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Timed kinematic plans

that have a particular time structure that 
emulates human movement 

by learning from human movement data 

but also reach goals in desired time… 

including goals that had never been encountered during 
movement 

=> dynamic movement primitives (DMP)

uses a dynamical system as a basis 

[Ijspeert et al., Neural Computation 25:328-373 (2013)]
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2. The model should be an autonomous system, without explicit time
dependence.

3. The model needs to be able to coordinate multidimensional dynam-
ical systems in a stable way.

4. Learning the open parameters of the system should be as simple as
possible, which essentially opts for a representation that is linear in
the open parameters.

5. The system needs to be able to incorporate coupling terms, for exam-
ple, as typically used in synchronization studies or phase resetting
studies and as needed to implement closed-loop perception-action
systems.

6. The system should allow real-time computation as well as arbitrary
modulation of control parameters for online trajectory modulation.

7. Scale and temporal invariance would be desirable; for example,
changing the amplitude or frequency of a periodic system should
not affect a change in geometry of the attractor landscape.

2.1 Model Development. The basic idea of our approach is to use an
analytically well-understood dynamical system with convenient stability
properties and modulate it with nonlinear terms such that it achieves a
desired attractor behavior (Ijspeert et al., 2003). As one of the simplest
possible systems, we chose a damped spring model,4

τ ÿ = αz(βz(g − y) − ẏ) + f,

which, throughout this letter, we write in first-order notation,

τ ż = αz(βz(g − y) − z) + f, (2.1)

τ ẏ = z,

where τ is a time constant and αz and βz are positive constants. If the forcing
term f = 0, these equations represent a globally stable second-order linear
system with (z, y) = (0, g) as a unique point attractor. With appropriate val-
ues of αz and βz, the system can be made critically damped (with βz = αz/4)
in order for y to monotonically converge toward g. Such a system imple-
ments a stable but trivial pattern generator with g as single point attractor.5
The choice of a second-order system in equation 2.1 was motivated

or episodic) trajectories—trajectories that are not repeating themselves, as rhythmic tra-
jectories do. This notation should not be confused with discrete dynamical systems, which
denotes difference equations—those that are time discretized.

4As will be discussed below, many other choices are possible.
5In early work (Ijspeert et al., 2002b, 2003), the forcing term f was applied to the second

ẏ equation (instead of the ż equation), which is analytically less favorable. See section 2.1.8.
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ẏ equation (instead of the ż equation), which is analytically less favorable. See section 2.1.8.

Dynamical Movement Primitives 331

2. The model should be an autonomous system, without explicit time
dependence.

3. The model needs to be able to coordinate multidimensional dynam-
ical systems in a stable way.

4. Learning the open parameters of the system should be as simple as
possible, which essentially opts for a representation that is linear in
the open parameters.

5. The system needs to be able to incorporate coupling terms, for exam-
ple, as typically used in synchronization studies or phase resetting
studies and as needed to implement closed-loop perception-action
systems.

6. The system should allow real-time computation as well as arbitrary
modulation of control parameters for online trajectory modulation.

7. Scale and temporal invariance would be desirable; for example,
changing the amplitude or frequency of a periodic system should
not affect a change in geometry of the attractor landscape.

2.1 Model Development. The basic idea of our approach is to use an
analytically well-understood dynamical system with convenient stability
properties and modulate it with nonlinear terms such that it achieves a
desired attractor behavior (Ijspeert et al., 2003). As one of the simplest
possible systems, we chose a damped spring model,4
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g: goal point

z: velocity

y: position

[Ijspeert et al., Neural Computation 25:328-373 (2013)]
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point of these equations. We call this equation the canonical system because
it models the generic behavior of our model equations, a point attractor
in the given case and a limit cycle in the next section. Given that equation
2.2 is a linear differential equation, there exists a simple exponential func-
tion that relates time and the state x of this equation. However, avoiding
the explicit time dependency has the advantage that we have obtained an
autonomous dynamical system now, which can be modified online with
additional coupling terms, as discussed in section 3.2.

With equation 2.2, we can reformulate our forcing term to become

f (x) =
∑N

i=1 !i(x)wi∑N
i=1 !i(x)

x(g − y0) (2.3)

with N exponential basis functions !i(x),

!i(x) = exp
(

− 1
2σ 2

i
(x − ci)

2
)

, (2.4)

where σi and ci are constants that determine, respectively, the width and
centers of the basis functions and y0 is the initial state y0 = y(t = 0).

Note that equation 2.3 is modulated by both g − y0 and x. The modulation
by x means that the forcing term effectively vanishes when the goal g
has been reached, an essential component in proving the stability of the
attractor equations. The modulation of equation 2.3 by g − y0 will lead to
useful scaling properties of our model under a change of the movement
amplitude g − y0, as discussed in section 2.1.4. At the moment, we assume
that g "= y0, that is, that the total displacement between the beginning and
the end of a movement is never exactly zero. This assumption will be relaxed
later but allows a simpler development of our model. Finally, equation 2.3
is a nonlinear function in x, which renders the complete set of differential
equations of our dynamical system nonlinear (instead of being a linear time-
variant system), although one could argue that this nonlinearity is benign
as it vanishes at the equilibrium point.

