rrobot

Rrobot + ��

�
� (10)

where ∆θ = 30o is the angular sector at which the sensor is
sensitive, and �� is the sensed distance. The angle subtended
by half the vehicle’s width Rrobot at the sensed distance is added
on each side of the sensor sector to warrant clear passage.
Thus, the angular range over which a forcelet acts decreases
with increasing distance This is illustrated in Figure 3.
The contributions from all seven sensors are summed:

�φ
�� = �obs(φ) =

7�

�=1

�obs��(φ) (11)

In contrast to higher-level implementations where one obstacle
contribution in fact represents exactly one obstacle, we are in-
clined to ask whether extended obstacles that can appear on
more than one sensor in this low-level implementation will lead
to a sensible avoidance behavior: The extended obstacle ”bleeds

Figure 4. On the top: with respect to Figure 6 the robot turned left 5π/12 rad.
From this rotation results three virtual obstacles now at directions ψ2 ,
ψ3 and ψ4 . In this figure φ = 2π/3 rad, ψ2 = π/3 rad, ψ3 = π/2 rad
and ψ4 = 2π/3 rad. Distances are 40, 30 and 40 cm respectively. On
the bottom: three repulsive forcelets are erected at these directions.
The bold line represents the resultant obstacle avoidance dynamics.
attractor is near π/2.

Figure 5. Each sensor i (� = 1� � � � � 7), which is mounted at angle θ� from the
frontal direction, specifies an obstacle at direction ψ� = φ + θ� in
an external reference frame. In the Figure, sensors 5 and 6 specify
virtual obstacles at ψ5 and ψ6 respectively.

over” to other sensors with different distance values �� and an-
gular range coefficients σ� weighting the superposition in Equa-
tion 11 in a non-trivial manner. As a method to test this inquiry
we propose to analyze the superposition of Equation 11 under
rotation of the vehicle on the spot.
Figures 6 and 4 exemplarily illustrate that the summed obsta-
cle contributions depend little on the current orientation of the
vehicle. When the vehicle is oriented as shown in Figure 5, two

Figure 6. In the situation depicted in Figure ?? two virtual obstacles are
detected at directions ψ5 and ψ6 . In that figure φ = π/4 rad,
ψ5 = 5π/12 rad and ψ6 = 7π/12 rad, sensed distances are both
35 cm. Two repulsive forcelets centered at these directions are there-
fore erected (solid thin lines). The solid bold line shows the resultant
obstacle dynamics. The resultant repeller is at π/2 rad.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

=> dynamics invariant!

4

Alternative 2nd oder approach

[Bicho, Schöner, 97]

4

Potential field approach

24 Fajen et al.

Figure 14. A typical performance example. Large tick marks indi-
cate 1 m intervals.

1984). Potential field methods have been applied to off-
line path planning (Thorpe, 1985) and in mobile robots
with real sensory data (for example by Arkin, 1989).

A Typical Performance Example

We tested both methods in a sample environment con-
taining five obstacles (see Fig. 14), using Khatib’s
(1986) original potential field formulation. The envi-
ronment consisted of a 5 m × 6.5 m room with a start-
ing location (indicated by the circle), a target location
(labeled goal), and five randomly positioned obstacles
(shown as dots). The circles around the obstacles in-
dicate the limit distance of repulsive influence for the
potential field model (0.8 m). The agent was assumed to
have a diameter of 0.5 m, similar to a human, and an ini-
tial heading of 0◦ (parallel to the x-axis). Although the
potential field is often used to control the agent’s veloc-
ity (direction and speed), in all our simulations we used
the resultant force vector to control the agent’s direc-
tion only, while holding speed constant, analogous to
the dynamical model. The straightforward application
of the potential field method to mobile robot naviga-
tion treats the robot as a particle; however, most mobile
robots are non-holonomic, which means they cannot
move in arbitrary directions (e.g., without first stop-
ping and turning). In our simulations and robot exper-
iments, we used a controller based on the idea that the
front point of a differential-drive robot can be treated
as holonomic (Temizer, 2001; Temizer and Kaelbling,
2001). An alternative approach, used by Arkin (1989),
for example, is to have the robot repeatedly: stop, turn

in the direction of the local force, traverse a short lin-
ear segment, stop, reorient, etc. The details of the paths
resulting from this method would differ from those we
show here, but will be qualitatively similar.

Path 1 shows the trajectory generated by the potential
field method, and path 2 (which is almost a straight
line) that generated by the dynamical model. In this
simulation, the agent moved with a constant translation
speed of 0.5 m/s for both methods. Path 1 has a length of
7.55 meters and was traversed in 15.1 seconds, whereas
Path 2 was only 6.70 meters long and was traversed in
13.4 seconds. We also implemented the potential field
method in a research robot (RWI B21r indoor robot)
and we note that the software simulations closely reflect
the actual trajectories observed.

The 3D plots in Fig. 15 represent the artificial poten-
tial field and the resultant force vectors for the example
scene. The top graph (Fig. 15(a)) shows the artificial
potential field and the middle graph (Fig. 15(b)) shows
the magnitudes of the resultant force vector at each lo-
cation in the environment, with coordinates that match
those of Fig. 14. The starting point is near the high cor-
ner, the goal is near the low corner, and the obstacles
generate tall cones that extend to infinity, guaranteeing
that the agent will never collide with an obstacle.

Differences Between the Two Methods

In this section we consider high-level conceptual dif-
ferences between the dynamical model and the poten-
tial field method. A low-level quantitative comparison
would not be appropriate since the computational out-
comes of the two methods are quite different: the po-
tential field method produces a resultant vector that
directly controls the agent’s direction, whereas the dy-
namical model produces an angular acceleration that
controls the agent’s rotation.

Angular Acceleration vs. Direction Control. Look-
ing at the example in Fig. 14, it is apparent that the dy-
namical model tends to traverse smoother and shorter
paths than the potential field method. Similarly, the
fluctuations in rotation speed are smooth for the dy-
namical model (Fig. 16), in contrast to sharp, rapid
turns with the potential field method. This is partially
due to an important general difference between the
approaches: the dynamical model explicitly controls
the agent’s angular acceleration and deceleration rather
than the translation direction, and thus tends to generate
smoother trajectories. The damping term constrains the

Dynamical Model of Steering 25

(a)

(b)

Figure 15. (a) Artificial potential field inside the room and (b) and vector magnitudes.

rotational acceleration, which also acts to smooth the
path. In contrast, the potential field method can gener-
ate rapid changes in the direction of the velocity vector
resulting in frequent sharp turns, depending on the com-
plexity of the artificial potential field (which usually is
composed of many hills and valleys even if there are
only three or four obstacles; see Fig. 15).

