# Dynamic movement primitives

Gregor Schöner gregor.schoener@ini.rub.de

# Timed kinematic plans

that have a particular time structure that emulates human movement

by learning from human movement data

but also reach goals in desired time...

- including goals that had never been encountered during movement
- => dynamic movement primitives (DMP)

uses a dynamical system as a basis

[ljspeert et al., Neural Computation 25:328-373 (2013)]

#### Base oscillator

- damped forced harmonic oscillator
- written as two first order equations
- has a fixed point attractor when forcing function =0

$$\tau \ddot{y} = \alpha_z (\beta_z (g - y) - \dot{y}) + f,$$
  
y: position

$$\tau \dot{z} = \alpha_z (\beta_z (g - y) - z) + f,$$

$$\tau \dot{y} = z,$$
 z: velocity

(z, y) = (0, g) g: goal point

[ljspeert et al., Neural Computation 25:328-373 (2013)]

# Forcing function

 base functions
their weighted superposition = forcing function

explicit functions of time => nonautonomous

staggered in time (through c\_i): a time "score"



"Canonical system"

- time recoded into "phase" variable, x
- reset at each new movement initiation x(0)=1 (non-autonomous)
- scale forcing functions with amplitude and with temporal distance from end of movement
- so that forcing=0 at end of movement



$$f(x) = \frac{\sum_{i=1}^{N} \Psi_i(x) w_i}{\sum_{i=1}^{N} \Psi_i(x)} x(g - y_0)$$

 $y_0$  initial position

 $g - y_0$  amplitude

# Example ID

weights fitted to track dotted trajectory (=5th order polynomial)... with first goes in the negative direction

20 kernels...

dotted: target solid: approximation



# Example ID



# The space-time planning problem

- is to make sure the movement plan arrives at the target in a given time...
- the spatial goal is implemented by setting an attractor at the goal state
- the movement time is implicitly encoded in the tau/time scale of the "timing" variable...
  - but that relies on cutting off the timing variable, x, as some threshold level... as exponential time course never reaches zero... somewhat sensitive to that threshold...

# Scaling primitives



scale in space from -1 to 1

scale time from 0.15 to 1.7 but: not trivially right

#### Multi-dimensional trajectories

- rather than couple multiple movement generator (deemed "complicated")...
- only one central harmonic oscillator and multiple transformations of that...



#### Example 2D

single "phase" x

two base oscillator systems y1, y2

with two sets of forcing functions



# Learning the weights

$$[\tau \ddot{y} = \alpha_z (\beta_z (g - y) - \dot{y}) + f, ]$$

base oscillator

$$f_{target} = \tau^2 \ddot{y}_{demo} - \alpha_z (\beta_z (g - y_{demo}) - \tau \dot{y}_{demo}).$$

forcing function trajectory

minimizing error |

weights by

from sample [  $f(x) = \frac{\sum_{i=1}^{N} \Psi_i(x) w_i}{\sum_{i=1}^{N} \Psi_i(x)} x(g - y_0)$  ]  $J_{i} = \sum_{t=1}^{\infty} \Psi_{i}(t) (f_{target}(t) - w_{i}\xi(t))^{2},$ 

$$\xi(t) = x(t)(g - y_0)$$
 for discrete mov

for rhythmic mov  $\xi(t) = r$ 

### Learning the weights

can be solved analytically

$$\begin{split} \text{minimum of} \\ J_i &= \sum_{t=1}^{P} \Psi_i(t) (f_{target}(t) - w_i \xi(t))^2, \\ \text{is} \\ w_i &= \frac{\mathbf{s}^T \mathbf{\Gamma}_i \mathbf{f}_{target}}{\mathbf{s}^T \mathbf{\Gamma}_i \mathbf{s}}, \end{split}$$

where (P=# sample times in demo trajectories):

$$\mathbf{s} = \begin{pmatrix} \xi(1) \\ \xi(2) \\ \dots \\ \xi(P) \end{pmatrix} \qquad \Gamma_i = \begin{pmatrix} \Psi_i(1) & 0 \\ \Psi_i(2) & \\ 0 & \dots & \\ 0 & \Psi_i(P) \end{pmatrix} \qquad \mathbf{f}_{target} = \begin{pmatrix} f_{target}(1) \\ f_{target}(2) \\ \dots \\ f_{target}(P) \end{pmatrix}$$

#### Obstacle avoidance

inspired by Schöner/ Dose (in Fajen Warren form)

$$\tau \dot{z} = \alpha_z (\beta_z (g - y) - z) + f + C_t,$$
  
$$\tau \dot{y} = z.$$

obstacle avoidance force-let

$$\mathbf{C}_t = \gamma \mathbf{R} \dot{\mathbf{y}} \,\theta \exp(-\beta \theta),$$

where

$$\theta = \arccos\left(\frac{(\mathbf{o} - \mathbf{y})^T \dot{\mathbf{y}}}{|\mathbf{o} - \mathbf{y}| |\dot{\mathbf{y}}|}\right),$$
$$\mathbf{r} = (\mathbf{o} - \mathbf{y}) \times \dot{\mathbf{y}}.$$





#### Obstacle avoidance



# But: human obstacle avoidance is not really like that...

=> Grimme, Lipinski, Schöner, 2012

#### Coordination

- in phase dynamics: couple to external timers...
- but: issue of predicting such events and aligning the prediction to achieve synchronicity...

$$\tau \dot{x} = -\alpha_x x + C_c$$
  
$$\tau \dot{\phi} = 1 + C_c.$$
  
$$C_c = \alpha_c (\phi_{ext} - \phi).$$

#### Conclusion

DMP enable learning "movement styles" while enabling generalization to new movement targets

this idea can be generalized

- DMP is kinematic... control is a separate issue
  - OK for robotics, not feasible of neural control
- non-autonomous aspects of DMP are source of limitations