The complete system is designed to have a unique equilibrium point at
(z, y, x) = (0, g, 0). It therefore adequately serves as a basis for constructing
discrete pattern generators, with y evolving toward the goal g from any ini-
tial condition. The parameters wi can be adjusted using learning algorithms
(see section 2.1.6) in order to produce complex trajectories before reaching
g. The canonical system x (see equation 2.2) is designed such that x serves
as both an amplitude and a phase signal. The variable x monotonically and
asymptotically decays to zero. It is used to localize the basis functions (i.e.,
as a phase signal) but also provides an amplitude signal (or a gating term)
that ensures that the nonlinearity introduced by the forcing term remains
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by our interest in applying such dynamical systems to motor control prob-
lems, which are most commonly described by second-order differential
equations and require position, velocity, and acceleration information for
control. In this spirit, the variables y, ẏ, ÿ would be interpreted as desired
position, velocity, and acceleration for a control system, and a controller
would convert these variables into motor commands, which account for
nonlinearities in the dynamics (Sciavicco & Siciliano, 2000; Wolpert, 1997).
Section 2.1.7 expands on the flexibilities of modeling in our approach.

Choosing the forcing function f to be phasic (i.e., active in a finite time
window) will lead to a point attractive system, while choosing f to be
periodic will generate an oscillator. Since the forcing term is chosen to be
nonlinear in the state of the differential equations and since it transforms the
simple dynamics of the unforced systems into a desired (weakly) nonlinear
behavior, we call the dynamical system in equation 2.1 the transformation
system.

2.1.1 A Point Attractor with Adjustable Attractor Landscape. In order to
achieve more versatile point attractor dynamics, the forcing term f in equa-
tion 2.1 could hypothetically be chosen, for example, as

f (t) =
∑N

i=1 !i(t)wi∑N
i=1 !i(t)

,

where !i are fixed basis functions and wi are adjustable weights. Represent-
ing arbitrary nonlinear functions as such a normalized linear combination
of basis functions has been a well-established methodology in machine
learning (Bishop, 2006) and also has similarities with the idea of popula-
tion coding in models of computational neuroscience (Dayan & Abbott,
2001). The explicit time dependence of this nonlinearity, however, creates
a nonautonomous dynamical system or, in the current formulation, more
precisely a linear time-variant dynamical system. However, such a system
does not allow straightforward coupling with other dynamical systems and
the coordination of multiple degree-of-freedom in one dynamical system
(e.g., as in legged locomotion; cf. section 3.2).

Thus, as a novel component, we introduce a replacement of time by
means of the following first-order linear dynamics in x

τ ẋ =−αxx, (2.2)

where αx is a constant. Starting from some arbitrarily chosen initial state x0,
such as x0 = 1, the state x converges monotonically to zero. x can thus be
conceived of as a phase variable, where x = 1 would indicate the start of
the time evolution and x close to zero means that the goal g has essentially
been achieved. For this reason, it is important that x = 0 is a stable fixed
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Figure 1: Exemplary time evolution of the discrete dynamical system. The pa-
rameters wi have been adjusted to fit a fifth-order polynomial trajectory between
start and goal point (g = 1.0), superimposed with a negative exponential bump.
The upper plots show the desired position, velocity, and acceleration of this
target trajectory with dotted lines, which largely coincide with the realized
trajectories of the equations (solid lines). On the bottom right, the activation
of the 20 exponential kernels comprising the forcing term is drawn as a func-
tion of time. The kernels have equal spacing in time, which corresponds to an
exponential spacing in x.

transient due to asymptotical convergence of x to zero at the end of the
discrete movement.

Figure 1 demonstrates an exemplary time evolution of the equations.
Throughout this letter, the differential equations are integrated using Euler
integration with a 0.001 s time step. To start the time evolution of the
equations, the goal is set to g = 1, and the canonical system state is initialized
to x = 1. As indicated by the reversal of movement direction in Figure 1
(top left), the internal states and the basis function representation allow
generating rather complex attractor landscapes.

Figure 2 illustrates the attractor landscape that is created by a two-
dimensional discrete dynamical system, which we discuss in more detail in
section 2.1.5. The left column in Figure 2 shows the individual dynamical
systems, which act in two orthogonal dimensions, y1 and y2. The system
starts at y1 = 0, y2 = 0, and the goal is g1 = 1, g2 = 1. As shown in the vector
field plots of Figure 2, at every moment of time (represented by the phase
variable x), there is an attractor landscape that guides the time evolution of
the system until it finally ends at the goal state. These attractor properties
play an important role in the development of our approach when coupling
terms modulate the time evolution of the system.

2.1.2 A Limit Cycle Attractor with Adjustable Attractor Landscape. Limit
cycle attractors can be modeled in a similar fashion to the point attractor
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it models the generic behavior of our model equations, a point attractor
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2.2 is a linear differential equation, there exists a simple exponential func-
tion that relates time and the state x of this equation. However, avoiding
the explicit time dependency has the advantage that we have obtained an
autonomous dynamical system now, which can be modified online with
additional coupling terms, as discussed in section 3.2.

With equation 2.2, we can reformulate our forcing term to become

f (x) =
∑N

i=1 !i(x)wi∑N
i=1 !i(x)

x(g − y0) (2.3)

with N exponential basis functions !i(x),

!i(x) = exp
(

− 1
2σ 2

i
(x − ci)

2
)

, (2.4)

where σi and ci are constants that determine, respectively, the width and
centers of the basis functions and y0 is the initial state y0 = y(t = 0).