The Obstacle Function. A second reason for
smoother, shorter paths stems from another important
difference between the two methods. Whereas the ef-
fect of the target is similar in both, serving to draw
the agent toward the goal, the effect of an obstacle is
very different. In the potential field method, the ob-
stacle function depends only on the shortest distance

5

spurious attractors in potential
field approach

30 Fajen et al.

for physical agents and humans. Combined with the
difference in control variables (translational velocity
vs. angular acceleration), this results in a significant
advantage for the dynamical model, although it also
creates a minor disadvantage.

Advantage. The potential field approach is a local ob-
stacle avoidance method, and local minima are a seri-
ous problem. An agent using the potential field method
alone without a high level path planner can easily get
stuck in local minima, even in the simplest scenes. The
dynamical model, in contrast, has few such problems, at
least in simple scenes. Because it only controls angular
acceleration and not the agent’s speed (never stopping
the agent), local minima are avoided in two ways: the
agent either takes advantage of the canceling effect (de-
scribed below) and passes between the obstacles (if the
distance decay parameter c4 is big), or it takes a path
around the obstacle cluster (if c4 is small). In the latter
case it may overshoot the target, but it easily homes
in from another direction. Thus, with appropriate pa-
rameter settings the dynamical model can avoid local
minima in simple scenes.

Disadvantage. However, if the locations of the ob-
stacles are symmetrical about the agent’s path to the
target, then their contributions to the angular acceler-
ation will have similar magnitudes but opposite signs,
and therefore cancel each other. This canceling effect
creates a spurious attractor in the center of the obsta-
cle array, which may lead the agent into a gap that is
too small, or even to crash into an obstacle at the cen-
ter of a perfectly symmetrical array. As noted above,
one way to avoid the canceling effect is to increase
obstacle repulsion with distance by reducing the ex-
ponential decay term c4, thereby inducing an outside
path around the entire array. In cases with only a few
obstacles, adding a noise term to the model may allow
it to escape unstable fixed points.

These advantages and disadvantages are illustrated
in Fig. 20. In this example the agent starts in the lower
left corner with an initial heading of 0◦, and moves at
a constant translation speed of 1 m/s. Path 1 shows a
sample local minimum for the potential field method.
The agent is stuck in a bowl (a region of small outward-
pointing resultant vectors surrounded by large inward-
pointing vectors) and is reduced to oscillating back and
forth. Another type of local minimum is being frozen in
a location where the attractive and repulsive forces can-
cel each other, producing a resultant force of zero mag-

Figure 20. Example of a local minimum, canceling effect and out-
side path.

nitude. Path 2 is traversed with the dynamical model
(c4 = 1.6). Since there are obstacles on both sides of
the agent, their combined contribution to the angular
acceleration demonstrates the canceling effect along
the path, and the agent passes between them. Path 3 is
also traversed by the dynamical model using a more
gradual exponential decay with distance (c4 = 0.4).
The repulsive regions of the obstacles are larger, and
therefore they force the agent to take an outside path.

Agent Speed. A final difference between the two
methods is that the dynamical model assumes a con-
stant translational speed on the part of the agent. This is
indeed the case in our human data: subjects tend to ac-
celerate from a standstill and then maintain an approx-
imately constant walking speed. However, the model
produces different paths at different constant speeds,
with all other parameters fixed. The reason for this be-
havior is that, when the agent enters a region that pro-
duces a non-zero angular acceleration, the accelerating
effect lasts for a shorter time at higher speeds, induc-
ing a smaller rotation. In contrast, since the potential
field equations determine the direction of the agent’s
motion, it will always traverse the same path indepen-
dent of speed. For any physical agent with mass and
momentum, the responsiveness of trajectories to speed
may actually be a desirable effect.

An example for the dynamical model is presented in
Fig. 21. With a constant speed of 0.25 m/s, the model
traverses path 1 to the left of the obstacle, but with a
speed of 1.0 m/s it takes path 2 to the right. In these sim-
ulations, the agent’s initial heading was 0◦ (horizontal),

5

Dead-reckoning/path integration
if the agent knows its current velocity=heading
direction + speed (and keeps track of time), it can
estimate its change of position by integration

Sum of yi

Starting
location

y3

y2

y1

Initial direction
ϕ0 = 00

x1 x2 x3+

+

+

ϕ3

ϕ2

ϕ1

S1

S2

S3

Sum of xi

–

a

d

30

210

60

240

90

270

120

300

150

330

180 0

10 Hz

5Hz

b

Box 1 Box 2 Box 3 Box 4 Box 5

CA1 dark

CA1 light

c Outbound journeysBox 1

Box 1 out

Box 2

Box 3

Box 4

Box 5

22 cm

Box 4 in

Box 3 in

Box 2 in

Inbound Journeys

Box 1 in

Box 5 out

22 cm

Box 4 out

Box 2 out

Box 3 out

Box 5 in

Box 1 | Path integration in mammals and some neurophysiological correlates

Darwin recognized that most animals can use self-motion cues to keep track
of their location relative to a ‘home base’128, but it was not until recently that
firm experimental evidence for such a path integration process in mammals
appeared4, and it became clear that the brain can not only calculate a homing
vector to a fixed location in space, but can also maintain a map-like
representation of space using only an initial reference and self-motion
information (for reviews, see REFS 9,12). Making use of the strong motivation
of female rodents to retrieve pups that have been displaced from the nest to a
shallow cup some distance away, it was shown that gerbils can search in
complete darkness and return in a direct line to the original location of the nest,
even if the nest has been removed (see panel a). With the cup at the centre of
the dark arena, rotating either the entire arena while the animal was on the
cup, or only the cup itself, did not prevent the animal from returning to the
same location in the (inertial) laboratory reference frame; however, rotation of
the cup through 37 degrees with a slow acceleration profile (0.24 deg s–2),
presumably below the animal’s vestibular threshold, resulted in a return
trajectory error of the same magnitude. In panel a, S1–3 represent vectors
lengths of segments of the outbound journey, and ϕ1–3 are corresponding
head directions. Variables x1–3 and y1–3 are the cartesian components of the
segment vectors which, in principle, could be summed to compute the
homing vector. ‘Starting location’ refers to the beginning of the homing
trajectory. Insight into the neural basis for angular path integration came from
the discovery of head direction cells, the firing rates of which depend on the
direction the animal’s head is facing (a simulated typical head direction cell
tuning curve is illustrated in the polar plot in which firing rate is represented by
the radial coordinate and direction is represented by the angular coordinate;
see panel b). Directional tuning is relative in the sense that, although all head
direction cells maintain their directional tunings relative to each other, the
network is not bound to any absolute directional reference. For example, the
same cell can have different geocentric directional preferences in different
enclosures and, in the absence of visual input, head direction cells track head
angular velocity and fire over a restricted range of relative directions; however,
the network can accumulate directional error with respect to its original
setting. Linear path integration is sufficient to update the positional firing of
hippocampal pyramidal cells (see panel c). On a task in which a rat runs on a
linear rail from a moveable box to a fixed goal at the end of the track, pyramidal
cells in area CA1 fire in relation to distance from the box as the animal leaves
it (over distances of more than several body lengths), before shifting reference
frames to fire in relation to visual cues (CA1 light) or, in darkness, the end of
the track (CA1 dark). The figure illustrates the configurations of the start box
on the track and the journey types, which were presented in random order.
Panel d shows the correlation matrices of CA1 neuronal ensemble population
vectors for each location on the full track versus every location on the full
track (Box 1), and for each location on the shortened tracks, in which the box
was shifted closer to the fixed goal site (Box 2–Box 5), versus every location on
the full track. The black lines represent the reference frame of the box; white
lines represent the laboratory/track reference frame. Panel a modified, with
permission, from REF. 140 (1980) Springer. Panels c and d reproduced, with
permission, from REF. 33 (1996) Society for Neuroscience.