Note that equation 2.3 is modulated by both g − y0 and x. The modulation
by x means that the forcing term effectively vanishes when the goal g
has been reached, an essential component in proving the stability of the
attractor equations. The modulation of equation 2.3 by g − y0 will lead to
useful scaling properties of our model under a change of the movement
amplitude g − y0, as discussed in section 2.1.4. At the moment, we assume
that g "= y0, that is, that the total displacement between the beginning and
the end of a movement is never exactly zero. This assumption will be relaxed
later but allows a simpler development of our model. Finally, equation 2.3
is a nonlinear function in x, which renders the complete set of differential
equations of our dynamical system nonlinear (instead of being a linear time-
variant system), although one could argue that this nonlinearity is benign
as it vanishes at the equilibrium point.

The complete system is designed to have a unique equilibrium point at
(z, y, x) = (0, g, 0). It therefore adequately serves as a basis for constructing
discrete pattern generators, with y evolving toward the goal g from any ini-
tial condition. The parameters wi can be adjusted using learning algorithms
(see section 2.1.6) in order to produce complex trajectories before reaching
g. The canonical system x (see equation 2.2) is designed such that x serves
as both an amplitude and a phase signal. The variable x monotonically and
asymptotically decays to zero. It is used to localize the basis functions (i.e.,
as a phase signal) but also provides an amplitude signal (or a gating term)
that ensures that the nonlinearity introduced by the forcing term remains

initial position
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Figure 1: Exemplary time evolution of the discrete dynamical system. The pa-
rameters wi have been adjusted to fit a fifth-order polynomial trajectory between
start and goal point (g = 1.0), superimposed with a negative exponential bump.
The upper plots show the desired position, velocity, and acceleration of this
target trajectory with dotted lines, which largely coincide with the realized
trajectories of the equations (solid lines). On the bottom right, the activation
of the 20 exponential kernels comprising the forcing term is drawn as a func-
tion of time. The kernels have equal spacing in time, which corresponds to an
exponential spacing in x.

transient due to asymptotical convergence of x to zero at the end of the
discrete movement.

Figure 1 demonstrates an exemplary time evolution of the equations.
Throughout this letter, the differential equations are integrated using Euler
integration with a 0.001 s time step. To start the time evolution of the
equations, the goal is set to g = 1, and the canonical system state is initialized
to x = 1. As indicated by the reversal of movement direction in Figure 1
(top left), the internal states and the basis function representation allow
generating rather complex attractor landscapes.

Figure 2 illustrates the attractor landscape that is created by a two-
dimensional discrete dynamical system, which we discuss in more detail in
section 2.1.5. The left column in Figure 2 shows the individual dynamical
systems, which act in two orthogonal dimensions, y1 and y2. The system
starts at y1 = 0, y2 = 0, and the goal is g1 = 1, g2 = 1. As shown in the vector
field plots of Figure 2, at every moment of time (represented by the phase
variable x), there is an attractor landscape that guides the time evolution of
the system until it finally ends at the goal state. These attractor properties
play an important role in the development of our approach when coupling
terms modulate the time evolution of the system.

2.1.2 A Limit Cycle Attractor with Adjustable Attractor Landscape. Limit
cycle attractors can be modeled in a similar fashion to the point attractor
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generating rather complex attractor landscapes.

Figure 2 illustrates the attractor landscape that is created by a two-
dimensional discrete dynamical system, which we discuss in more detail in
section 2.1.5. The left column in Figure 2 shows the individual dynamical
systems, which act in two orthogonal dimensions, y1 and y2. The system
starts at y1 = 0, y2 = 0, and the goal is g1 = 1, g2 = 1. As shown in the vector
field plots of Figure 2, at every moment of time (represented by the phase
variable x), there is an attractor landscape that guides the time evolution of
the system until it finally ends at the goal state. These attractor properties
play an important role in the development of our approach when coupling
terms modulate the time evolution of the system.

2.1.2 A Limit Cycle Attractor with Adjustable Attractor Landscape. Limit
cycle attractors can be modeled in a similar fashion to the point attractor
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[yd: derivative of y] [zd: derivative of z]
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Figure 1: Exemplary time evolution of the discrete dynamical system. The pa-
rameters wi have been adjusted to fit a fifth-order polynomial trajectory between
start and goal point (g = 1.0), superimposed with a negative exponential bump.
The upper plots show the desired position, velocity, and acceleration of this
target trajectory with dotted lines, which largely coincide with the realized
trajectories of the equations (solid lines). On the bottom right, the activation
of the 20 exponential kernels comprising the forcing term is drawn as a func-
tion of time. The kernels have equal spacing in time, which corresponds to an
exponential spacing in x.
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Figure 4: Illustration of invariance properties in the discrete dynamical systems,
using the example from Figure 1. (a) The goal position is varied from −1 to 1 in
10 steps. (b) The time constant τ is changed to generate trajectories from about
0.15 seconds to 1.7 seconds duration.

rhythmic systems can be established trivially with

ż → ż
k
, ẏ → ẏ

k
, ẋ → ẋ

k
, φ̇ → φ̇

k
. (2.10)

Figure 4 illustrates the spatial (see Figure 4a) and temporal (see Figure 4b)
invariance using the example from Figure 1. One property that should be
noted is the mirror-symmetric trajectory in Figure 4a when the goal is at a
negative distance relative to the start state. We discuss the issue again in
section 3.4.

Figure 5 provides an example of why and when invariance properties
are useful. The blue (thin) line in all subfigures shows the same handwritten
cursive letter a that was recorded with a digitizing tablet and learned by a
two-dimensional discrete dynamical system. The letter starts at a StartPoint,
as indicated in Figure 5a, and ends originally at the goal point Target0.
Superimposed on all subfigures in red (thick line) is the letter a generated
by the same movement primitive when the goal is shifted to Target1. For
Figures 5a and 5b, the goal is shifted by just a small amount, while for
Figures 5c and 5d, it is shifted significantly more. Importantly, for Figures
5b and 5d, the scaling term g − y0 in equation 2.3 was left out, which destroys
the invariance properties as described above. For the small shift of the goal
in Figures 5a and 5b, the omission of the scaling term is qualitatively not
very significant: the red letter “a” in both subfigures looks like a reasonable
“a.” For the large goal change in Figures 5c and 5d, however, the omission of
the scaling term creates a different appearance of the letter “a,” which looks
almost like a letter “u.” In contrast, the proper scaling in Figure 5c creates
just a large letter “a,” which is otherwise identical in shape to the original

scale in space from -1 to 1 scale time from 0.15 to 1.7
but: not trivially right
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Figure 6: Conceptual illustration of a multi-DOF dynamical system. The canon-
ical system is shared, while each DOF has its own nonlinear function and trans-
formation system.

2.1.6 Learning the Attractor Dynamics from Observed Behavior. Our systems
are constructed to be linear in the parameters wi, which allows applying
a variety of learning algorithms to fit the wi. In this letter, we focus on a
supervised learning framework. Of course, many optimization algorithms
could be used too if only information from a cost function is available.

We assume that a desired behavior is given by one or multiple de-
sired trajectories in terms of position, velocity, and acceleration triples
(ydemo(t), ẏdemo(t), ÿdemo(t)), where t ∈ [1, . . . , P].6 Learning is performed in
two phases: determining the high-level parameters (g, y0, and τ for the dis-
crete system or g, r, and τ for the rhythmic system) and then learning the
parameters wi.

For the discrete system, the parameter g is simply the position at the
end of the movement, g = ydemo(t = P) and, analogously, y0 = ydemo(t = 0).
The parameter τ must be adjusted to the duration of the demonstration.
In practice, extracting τ from a recorded trajectory may require some
thresholding in order to detect the movement onset and end. For in-
stance, a velocity threshold of 2% of the maximum velocity in the move-
ment may be employed, and τ could be chosen as 1.05 times the duration

6We assume that the data triples are provided with the same time step as the integration
step for solving the differential equations. If this is not the case, the data are downsampled
or upsampled as needed.
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Figure 2: Vector plot for a 2D trajectory where y1 (top left) fits the trajectory of Figure 1 and y2 (bottom left) fits a minimum jerk
trajectory, both toward a goal g = (g1, g2) = (1, 1). The vector plots show (ż1, ż2) at different values of (y1, y2), assuming that only
y1 and y2 have changed compared to the unperturbed trajectory (continuous line) and that x1, x2, ẏ1, and ẏ2 are not perturbed. In
other words, it shows only slices of the full vector plot (ż1, ż2, ẏ1, ẏ2, ẋ1, ẋ2) for clarity. The vector plots are shown for successive
values of x = x1 = x2 from 1.0 to 0.02 (i.e., from successive steps in time). Since τ ẏi = zi, such a graph illustrates the instantaneous
accelerations (ÿ1, ÿ2) of the 2D trajectory if the states (y1, y2) were pushed somewhere else in state space. Note how the system
evolves to a spring-damper model with all arrows pointing to the goal g = (1, 1) when x converges to 0.
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of this thresholded trajectory piece. The factor 1.05 is to compensate for
the missing tails in the beginning and the end of the trajectory due to
thresholding.

For the rhythmic system, g is an anchor point that we set to the midposi-
tion of the demonstrated rhythmic trajectory g = 0.5(mint∈[1,...,P](ydemo(t)) +
maxt∈[1,...,P](ydemo(t))). The parameter τ is set to the period of the demon-
strated rhythmic movement divided by 2π . The period must therefore be
extracted beforehand using any standard signal processing (e.g., a Fourier
analysis) or learning methods (Righetti, Buchli, & Ijspeert, 2006; Gams,
Ijspeert, Schaal, & Lenarcic, 2009). The parameter r, which will allow us
to modulate the amplitude of the oscillations (see the next section), is set,
without loss of generality, to an arbitrary value of 1.0.

The learning of the parameters wi is accomplished with locally weighted
regression (LWR) (Schaal & Atkeson, 1998). It should be emphasized that
any other function approximator could be used as well (e.g., a mixture
model, a gaussian process). LWR was chosen due to its very fast one-shot
learning procedure and the fact that individual kernels learn independent
of each other, which will be a key component to achieve a stable parameter-
ization that can be used for movement recognition in the evaluations (see
section 3.3).

For formulating a function approximation problem, we rearrange equa-
tion 2.1 as

τ ż − αz(βz(g − y) − z)= f. (2.11)

Inserting the information from the demonstrated trajectory in the left-hand
side of this equation, we obtain

ftarget = τ 2ÿdemo − αz(βz(g − ydemo) − τ ẏdemo). (2.12)

Thus, we have obtained a function approximation problem where the pa-
rameters of f are to be adjusted such that f is as close as possible to ftarget.