R E V I E W S

664 | AUGUST 2006 | VOLUME 7 www.nature.com/reviews/neuro

[McNaughton et al., Nature reviews neuroscience 2006]

6

Landmark recognition

landmarks are not necessarily objects…

empirical evidence that views serve to estimate
ego-position and pose

a city,9,10,13 suggesting that segmentation into subspaces can
be induced in a top-down manner, based on spatial or concep-
tual organization.

In the current experiment, we aimed to identify the neural
mechanisms behind such top-down spatial segmentation, with
the specific goal of determining whether behavioral segmenta-
tion effects are accompanied by neural effects of schematiza-
tion, grouping, or remapping. We trained participants to locate
16 objects in a segmented environment for which visibility,
spatial relations, and the probability of transition between ob-
jects were matched within and between segments. We then
used fMRI to identify object-specific activity patterns, and we
investigated how these neural representations were affected
by the spatial segmentation. To anticipate, we observed behav-
ioral and neural effects of segmentation; the neural effects were
observed in the hippocampus and scene-selective regions of the
visual system, and they manifested primarily as schematization.

RESULTS

Division of the environment into subspaces induces
mental segmentation
To encourage the formation of segmented spatial representa-
tions, we familiarized participants with a virtual courtyard that
was divided into two segments by a river crossable at two
bridges (Figure 1). The river blocked movement (except at the
bridges), but it did not block visibility. Participants learned the lo-
cations of 16 objects within the courtyard through a multi-stage
learning procedure in which they were required to navigate to
named objects in succession. The order of these navigational
targets was randomized so that that participants’ navigational
paths were not related to the proximity of the objects or the divi-
sion of the environment into subspaces. Initially, all objects were
visible, but as training progressed, increasing numbers of the ob-
jects were obscured to induce reliance on spatial memory (STAR
Methods). By the end of the learning procedure, all of the partic-
ipants included in the experiment could navigate to all object lo-
cations without error, even when all the objects were obscured

(Figure S1A). The learning stage took 28 min on average (range:
16–51 min).
Behavioral assessments confirmed that participants formed

segmented spatial representations that reflected the division of
the courtyard into two subspaces (Figure 2). When participants
were asked to estimate distances between objects (distance
estimation task), their responses were significantly more accu-
rate for object pairs on same side of the river compared to object
pairs on opposite sides of the river (average correlation between
real and estimated distances: r = 0.72 within segment; r = 0.60
between segment; difference: Z = 2.32, p = 0.02; effect size r =
0.47; Figure 2A, left). Similarly, when participants were asked
to make three-way distance comparisons between objects (dis-
tance comparison task; e.g., ‘‘which object is closer to object A:
object B or object C?’’), theymademore correct responseswhen
all three objects were on the same side of the river compared to
when the anchor and target objects were on opposite sides
(average accuracy = 86% within segment; 77% between
segment; difference: Z = 2.87, p = 0.004; effect size r = 0.59; Fig-
ure 2A, right). For both distance tasks, trials were constructed so
that average Euclidean distance was equal for within-segment
and between-segment conditions. Results were similar when
data were analyzed using shortest path distance instead of
Euclidean distance as the ground truth (within-segment versus
between-segments accuracy: Z = 3.23, p = 0.001, effect size
r = 0.66 for distance estimations; Z = 2.93, p = 0.003, effect
size r = 0.60 for distance comparisons; note that Euclidean
and path distances were highly correlated to each other when
considering either all distances [r = 0.92] or only the between-
segment distances [r = 0.86]).
Further analyses of the data from the distance estimation task

revealed that participants estimated distances as being larger for
between-segment compared to within-segment object pairs,
even though the actual distances were matched between these
conditions (Z = 2.01; p = 0.047; effect size r = 0.41; Figure 2B).
Analysis of reaction times did not reveal any segment-related
priming in the distance-estimation task, which was not surprising
given the unspeeded nature of the required response. In the

Figure 1. Experimental design and proced-
ure
(A) Participants were familiarized with a virtual

environment consisting of a square courtyard

surrounded by buildings. A river separated the

environment into two segments and two bridges

allowed crossing from one segment to the other.

Sixteen objects were located in the environment,

with their locations balanced such that distances

and directions between objects were similar within

each segment and between segments (e.g., ob-

jects 1 and 5, 5 and 9, 9 and 13, and 13 and 1 are

equally distant from each other).

(B) Experimental tasks.

(C) Experimental procedure. Note that the object

viewing and judgment of relative direction tasks

were performed in the fMRI scanner, while the

free-recall, distance-estimation, and distance-

comparison tasks were performed outside the

scanner.