Locally weighted regression finds for each kernel function %i in f the
corresponding wi, which minimizes the locally weighted quadratic error
criterion,

Ji =
P∑

t=1

%i(t)( ftarget(t) − wiξ (t))2, (2.13)

where ξ (t) = x(t)(g − y0) for the discrete system and ξ (t) = r for the rhyth-
mic system. This is a weighted linear regression problem, which has the
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τ ż − αz(βz(g − y) − z)= f. (2.11)

Inserting the information from the demonstrated trajectory in the left-hand
side of this equation, we obtain
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2. The model should be an autonomous system, without explicit time
dependence.

3. The model needs to be able to coordinate multidimensional dynam-
ical systems in a stable way.

4. Learning the open parameters of the system should be as simple as
possible, which essentially opts for a representation that is linear in
the open parameters.

5. The system needs to be able to incorporate coupling terms, for exam-
ple, as typically used in synchronization studies or phase resetting
studies and as needed to implement closed-loop perception-action
systems.

6. The system should allow real-time computation as well as arbitrary
modulation of control parameters for online trajectory modulation.

7. Scale and temporal invariance would be desirable; for example,
changing the amplitude or frequency of a periodic system should
not affect a change in geometry of the attractor landscape.

2.1 Model Development. The basic idea of our approach is to use an
analytically well-understood dynamical system with convenient stability
properties and modulate it with nonlinear terms such that it achieves a
desired attractor behavior (Ijspeert et al., 2003). As one of the simplest
possible systems, we chose a damped spring model,4

τ ÿ = αz(βz(g − y) − ẏ) + f,

which, throughout this letter, we write in first-order notation,

τ ż = αz(βz(g − y) − z) + f, (2.1)

τ ẏ = z,

where τ is a time constant and αz and βz are positive constants. If the forcing
term f = 0, these equations represent a globally stable second-order linear
system with (z, y) = (0, g) as a unique point attractor. With appropriate val-
ues of αz and βz, the system can be made critically damped (with βz = αz/4)
in order for y to monotonically converge toward g. Such a system imple-
ments a stable but trivial pattern generator with g as single point attractor.5
The choice of a second-order system in equation 2.1 was motivated

or episodic) trajectories—trajectories that are not repeating themselves, as rhythmic tra-
jectories do. This notation should not be confused with discrete dynamical systems, which
denotes difference equations—those that are time discretized.

4As will be discussed below, many other choices are possible.
5In early work (Ijspeert et al., 2002b, 2003), the forcing term f was applied to the second

ẏ equation (instead of the ż equation), which is analytically less favorable. See section 2.1.8.
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point of these equations. We call this equation the canonical system because
it models the generic behavior of our model equations, a point attractor
in the given case and a limit cycle in the next section. Given that equation
2.2 is a linear differential equation, there exists a simple exponential func-
tion that relates time and the state x of this equation. However, avoiding
the explicit time dependency has the advantage that we have obtained an
autonomous dynamical system now, which can be modified online with
additional coupling terms, as discussed in section 3.2.

With equation 2.2, we can reformulate our forcing term to become

f (x) =
∑N

i=1 !i(x)wi∑N
i=1 !i(x)

x(g − y0) (2.3)

with N exponential basis functions !i(x),

!i(x) = exp
(

− 1
2σ 2

i
(x − ci)

2
)

, (2.4)

where σi and ci are constants that determine, respectively, the width and
centers of the basis functions and y0 is the initial state y0 = y(t = 0).

Note that equation 2.3 is modulated by both g − y0 and x. The modulation
by x means that the forcing term effectively vanishes when the goal g
has been reached, an essential component in proving the stability of the
attractor equations. The modulation of equation 2.3 by g − y0 will lead to
useful scaling properties of our model under a change of the movement
amplitude g − y0, as discussed in section 2.1.4. At the moment, we assume
that g "= y0, that is, that the total displacement between the beginning and
the end of a movement is never exactly zero. This assumption will be relaxed
later but allows a simpler development of our model. Finally, equation 2.3
is a nonlinear function in x, which renders the complete set of differential
equations of our dynamical system nonlinear (instead of being a linear time-
variant system), although one could argue that this nonlinearity is benign
as it vanishes at the equilibrium point.

The complete system is designed to have a unique equilibrium point at
(z, y, x) = (0, g, 0). It therefore adequately serves as a basis for constructing
discrete pattern generators, with y evolving toward the goal g from any ini-
tial condition. The parameters wi can be adjusted using learning algorithms
(see section 2.1.6) in order to produce complex trajectories before reaching
g. The canonical system x (see equation 2.2) is designed such that x serves
as both an amplitude and a phase signal. The variable x monotonically and
asymptotically decays to zero. It is used to localize the basis functions (i.e.,
as a phase signal) but also provides an amplitude signal (or a gating term)
that ensures that the nonlinearity introduced by the forcing term remains

[ ]

[ ]
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of this thresholded trajectory piece. The factor 1.05 is to compensate for
the missing tails in the beginning and the end of the trajectory due to
thresholding.
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tion of the demonstrated rhythmic trajectory g = 0.5(mint∈[1,...,P](ydemo(t)) +
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extracted beforehand using any standard signal processing (e.g., a Fourier
analysis) or learning methods (Righetti, Buchli, & Ijspeert, 2006; Gams,
Ijspeert, Schaal, & Lenarcic, 2009). The parameter r, which will allow us
to modulate the amplitude of the oscillations (see the next section), is set,
without loss of generality, to an arbitrary value of 1.0.