For full details on the tasks and procedure, see

STAR Methods.

ll

2 Current Biology 31, 1–12, November 8, 2021

Please cite this article in press as: Peer and Epstein, The human brain uses spatial schemas to represent segmented environments, Current Biology
(2021), https://doi.org/10.1016/j.cub.2021.08.012

Article

[Peer, Epstein, 2021]

evidence for
views used
from animal
behavior
and neural
data

6

Maps

when can we say does an animal use a map?

rather than use stimulus-response chaining

=> when it can take short-cuts

[Poucet, 1993]

Glossary
Cognitive graph: a representation of
space in terms of nodes (locations)
connected by links (path segments). A
cognitive graph can be topological
(representing only whether locations are
connected to each other or not), or
labeled (representing local metric
information such as distances and
directions of each link, or the angles that
links form at a node).
Entorhinal cortex (ERC): a brain
region found in both rodents and
humans that serves as a major input/
output structure for the hippocampus.
ERC contains both grid cells and head-
direction cells.
Euclidean space: a continuous space
defined by reference axes (usually two or
three). Locations in a Euclidean space
can be specified by coordinates, and
relationships between locations can be
expressed in terms of distances and
angles.
Grid cells: neurons that represent
space in a distributed manner by firing in
a regular array of locations that tile the
environment in a hexagonal lattice.
Head-direction cells: neurons that fire
as a function of the direction that the
animal is facing, independently of its
location, similar to the behavior of a
compass.
Hexadirectional modulation: a
phenomenon where brain activity is
modulated by the subject’s current
direction of movement, with sixfold
symmetry – that is, firing is maximal for
headings with angular spacing of 60°.
This is believed to be a marker for grid
cells, whose fields exhibit a similar sixfold
organization.
Local visual scene (or vista space): a
space that can be perceived from a
single point without the need to
navigate. Sometimes contrasted with
environmental spaces, which cannot
be perceived from a single point of
view.
Path integration: a strategy in which a
navigator keeps track of the distances
and directions they have traveled so as
to compute a straight-line vector to the
starting point. Path integration is
believed to be crucial for learning
Euclidean coordinates for locations in
the environment, but it can become
inefficient in large environments owing to
accumulated errors.
Place cells: neurons that represent
space in a localized manner by firing
when the animal is in a specific location.

Box 1. Historical Conceptions of Cognitive Maps
The concept of a cognitive map dates back to Tolman [2], who presented it as an alternative to behaviorist approaches to
psychology. Tolman suggested that animals form representations of environments that are more than an interlinked series
of associations and whose learning does not depend on immediate reward. The idea that humans and animals have internal
spatial representations is now widely accepted, but there has been less consensus about the nature of 'cognitive maps' –
their degree of accuracy, the inputs required to form them, and how they integrate separately experienced environments.

In 1978, O’Keefe and Nadel proposed that cognitive maps are Euclidean, and this has become the dominant model for neu-
roscientists [7]. A precise definition comes from Langille and Gallistel [178]: 'A map is a set of vectors in a 2- or 3-dimensional
vector space, on which navigation-relevant vector functions are defined.' Under this definition, the key feature of a map is that it
establishes coordinates for each point in space, thus allowing a navigator to associate non-location information (e.g., terrain
characteristics, visual snapshots, reward values) with any location, and to set a direct course between different locations [1].
O’Keefe and Nadel contrasted the flexibility of the Euclidean 'locale' systemwith the inflexibility of the action-based 'taxon' sys-
tem, which they postulated mediated a habit-like following of routes.

However, in parallel to the Euclidean map hypothesis, other suggestions for very different types of cognitive maps were put
forth, some of which have graph-like aspects. Kuipers suggested that, in addition to Euclidean cognitive maps, people store
representations that are based on topological knowledge – connectivity between locations through routes and hierarchical or-
ganization of locations into regions [42,43]. Subsequent authors have developed other models of graph-like spatial represen-
tations [19,26,36,38,41,45,47,179–182], with additional elements such as a skeleton of major routes on which the graph is
constructed [44], labels at nodes and edges indicating directions and distances [8,9,30], and node-specific reference frames
[37,39]. It remains debated whether spatial knowledge is Euclidean, graph-based, or a combination of both. In this article
we use the term cognitive map to refer to Euclidean cognitive maps, while referring to graph-like structures as cognitive graphs.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Map-Based versus Graph-Based Representations. In the spatial domain (top row), knowledge can be
purely map-based, and locations are coded in terms of Euclidean coordinates (e.g., latitude and longitude), or purely
graph-based, where locations are nodes and paths between locations are links. It is also possible for map- and graph-
based representations to exist simultaneously, allowing us to switch flexibly between the two. In non-spatial domains (bottom
row), knowledge is map-based when information is encoded in terms of continuous dimensions and graph-based when it is
encoded in terms of distinct links between items. For example, the individuals in a social group might be represented in terms
of their personality characteristics (map-based) or in terms of the social connections within the group (graph-based). It is
currently unclear whether a flexible combination of graph- and map-like representations exists in non-spatial domains.

Trends in Cognitive Sciences

38 Trends in Cognitive Sciences, January 2021, Vol. 25, No. 1

[Peer et al, 2020]

6

Spaces for robotic motion planning

transform end-effector
to configuration space
through inverse
kinematics

problems of singularities
and multiple “leafs” of
inverse…

Author's personal copy

564 C. Faubel, G. Schöner / Neural Networks 21 (2008) 562–576

Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.

x = f(θ)

θ = f−1(x)

kinematic model

inverse kinematic model

·x = J(θ) ·θ
·θ = J−1(θ) ·x

7

Forward kinematics

where is the hand,
given the joint angles..

(x,y)

θ

θ

1

2

l1

l2

x = l1 cos(θ1) + l2 cos(θ1 + θ2)
y = l1 sin(θ1) + l2 sin(θ1 + θ2)

x = f(θ)

[Murray, Li, Sastry1994]

S

TL2

L1

θ2

θ1

Figure 3.2: A two degree of freedom manipulator.

adjacent frames:

gst(θ1, θ2) = gsl1(θ1)gl1l2(θ2)gl2t.

The mapping gst : T2 → SE(3) represents the forward kinematics of the
manipulator: it gives the end-effector configuration as a function of the
joint angles.

This procedure is easily extended to any open-chain mechanism. If we
define gli−1li(θi) as the transformation between the adjacent link frames,
then the overall kinematics are given by

gst(θ) = gsl1(θ1)gl1l2(θ2) · · · gln−1ln(θn)glnt. (3.1)

Equation (3.1) is a general formula for the forward kinematics map of an
open-chain manipulator in terms of the relative transformations between
adjacent link frames.

2.2 The product of exponentials formula

A more geometric description of the kinematics can be obtained by using
the fact that motion of the individual joints is generated by a twist associ-
ated with the joint axis. Recall that if ξ is a twist, then the rigid motion
associated with rotating and translating along the axis of the twist is
given by

gab(θ) = e
bξθgab(0).

If ξ corresponds to a prismatic (infinite pitch) joint, then θ ∈ R is the
amount of translation; otherwise, θ ∈ S1 measures the angle of rotation
about the axis.

85

7

Workspace / Singularities

where the Eigenvalue of the Jacobian
becomes zero (real part)…

so that movement in a particular
direction is not possible…

typically at extended postures or
inverted postures

at limits of workspace

(a) (b)

(c) (d)

l3

θ1

l2

θ3

l1

l1 l2 l3
2l3 2l3

θ2

Figure 3.6: Workspace calculations for a planar three-link robot (a).
The construction of the workspace is illustrated in (b). The reachable
workspace is shown in (c) and the dextrous workspace is shown in (d).

place a spherical wrist at the end of the manipulator, as in the elbow
manipulator given in Example 3.2. Recall that a spherical wrist consists
of three orthogonal revolute axes which intersect at a point. If the end-
effector frame is placed at the origin of the wrist axes, then the spherical
wrist can be used to achieve any orientation at a given end-effector po-
sition. Hence, for a manipulator with a spherical wrist, the dextrous
workspace is equal to the reachable workspace, WD = WR. Furthermore,
the complete workspace for the end-effector satisfies W = WR × SO(3).
This analysis only holds when the end-effector frame is placed at the
center of the spherical wrist; if an offset is present, the analysis becomes
more complex.

Example 3.4. Workspace for a planar three-link robot
Consider the planar manipulator shown in Figure 3.6a. Let g = (x, y,φ)

96

7

Redundant kinematics

use pseudo-inverses that minimize a
functional (e.g., total joint velocity or
total momentum)

·x = J(θ) ·θ
·θ = J+(θ) ·x

pseudo-inverse

(x,y)

range space
motion

J+(θ) = JT(JJT)−1

minimizes
·θ2

7

Human motor control

posture resists when pushed
=> is actively controlled =
stabilized by feedback

invariant characteristic
one lambda per muscle

co-contraction controls stiffness

θ

10

θ

force applied

λλ
agonist

antagonist

λ+λ+

λ−λ−

based on spinal
reflexes

stretch reflex

[Kandel, Schartz, Jessell, Fig. 37-11]

10

Timing

generate movements that are “timed”, that is,

they arrive “on time”

the are coordinated across different effectors

the are coordinated with moving objects (e.g., catching)

timing implies some form of anticipation…

9

Conventional robotic timing

time scaling

[Lynch, Park, 2017 (Chapter 9)]

Chapter 9. Trajectory Generation 329

✓1 (deg)

✓2 (deg)

✓1

✓2 �90 90 180

✓start

✓end

✓start

✓end

�90

90

180

✓1 (deg)

✓2 (deg)

�90 90 180

�90

90

180

Figure 9.1: (Left) A 2R robot with joint limits 0� ✓1 180�, 0� ✓2 150�. (Top
center) A straight-line path in joint space and (top right) the corresponding motion
of the end-e↵ector in task space (dashed line). The reachable endpoint configurations,
subject to joint limits, are indicated in gray. (Bottom center) This curved line in joint
space and (bottom right) the corresponding straight-line path in task space (dashed
line) would violate the joint limits.

Xstart and Xend are represented by a minimum set of coordinates then a straight
line is defined as X(s) = Xstart+s(Xend�Xstart), s 2 [0, 1]. Compared with the
case when joint coordinates are used, the following issues must be addressed:

• If the path passes near a kinematic singularity, the joint velocities may
become unreasonably large for almost all time scalings of the path.

• Since the robot’s reachable task space may not be convex in X coordinates,
some points on a straight line between two reachable endpoints may not
be reachable (Figure 9.1).

In addition to the issues above, if Xstart and Xend are represented as elements

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

328 9.2. Point-to-Point Trajectories

geometric path parameter s from the time parameter t. A time scaling s(t)
assigns a value s to each time t 2 [0, T], s : [0, T] ! [0, 1].

Together, a path and a time scaling define a trajectory ✓(s(t)), or ✓(t) for
short. Using the chain rule, the velocity and acceleration along the trajectory
can be written as

✓̇ =
d✓

ds
ṡ, (9.1)

✓̈ =
d✓

ds
s̈ +

d2✓

ds2
ṡ2. (9.2)

To ensure that the robot’s acceleration (and therefore dynamics) is well defined,
each of ✓(s) and s(t) must be twice di↵erentiable.

9.2 Point-to-Point Trajectories

The simplest type of motion is from rest at one configuration to rest at another.
We call this a point-to-point motion. The simplest type of path for point-to-
point motion is a straight line. Straight-line paths and their time scalings are
discussed below.

9.2.1 Straight-Line Paths

A “straight line” from a start configuration ✓start to an end configuration ✓end
could be defined in joint space or in task space. The advantage of a straight-line
path from ✓start to ✓end in joint space is simplicity: since joint limits typically
take the form ✓i,min ✓i ✓i,max for each joint i, the allowable joint configu-
rations form a convex set ⇥free in joint space, so the straight line between any
two endpoints in ⇥free also lies in ⇥free. The straight line can be written

✓(s) = ✓start + s(✓end � ✓start), s 2 [0, 1] (9.3)

with derivatives

d✓

ds
= ✓end � ✓start, (9.4)

d2✓

ds2
= 0. (9.5)

Straight lines in joint space generally do not yield straight-line motion of the
end-e↵ector in task space. If task-space straight-line motions are desired, the
start and end configurations can be specified by Xstart and Xend in task space. If

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

Chapter 9. Trajectory Generation 331

screw path

 decoupled rotation and translation

Xstart

Xend

Figure 9.2: A path following a constant screw motion versus a decoupled path where
the frame origin follows a straight line and the angular velocity is constant.

s ṡ s̈

T t T t

T t

1 3
2T

6
T 2

0

Figure 9.3: Plots of s(t), ṡ(t), and s̈(t) for a third-order polynomial time scaling.

9.2.2.1 Polynomial Time Scaling

Third-order Polynomials A convenient form for the time scaling s(t) is a
cubic polynomial of time,

s(t) = a0 + a1t + a2t
2 + a3t

3. (9.9)

A point-to-point motion in time T imposes the initial constraints s(0) = ṡ(0) = 0
and the terminal constraints s(T) = 1 and ṡ(T) = 0. Evaluating Equation (9.9)
and its derivative

ṡ(t) = a1 + 2a2t + 3a3t
2 (9.10)

at t = 0 and t = T and solving the four constraints for a0, . . . , a3, we find

a0 = 0, a1 = 0, a2 =
3

T 2
, a3 = � 2

T 3
.

Plots of s(t), ṡ(t), and s̈(t) are shown in Figure 9.3.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

Chapter 9. Trajectory Generation 331

screw path

 decoupled rotation and translation

Xstart

Xend

Figure 9.2: A path following a constant screw motion versus a decoupled path where
the frame origin follows a straight line and the angular velocity is constant.

s ṡ s̈

T t T t

T t

1 3
2T

6
T 2

0

Figure 9.3: Plots of s(t), ṡ(t), and s̈(t) for a third-order polynomial time scaling.