The learning of the parameters wi is accomplished with locally weighted
regression (LWR) (Schaal & Atkeson, 1998). It should be emphasized that
any other function approximator could be used as well (e.g., a mixture
model, a gaussian process). LWR was chosen due to its very fast one-shot
learning procedure and the fact that individual kernels learn independent
of each other, which will be a key component to achieve a stable parameter-
ization that can be used for movement recognition in the evaluations (see
section 3.3).

For formulating a function approximation problem, we rearrange equa-
tion 2.1 as

τ ż − αz(βz(g − y) − z)= f. (2.11)

Inserting the information from the demonstrated trajectory in the left-hand
side of this equation, we obtain

ftarget = τ 2ÿdemo − αz(βz(g − ydemo) − τ ẏdemo). (2.12)

Thus, we have obtained a function approximation problem where the pa-
rameters of f are to be adjusted such that f is as close as possible to ftarget.

Locally weighted regression finds for each kernel function %i in f the
corresponding wi, which minimizes the locally weighted quadratic error
criterion,

Ji =
P∑

t=1

%i(t)( ftarget(t) − wiξ (t))2, (2.13)

where ξ (t) = x(t)(g − y0) for the discrete system and ξ (t) = r for the rhyth-
mic system. This is a weighted linear regression problem, which has the
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τ ż − αz(βz(g − y) − z)= f. (2.11)

Inserting the information from the demonstrated trajectory in the left-hand
side of this equation, we obtain
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Inserting the information from the demonstrated trajectory in the left-hand
side of this equation, we obtain

ftarget = τ 2ÿdemo − αz(βz(g − ydemo) − τ ẏdemo). (2.12)

Thus, we have obtained a function approximation problem where the pa-
rameters of f are to be adjusted such that f is as close as possible to ftarget.

Locally weighted regression finds for each kernel function %i in f the
corresponding wi, which minimizes the locally weighted quadratic error
criterion,

Ji =
P∑

t=1

%i(t)( ftarget(t) − wiξ (t))2, (2.13)

where ξ (t) = x(t)(g − y0) for the discrete system and ξ (t) = r for the rhyth-
mic system. This is a weighted linear regression problem, which has the
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where (P=# sample times in demo trajectories):
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solution

wi =
sT!iftarget

sT!is
, (2.14)

where

s =


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ξ (1)

ξ (2)

. . .

ξ (P)




!i =





"i(1) 0

"i(2)

· · ·
0 "i(P)




ftarget =





ftarget(1)

ftarget(2)

. . .

ftarget (P)




.

These equations are easy to implement. It should be noted that if mul-
tiple demonstrations of a trajectory exist, even at different scales and
timing, they can be averaged together in the above locally weighted regres-
sion after the ftarget information for every trajectory at every time step has
been obtained. This averaging is possible due to the invariance properties
mentioned above. Naturally, locally weighted regression also provides
confidence intervals on all the regression variables (Schaal & Atkeson,
1994, 1998), which can be used to statistically assess the quality of the
regression.

The regression performed with equation 2.14 corresponds to what we
will call a batch regression. Alternatively, we can also perform an incre-
mental regression. Indeed, the minimization of the cost function Ji can be
performed incrementally, while the target data points ftarget(t) come in. For
this, we use recursive least squares with a forgetting factor of λ (Schaal &
Atkeson, 1998) to determine the parameters wi.

Figures 1 and 3 illustrate the results of the fitting of discrete and rhyth-
mic trajectories. The demonstrated (dotted lines) and fitted (solid lines)
trajectories are almost perfectly superposed.

2.1.7 Design Principle. In developing our model equations, we made spe-
cific choices for the canonical systems, the nonlinear function approximator,
and the transformation system, which is driven by the forcing term. But it
is important to point out that it is the design principle of our approach
that seems to be the most important, and less the particular equations that
we chose for our realization. As sketched in Figure 7, there are three main
ingredients in our approach. The canonical system is a simple (or well-
understood) dynamical system that generates a behavioral phase variable,
which is our replacement for explicit timing. Either point attractive or pe-
riodic canonical system can be used, depending on whether discrete or
rhythmic behavior is to be generated or modeled. For instance, while we
chose a simple first-order linear system as a canonical system for discrete

is
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It should be noted that a prudent choice of the coupling term is critical
and often needs to be specialized for different objectives. The design of
coupling terms is a research topic by itself. A typical example from the
domain of motor control is obstacle avoidance with the help of potential
fields (Khatib, 1986; Koditschek, 1987; Rimon & Koditschek, 1992). Here,
obstacles are modeled as repelling potential fields that are designed to
automatically push a control system to circumnavigate them in an online
reactive way instead of deliberative preplanning. Such reactive behavior
assumes that obstacles may appear in an unforeseen and sudden way, such
that preplanning is not possible or useful.

Fajen and Warren (2003) suggested a model for human obstacle avoid-
ance that is nicely suited to demonstrate the power of coupling terms in
our approach (Hoffmann et al., 2009). We start with a 3 degree-of-freedom
(DOF) discrete movement system that models point-to-point reaching in
a 3D Cartesian space. We denote the 3D position vector of the 3 DOF
discrete dynamical system by y = [y1 y2 y3]T , with ẏ as the correspond-
ing velocity vector. The objective of a movement is to generate a reaching
movement from any start state to a goal state g = [g1 g2 g3]T . The discrete
dynamical system is initialized with a minimum jerk movement (Flash
& Hogan, 1985), which is frequently used as an approximate model of
smooth human movement. On the way to the goal state, an obstacle is posi-
tioned at o = [o1 o2 o3]T and needs to be avoided. A suitable coupling term
Ct = [Ct,1 Ct,2 Ct,3]T for obstacle avoidance can be formulated as

Ct = γ Rẏ θ exp(−βθ ), (3.2)

where

θ = arccos
(

(o − y)T ẏ
|o − y||ẏ|

)
, (3.3)

r = (o − y) × ẏ. (3.4)

The angle θ is interpreted as the angle between the velocity vector ẏ and the
difference vector (o − y) between the current position and the obstacle. The
vector r is the vector that is perpendicular to the plane spanned by ẏ and
(o − y), and serves to define a rotation matrix R, which causes a rotation
of 90 degrees about r (Sciavicco & Siciliano, 2000). Intuitively, the coupling
term adds a movement perpendicular to the current movement direction as
a function of the distance vector to the obstacle (see Hoffmann et al., 2009,
for more details). The constants are chosen to γ = 1000 and β = 20/π .

Figure 8 illustrates the behavior that the obstacle-avoidance coupling
term generates for various trajectories starting from different initial position
around the origin y = [0 0 0]T but ending at the same goal state g = [1 1 1]T .
Depending on the start position, the coupling term creates more or less
curved movements around the obstacle at o = [0.5 0.5 0.5]T . The behavior
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would not allow online modulation properties as presented in section 3.2.
Rescaling the splines in space and time for generalization is possible but
requires an explicit recomputing of the spline nodes.

Another alternative to fitting a dynamical system to observed data was
presented by Khansari-zadeh and Billard (2010), who used a mixture model
approach to estimate the entire attractor landscape of a movement skill from
several sample trajectories. To ensure stability of the dynamical system to-
ward an attractor point, a constraint optimization problem has to be solved
in a nonconvex optimization landscape. This approach is different from ours
in that it creates the attractor landscape in the state-space of the observed
data, while our approach creates the attractor landscape in the phase space
of the canonical system. The latter is low dimensional even for a high-DOF
system. A state-space mixture model for our humanoid robot above would
require a 60-dimension state space and thus would create computational
and numerical problems. However, state-space models can represent much
more complex attractor landscapes, with different realizations of a move-
ment in different parts of the state-space. Our approach creates inherently
stereotypical movements to the goal, no matter where the movements starts.
Thus, the state-space approach to fitting a dynamical systems appears to
pursue a quite different set of goals than our trajectory-based approach
does.

3.2 Online Modulation of the Dynamical Systems. One goal of mod-
eling with dynamical systems is to use the ability of coupling phenomena to
account for complex behavior. Imitation learning from the previous section
demonstrated how to initialize dynamical systems models with learning
from demonstration. In this section, we discuss different methods for how
dynamical system models can be modulated online to take dynamic events
from the environment into account. Those online modulations are among
the most important properties offered by a dynamical systems approach,
and these properties cannot easily be replicated without the attractor prop-
erties of our proposed framework.

3.2.1 Spatial Coupling. In Figure 7, we already included the possibility
of coupling terms for our dynamical systems model. Coupling terms can
affect either the transformation system or the canonical system, or both
systems. In this section, we address a coupling term in the transformation
system only, which will primarily affect the spatial evolution (y, ẏ, ÿ) and
less the temporal evolution, which is more anchored in the canonical system.
Practically, we add a coupling term Ct to equation 2.1 to become

τ ż =αz(βz(g − y) − z) + f + Ct, (3.1)

τ ẏ = z.

In a separate experiment [14], some of us recorded human
movements with a stylus on a graphics tablet. Subjects made
curved movements towards a target displayed on a screen.
During half of the trials (200ms after movement onset),
the target jumped to a different location, and we observed
how the subjects adapted their movement to the new goal.
The observed movement adaptation could be explained by
changing g in equation (11) - see Fig. 3 and [14]. Here, we
adapted the parameters wi such that the differential equation
reproduced a subject’s average movement to the original
goal.
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Fig. 3. Goal adaptation of the new DMP equations compared to human
behavior. (Left) Trajectories on a graphics tablet for one subject: raw
trajectories (yellow and cyan) and their means (red and blue) are shown.
The red curve is the movement to the original goal, and the blue curve is the
adaptation to the switching target. (Right) The adaptation of our dynamical
system to the new target (green dotted) is compared with the experimental
data (blue dashed).

IV. OBSTACLE AVOIDANCE

We exploit the robustness of dynamical systems against
perturbations for obstacle avoidance. To account for the
avoidance behavior, an additional term p(x,v) is added to
our differential equation (11),

v̇ = K(g−x)−Dv−K(g−x0)s+Kf(s)+p(x,v) . (14)

We first consider one obstacle with fixed position, then, many
obstacles, and, finally, moving obstacles.