9.2.2.1 Polynomial Time Scaling

Third-order Polynomials A convenient form for the time scaling s(t) is a
cubic polynomial of time,

s(t) = a0 + a1t + a2t
2 + a3t

3. (9.9)

A point-to-point motion in time T imposes the initial constraints s(0) = ṡ(0) = 0
and the terminal constraints s(T) = 1 and ṡ(T) = 0. Evaluating Equation (9.9)
and its derivative

ṡ(t) = a1 + 2a2t + 3a3t
2 (9.10)

at t = 0 and t = T and solving the four constraints for a0, . . . , a3, we find

a0 = 0, a1 = 0, a2 =
3

T 2
, a3 = � 2

T 3
.

Plots of s(t), ṡ(t), and s̈(t) are shown in Figure 9.3.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

compute parameters to achieve a particular
movement time T, with zero velocity at target

9

Relative vs. absolute timing

threshold
activation

time

absolute timing
relative timing

DT

T

relative phase=DT/T

9

Theoretical account for
absolute timing

(neural) oscillator autonomously
generates timing signal, from which
timing events emerge

=> limit cycle oscillators

= clocks

9

Neural oscillator

v

u

time

u (solid), v (dashed)

v

u

time

u (solid), v (dashed)

(a) (b)

36 GREGOR SCHÖNER

FIG. 5. (Top) A periodic evolution of an activation variable cannot be obtained as a solution of a
single-variable dynamical system, because most levels of activation (here the zero level) are crossed in
two different directions, so that the future is not uniquely determined by the present state of the activation
variable. (Bottom) A second variable, here called ‘‘inhibition,’’ is needed to disambiguate these two
events.

To see this, imagine a periodic time course of activation (Fig. 5). All levels of activa-
tion (except at the turning points) are then passed through in two directions, once at
increasing and once at decreasing activation. Thus, such activation values do not
uniquely specify the future. A second variable, here called ‘‘inhibition,’’ is needed,
to disambiguate the future: each activation level is passed through once at a smaller
and once at a larger level of this second variable. Thus, clocks cannot be built as
dynamical systems in terms of activation alone!
Stable periodic solutions, to which the system is attracted from nearby states are

called limit cycle attractors. An example of a dynamical system supporting limit
cycle attractors of an activation–inhibition pair of variables is

τu̇ ! "u # hu # wuu f (u) " wuv f (v) (6)

τv̇ ! "v # hv # wvu f (u), (7)

equations first analyzed by Amari (1977). The first two terms of each equation de-
scribe two linear uncoupled dynamical systems, each with a stable fixed point at the
resting levels of activation, hu, and of inhibition, hv. A sigmoid function,

f (u) !
1

1 # exp["βu]
, (8)

makes the system nonlinear in terms of ‘‘self-excitation’’ (wuu) and of coupling be-
tween activation and inhibition variables (wuv, wvu). For appropriate choices of these
parameters, a limit cycle attractor emerges (Fig. 6). The stability of the periodic solu-
tion manifests itself by attraction of neighboring states toward the limit cycle. The
activation-based stochastic timer model emerges as the limit case, in which the vector
field is structured such that a period of graded activation growth is followed by a
more rapid phase of activation decay (Fig. 6b). In fact, abstractly speaking, any clock
is a limit cycle attractor of a dynamical system (see, e.g., Andronov, Vitt, & Khaikin,

[Amari 77]

9

coordination=stable relative
timing emerges from coupling
of neural oscillators time

activation

Coordination from coupling

[Schöner: Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]

TIMING, CLOCKS, AND DYNAMICAL SYSTEMS 41

(Engbert et al., 1997; Pressing, 1999; Semjen et al., 2000) deal explicitly with cou-
pling, albeit within the framework of delay or functional dynamical systems.

3.2. Dynamic Timing Models

Coupling is the central concept for understanding relative timing within dynamic
timing models. Mathematically, two dynamic timers, (u1, v1) and (u2, v2), are mutu-
ally coupled if the dynamic variables of one timer contribute to the dynamic equations
of the second and vice versa. For the Amari oscillator model presented earlier [Eqs.
(6) and (7)], for instance, a simple form of mutual coupling is generated by the terms
carrying the coefficient, c, in these equations:

τu̇1 ! "u1 # hu # wuu f (u1) " wuv f (v1) (11)

τv̇1 ! "v1 # hv # wvu f (u1) # cf (u2) (12)

τu̇2 ! "u2 # hu # wuu f (u2) " wuv f (v2) (13)

τv̇2 ! "v2 # hv # wvu f (u2) # cf (u1) (14)

These are only two out of a great variety of possible coupling terms. They generically
generate phase locking, so that the two oscillators adopt identical frequencies and
align matching parts of their activation trajectory (Fig. 11). This relative time order
is stable; that is, when the two oscillators start out with differently aligned trajectories
or are perturbed away from the stable alignment, then the dynamics drives the timers
back to the stable timing relationship.
A characterization of relative timing independently of the underlying activation

states is possible through the concept of relative phase. Its empirical definition is
based on reference events (here the moments in time when activation pierces a thresh-
old leading to a motor event such as a tap). The latency between matching events
of two activation functions divided by the current cycle time of either of the activation
functions is the relative phase, φ ! ∆T/T (Fig. 9). (Relative phase may be normalized

FIG. 11. Two coupled dynamic timers [Eqs. (11), (12), (13), (14)] generically adopt a stable pattern
of relative timing called phase-locking (here near in-phase). Activation variables are in solid black,
inhibition variables in dashed gray. (Bottom) The two activation variables are plotted against each other.
Except for noise-induced fluctuations, the two variables covary, indicating phase-locking.

dφ/dt = f(φ)

φ
phase neutrally
stable

phase
stabilized
by coupling

9

Rigid bodies: constraints

constraints reduce the effective
numbers of degrees of freedom.. .

θ1

l1

θ2

l2

r1

r2

x

y

Figure 4.4: Two-link planar manipulator.

2.3 Example: Dynamics of a two-link planar robot

To illustrate how Lagrange’s equations apply to a simple robotic system,
consider the two-link planar manipulator shown in Figure 4.4. Model
each link as a homogeneous rectangular bar with mass mi and moment
of inertia tensor

I〉 =

[
Ixi 0 0
0 Iyi 0
0 0 Izi

]

relative to a frame attached at the center of mass of the link and aligned
with the principle axes of the bar. Letting vi ∈ R3 be the translational
velocity of the center of mass for the ith link and ωi ∈ R3 be the angular
velocity, the kinetic energy of the manipulator is

T (θ, θ̇) =
1

2
m1‖v1‖2 +

1

2
ωT

1 I∞ω∞ +
∞
∈ $∈‖%∈‖∈ +

∞
∈ ω

T
∈ I∈ω∈.

Since the motion of the manipulator is restricted to the xy plane, ‖vi‖ is
the magnitude of the xy velocity of the center of mass and ωi is a vector
in the direction of the z-axis, with ‖ω1‖ = θ̇1 and ‖ω2‖ = θ̇1 + θ̇2.

We solve for the kinetic energy in terms of the generalized coordinates
by using the kinematics of the mechanism. Let pi = (xi, yi, 0) denote the
position of the ith center of mass. Letting r1 and r2 be the distance from
the joints to the center of mass for each link, as shown in the figure, we
have

x̄1 = r1c1 ˙̄x1 = −r1s1θ̇1

ȳ1 = r1s1 ˙̄y1 = r1c1θ̇1

x̄2 = l1c1 + r2c12 ˙̄x2 = −(l1s1 + r2s12)θ̇1 − r2s12θ̇2

ȳ2 = l1s1 + r2s12 ˙̄y2 = (l1c1 + r2c12)θ̇1 + r2c12θ̇2,

where si = sin θi, sij = sin(θi + θj), and similarly for ci and cij . The

164

relies on the energy properties of mechanical systems to compute the
equations of motion. The resulting equations can be computed in closed
form, allowing detailed analysis of the properties of the system.

2.1 Basic formulation

Consider a system of n particles which obeys Newton’s second law—the
time rate of change of a particle’s momentum is equal to the force applied
to a particle. If we let Fi be the applied force on the ith particle, mi be
the particle’s mass, and ri be its position, then Newton’s law becomes

Fi = mir̈i ri ∈ R3, i = 1, . . . , n. (4.1)

Our interest is not in a set of independent particles, but rather in
particles which are attached to one another and have limited degrees
of freedom. To describe this interconnection, we introduce constraints
between the positions of our particles. Each constraint is represented by
a function gj : R3n → R such that

gj(r1, . . . , rn) = 0 j = 1, . . . , k. (4.2)

A constraint which can be written in this form, as an algebraic rela-
tionship between the positions of the particles, is called a holonomic con-
straint. More general constraints between rigid bodies—involving ṙi—can
also occur, as we shall discover when we study multifingered hands.

A constraint acts on a system of particles through application of con-
straint forces. The constraint forces are determined in such a way that
the constraint in equation (4.2) is always satisfied. If we view the con-
straint as a smooth surface in Rn, the constraint forces are normal to this
surface and restrict the velocity of the system to be tangent to the sur-
face at all times. Thus, we can rewrite our system dynamics as a vector
equation

F =

[
m1I 0

. . .
0 mnI

][
r̈1...
r̈n

]

+
k∑

j=1

Γjλj , (4.3)

where the vectors Γ1, . . . ,Γk ∈ R3n are a basis for the forces of constraint
and λj is the scale factor for the jth basis element. We do not require that
Γ1, . . . ,Γk be orthonormal. For constraints of the form in equation (4.2),
Γj can be taken as the gradient of gj , which is perpendicular to the level
set gj(r) = 0.

The scalars λ1, . . . ,λk are called Lagrange multipliers. Formally, we
determine the Lagrange multipliers by solving the 3n + k equations in
equations (4.2) and (4.3) for the 3n + k variables r ∈ R3n and λ ∈ Rk.
The λi values only give the relative magnitudes of the constraint forces
since the vectors Γj are not necessarily orthonormal.

157

relies on the energy properties of mechanical systems to compute the
equations of motion. The resulting equations can be computed in closed
form, allowing detailed analysis of the properties of the system.

2.1 Basic formulation

Consider a system of n particles which obeys Newton’s second law—the
time rate of change of a particle’s momentum is equal to the force applied
to a particle. If we let Fi be the applied force on the ith particle, mi be
the particle’s mass, and ri be its position, then Newton’s law becomes

Fi = mir̈i ri ∈ R3, i = 1, . . . , n. (4.1)

Our interest is not in a set of independent particles, but rather in
particles which are attached to one another and have limited degrees
of freedom. To describe this interconnection, we introduce constraints
between the positions of our particles. Each constraint is represented by
a function gj : R3n → R such that

gj(r1, . . . , rn) = 0 j = 1, . . . , k. (4.2)

A constraint which can be written in this form, as an algebraic rela-
tionship between the positions of the particles, is called a holonomic con-
straint. More general constraints between rigid bodies—involving ṙi—can
also occur, as we shall discover when we study multifingered hands.

A constraint acts on a system of particles through application of con-
straint forces. The constraint forces are determined in such a way that
the constraint in equation (4.2) is always satisfied. If we view the con-
straint as a smooth surface in Rn, the constraint forces are normal to this
surface and restrict the velocity of the system to be tangent to the sur-
face at all times. Thus, we can rewrite our system dynamics as a vector
equation

F =

[
m1I 0

. . .
0 mnI

][
r̈1...
r̈n

]

+
k∑

j=1

Γjλj , (4.3)

where the vectors Γ1, . . . ,Γk ∈ R3n are a basis for the forces of constraint
and λj is the scale factor for the jth basis element. We do not require that
Γ1, . . . ,Γk be orthonormal. For constraints of the form in equation (4.2),
Γj can be taken as the gradient of gj , which is perpendicular to the level
set gj(r) = 0.

The scalars λ1, . . . ,λk are called Lagrange multipliers. Formally, we
determine the Lagrange multipliers by solving the 3n + k equations in
equations (4.2) and (4.3) for the 3n + k variables r ∈ R3n and λ ∈ Rk.
The λi values only give the relative magnitudes of the constraint forces
since the vectors Γj are not necessarily orthonormal.

157

11

Open-chain manipulator

In order to put the equations of motion back into vector form, we
define the matrix C(θ, θ̇) ∈ Rn×n as

Cij(θ, θ̇) =
n∑

k=1

Γijkθ̇k =
1

2

n∑

k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k.

(4.23)
We call the matrix C the Coriolis matrix for the manipulator; the vector
C(θ, θ̇)θ̇ gives the Coriolis and centrifugal force terms in the equations
of motion. Note that there are other ways to define the matrix C(θ, θ̇)
such that Cij(θ, θ̇)θ̇j = Γijkθ̇j θ̇k. However, this particular choice has
important properties which we shall later exploit.

Equation (4.21) can now be rewritten as

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ, θ̇) = τ (4.24)

where τ is the vector of actuator torques and N(θ, θ̇) includes gravity
terms and other forces which act at the joints. This is a second-order
vector differential equation for the motion of the manipulator as a func-
tion of the applied joint torques. The matrices M and C, which sum-
marize the inertial properties of the manipulator, have some important
properties which we shall use in the sequel:

Lemma 4.2. Structural properties of the robot equations of mo-
tion
Equation (4.24) satisfies the following properties:

1. M(θ) is symmetric and positive definite.

2. Ṁ − 2C ∈ Rn×n is a skew-symmetric matrix.