A. Single static obstacle
Fajen and Warren [13] found a differential equation that

models human obstacle avoidance. Their equation describes
the steering angle ϕ (Fig. 4), which is modeled to change
according to

ϕ̇ = γ ϕ exp(−β |ϕ|) . (15)

For illustration, (15) is plotted in Fig. 5. For large angles,
ϕ̇ approaches zeros, i.e., a movement away from the obsta-
cle needs no correction. We combine equation (15) with

ϕ

End−effector position

Velocity

x

v Obstacleo

Fig. 4. Definition of the steering angle ϕ.
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Fig. 5. Change of steering angle ϕ. Here, the parameters γ = 1000 and
β = 20/π are used, the same as in the robot experiments.

our dynamic movement primitives. The change in steering
direction changes the velocity vector v as follows,

v̇ = Rvϕ̇ , (16)

where R is a rotational matrix with axis r = (o − x) × v

and angle of rotation of π/2; vector o is the position of
the obstacle. Equation (16) can be derived by writing v as
v = [v cos(ϕ); v sin(ϕ)] in the plane spanned by (o−x) and
v and by deriving this expression with respect to time.
We append the obstacle induced change in velocity as extra

term to our dynamic motion equation; thus we choose

p(x,v) = γRvϕ exp(−βϕ) , (17)

with ϕ = cos−1((o − x)T v/(|o − x| · |v|)); this value
is always positive. Obstacle-avoidance movements with this
extended DMP are shown in Fig. 6.
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Fig. 6. Obstacle avoidance in 2D space. Three separate movements are
shown, each with a different obstacle position (black dot). Goal positions
are marked by circles. Here, for simplicity, f(s) = (g − x0)s; thus, terms
depending on s vanish. The goal positions were shifted by 0.01 to the right
from the lines going through start and obstacle positions.

In the following, we show that (14) with (17) converges
to the goal position g. First, we demonstrate convergence
for one obstacle, and, then, extend to many obstacles. For
t → ∞, the terms in (14) that depend on s approach 0
exponentially; thus, we just need to study convergence of
the reduced equation

v̇ = K(g − x) − Dv + γRvϕ exp(−βϕ) . (18)

The state [x;v] = [g; 0] is a stationary point in the equation.
All other states converge to this point, which we will show
by constructing a Lyapunov function [15]. As Lyapunov

[actually this is: Reimann, 
Iossifidis, Schöner, 2010]
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Figure 8: Illustration of obstacle avoidance with a coupling term. The obstacle
is the large (red) sphere in the center of the plot. Various trajectories are shown,
starting from different start positions and ending at the sphere labeled “goal.”
Also shown is the nominal trajectory (green) that the discrete dynamical system
creates when the obstacle is not present: it passes right through the sphere.
Trajectories starting at points where the direct line to the goal does not intersect
with the obstacle are only minimally curved around the obstacle, while other
trajectories show strongly curved paths around the obstacle.

looks intuitively natural, which is not surprising as it was derived from
human obstacle-avoidance behavior (Fajen & Warren, 2003).

A more complex example of spatial coupling is given in Figure 9. Using
imitation learning, a placing behavior of a cup on a target was coded in a
discrete dynamical system for a 3D end effector movement of the robot, a
Sarcos Slave 7 DOF robot arm. The first row of images shows the unper-
turbed behaviors. In the second row, the (green) target is suddenly moved
to the right while the robot has already begun moving. This modification
corresponds to a change of the goal parameter g. The third row of images
demonstrates an avoidance behavior based on equation 3.2, when the blue
ball comes too close to the robot’s movement. We emphasize that one sin-
gle discrete dynamical system created all these different behaviors; there
was no need for complex abortion of the ongoing movement or replanning.
More details can be found in Pastor, Hoffmann, Asfour, and Schaal (2009).

3.2.2 Temporal Coupling. By modulating the canonical system, one can in-
fluence the temporal evolution of our dynamical systems without affecting
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=> Grimme, Lipinski, Schöner, 2012
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Figure 9: Sarcos slave robot placing a red cup on a green coaster. The first row
shows the placing movement on a fixed goal with a discrete dynamical system.
The second row shows the ability to adapt to changing goals (white arrow)
after movement onset. The third row shows the resulting movement as a blue
ball-like obstacle interferes with the placing movement, using the coupling term
from equation 3.2.

the spatial pattern generated by the transformation system. For instance, a
coupling term can be added similarly as in the previous section, changing
equation 2.2 to

τ ẋ = −αxx + Cc (3.5)

or equation 2.5 in the rhythmic system to

τ φ̇ = 1 + Cc. (3.6)

A typical example is phase coupling between two oscillators (Sternad,
Amazeen, & Turvey, 1996; Matthews, Mirollo, & Strogatz, 1991), which
is often accomplished by a coupling term Cc = αc(φext − φ). Here φext is the
phase of another oscillator, and the coupling term with strength αc will force
the rhythmic canonical system into phase locking with this oscillator.

Instead of just phase-based synchronization, it is also possible to model
adaptation of frequency for synchronization at a specific phase relationship
(Nakanishi et al., 2004; Pongas, Billard, & Schaal, 2005). For instance, drum-
ming at the beat of music requires such an adaptation. For this purpose, the
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is often accomplished by a coupling term Cc = αc(φext − φ). Here φext is the
phase of another oscillator, and the coupling term with strength αc will force
the rhythmic canonical system into phase locking with this oscillator.

Instead of just phase-based synchronization, it is also possible to model
adaptation of frequency for synchronization at a specific phase relationship
(Nakanishi et al., 2004; Pongas, Billard, & Schaal, 2005). For instance, drum-
ming at the beat of music requires such an adaptation. For this purpose, the



Conclusion

DMP enable learning “movement styles” while 
enabling generalization to new movement targets

this idea can be generalized

DMP is kinematic… control is a separate issue

OK for robotics, not feasible of neural control 

non-autonomous aspects of DMP are source of 
limitations  