Proof. Positive definiteness of the inertia matrix follows directly from
its definition and the fact that the kinetic energy of the manipulator is
zero only if the system is at rest. To show property 2, we calculate the
components of the matrix Ṁ − 2C:

(Ṁ − 2C)ij = Ṁij(θ)− 2Cij(θ)

=
n∑

k=1

∂Mij

∂θk
θ̇k −

∂Mij

∂θk
θ̇k −

∂Mik

∂θj
θ̇k +

∂Mkj

∂θi
θ̇k

=
n∑

k=1

∂Mkj

∂θi
θ̇k −

∂Mik

∂θj
θ̇k.

Switching i and j shows (Ṁ − 2C)T = −(Ṁ − 2C). Note that the skew-
symmetry property depends upon the particular definition of C given in
equation (4.23).

171

inertial centrifugal/
coriolis

active
torquesgravitational

11

Robotic control

[Lunch, Park, 2017]

Chapter 11. Robot Control 407

dynamics of
arm and

environment
controller amplifiers

actuators
and

transmissions

sensors

desired
behavior

low
power

controls

high
power

controls

forces
and

torques

motions
and

forces

local
feedback

dynamics of
arm and

environment
controller

desired
behavior

forces
and

torques

motions
and

forces

(a)

(b)

Figure 11.1: (a) A typical robot control system. An inner control loop is used to help
the amplifier and actuator to achieve the desired force or torque. For example, a DC
motor amplifier in torque control mode may sense the current actually flowing through
the motor and implement a local controller to better match the desired current, since
the current is proportional to the torque produced by the motor. Alternatively the
motor controller may directly sense the torque by using a strain gauge on the motor’s
output gearing, and close a local torque-control loop using that feedback. (b) A
simplified model with ideal sensors and a controller block that directly produces forces
and torques. This assumes ideal behavior of the amplifier and actuator blocks in part
(a). Not shown are the disturbance forces that can be injected before the dynamics
block, or disturbance forces or motions injected after the dynamics block.

11.2 Error Dynamics

In this section we focus on the controlled dynamics of a single joint, as the
concepts generalize easily to the case of a multi-joint robot.

If the desired joint position is ✓d(t) and the actual joint position is ✓(t) then
we define the joint error to be

✓e(t) = ✓d(t) � ✓(t).

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

11

Motion control single joint

feedback PID controller

τ = M··θ + mgr cos(θ) + b ·θ

τ = Kpθe + Kd
·θe + Ki ∫ θ(t′)dt′

Chapter 11. Robot Control 425

✓d + +

+
+

�

✓e

dt

d
dt

Kp

Ki

Kd

⌃⌃
⌧

✓

arm
 dynamics

Figure 11.12: Block diagram of a PID controller.

derivative gain Kd acts as a virtual damper that tries to reduce the velocity error
✓̇e = ✓̇d � ✓̇. The integral gain can be used to reduce or eliminate steady-state
errors. The PID controller block diagram is given in Figure 11.12.

PD Control and Second-Order Error Dynamics For now let’s consider
the case where Ki = 0. This is known as PD control. Let’s also assume the
robot moves in a horizontal plane (g = 0). Substituting the PD control law into
the dynamics (11.21), we get

M ✓̈ + b✓̇ = Kp(✓d � ✓) + Kd(✓̇d � ✓̇). (11.24)

If the control objective is setpoint control at a constant ✓d with ✓̇d = ✓̈d = 0,
then ✓e = ✓d � ✓, ✓̇e = �✓̇, and ✓̈e = �✓̈. Equation (11.24) can be rewritten as

M ✓̈e + (b + Kd)✓̇e + Kp✓e = 0, (11.25)

or, in the standard second-order form (11.8), as

✓̈e +
b + Kd

M
✓̇e +

Kp

M
✓e = 0 ! ✓̈e + 2⇣!n✓̇e + !2

n✓e = 0, (11.26)

where the damping ratio ⇣ and the natural frequency !n are

⇣ =
b + Kd

2
p

KpM
and !n =

r
Kp

M
.

For stability, b+Kd and Kp must be positive. If the error dynamics equation is
stable then the steady-state error is zero. For no overshoot and a fast response,

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

[Lunch, Park, 2017]

11

Control of multi-joint arm

generate joint torques that produce a
desired motion…

error

PID control

=> controlling joints independently

θd

θe = θ − θd

τ = Kpθe + Ke
·θd + Ki ∫ θe(t′)dt′

In order to put the equations of motion back into vector form, we
define the matrix C(θ, θ̇) ∈ Rn×n as

Cij(θ, θ̇) =
n∑

k=1

Γijkθ̇k =
1

2

n∑

k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k.

(4.23)
We call the matrix C the Coriolis matrix for the manipulator; the vector
C(θ, θ̇)θ̇ gives the Coriolis and centrifugal force terms in the equations
of motion. Note that there are other ways to define the matrix C(θ, θ̇)
such that Cij(θ, θ̇)θ̇j = Γijkθ̇j θ̇k. However, this particular choice has
important properties which we shall later exploit.

Equation (4.21) can now be rewritten as

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ, θ̇) = τ (4.24)

where τ is the vector of actuator torques and N(θ, θ̇) includes gravity
terms and other forces which act at the joints. This is a second-order
vector differential equation for the motion of the manipulator as a func-
tion of the applied joint torques. The matrices M and C, which sum-
marize the inertial properties of the manipulator, have some important
properties which we shall use in the sequel:

Lemma 4.2. Structural properties of the robot equations of mo-
tion
Equation (4.24) satisfies the following properties:

1. M(θ) is symmetric and positive definite.

2. Ṁ − 2C ∈ Rn×n is a skew-symmetric matrix.

Proof. Positive definiteness of the inertia matrix follows directly from
its definition and the fact that the kinetic energy of the manipulator is
zero only if the system is at rest. To show property 2, we calculate the
components of the matrix Ṁ − 2C:

(Ṁ − 2C)ij = Ṁij(θ)− 2Cij(θ)

=
n∑

k=1

∂Mij

∂θk
θ̇k −

∂Mij

∂θk
θ̇k −

∂Mik

∂θj
θ̇k +

∂Mkj

∂θi
θ̇k

=
n∑

k=1

∂Mkj

∂θi
θ̇k −

∂Mik

∂θj
θ̇k.

Switching i and j shows (Ṁ − 2C)T = −(Ṁ − 2C). Note that the skew-
symmetry property depends upon the particular definition of C given in
equation (4.23).

171

11

