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Video: The humanoid robot Rollin' Justin, Institute of Robotics and Mechatronics, German Aerospace Center



Video: Individual cycle sport stacking world record 4.753s, Malaysia 2019 (Chan Keng lan)



Powerful torque motor Sluggish muscles
Conduction delay <1ms Conduction delay > 20ms

Accurate sensors Noisy sensory receptors



Overview of human motor system

Neural control

e Central nervous system (CNS)
- Brain
- Spinal cord

e Muscles

Scott. Nature Reviews Neuroscience 2004
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e How movements look like?
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- kinematic patterns

e How muscles work?
- muscles, motoneurons, reflexes, spinal cord

* How the brain works in movement generation?
- neuroanatomy, function



Kinematic regularity

* The speed-accuracy trade-off
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Possible

starting points Target line

- Three initial positons
- Different movement times (140, 170, or 200ms)
- Variability in proportion to speed (force)

Kandel et al. Figure 33-4
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Kinematic regularity

* Fitt’s law describes the speed-accuracy trade-off
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Movement duration = a + b * log, (W)

Kandel et al. Figure 33-8
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- Narrow and wide targets (W)
- Different distances (A)
- Move as fast as possible
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Kinematic regularity

 Velocity* (V) vs. curvature** (C) obeys “power-law”
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Kinematic regularity

* Velocity (V) vs. curvature (C) obeys “power-law”

ndt)

* Smaller C (=1/R): larger V

* Points when movement direction is
inverted: V goes to zero.
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Kinematic regularity

e Hand path and velocity have ° Ti<=T4 T1—=Ts T2—T5

stereotypical features 7 w0
£

§ o

5 ol

. 100 |

g 50 |

al

% 50 |

t_a =50

é -100 |

Kandel et al. Figure 33-9 05s



Kinematic regularity

* Velocity and acceleration as a function of distance

A Actual hand path B Hand path measurements
Velocity
Target
®
{50 cm/s

Normalized

Acceleration

‘ 1000 cm/s?

200 ms

Kandel et al. Figure 33-12



Kinematic regularity

* Minimum jerk model

Smoothness can be quantified as a function of jerk,
which is the time derivative of acceleration (Hogan 1984)
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Complete derivation see: https://courses.shadmehrlab.org/Shortcourse/minimumjerk.pdf



Kinematic regularity

* Reaching movements are straight (no obstacles)

A Experimental setup B Null field C Perturbing force

Hand velocity (y)
(=]
¥ _»

Hand velocity (x)

3 Aftereffects

Kandel et al. Figure 33-9



Summary: How movements look like?

Human movements have certain kinematic patterns:

» Speed-accuracy trade-off — Fitt’s law

* Velocity vs. curvature - power law

* Bell-shaped hand velocity — minimum jerk model

* Force field adaptation (straight reaching movements)



“To move things is all that mankind can do, for such the
sole executant is muscle, whether whispering a syllable or
felling a forest.”

Sir Charles Sherrington




Muscle structure and motor neuron

Muscle

NEURON

A
Nucleus

CeII
A) body

Muscle
(biceps)

Myelin sheath Dendrites i

Axon Terminals

https://www.sciencenewsforstudents.org/article/explainer-what-is-a-neuron

Bear et al. Figure 13-1

Each muscle fiber is innervated by a single axon



Muscle structure and motor neuron

Alpha
motor
. neuron

Muscle
fibers

(a)

> Motor
unit

Bear et al. Figure 13-7

Each motor neuron innervates multiple muscle fibers
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Each muscle is innervated by multiple motor neurons



Muscle force generation

Record motor
neuron activity

/ Measure muscle contraction

Single action potential => twitch

Summation of twitches => sustained contraction

Bear et al. Figure 13-8
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Motor and sensory pathways
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The ventral horn of the spinal cord contains motor
neurons that innervate skeletal muscle fibers.
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Bear et al. Figure 12-9

Sensory signals enter the spinal cord through the dorsal roots.
Cell bodies of sensory neurons lie in the dorsal root ganglia



Muscle spindle structure

Group la sensory axons

( \ 1 Fibrous — 1« | y 2 | Muscle
il 7 ' ' spindle

A FIGURE 13.17
A muscle spindle and its sensory innervation.

Bear et al.



Muscle spindle structure

' ) 4 Alpha motor
b . / neuron
! . l_u_, R A

Muscle Innervation Force
fibers production

Extrafusal

N / Extrafusal Alpha MN Yes
e muscle fibers
.:\lntrafusal Intrafusal Gamma MN No

muscle fibers

Bear et al. Figure 13-20



Gamma motor neuron function
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Kandel et al. Figure 35-9

* Gamma motor neuron adJusts the sensitivity of la sensory fibers



Gamma motor neuron function

A Alpha-gamma co-activation reinforces alpha motor activity
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Kandel et al. Figure 35-12



Three sources of inputs to Alpha motor neuron

Input from spinal Sensory input
interneurons from muscle
spindles

e Input from
5 upper motor
neurons in
the brain

Alpha motor
neuron

Bear et al. Figure 13-9



Stretch reflex and reciprocal inhibition

Inhibitory

interneuron
la axon

Muscle
spindle

Alpha motor

neurons .
Antagonist

muscle Bear et al. Figure 13-25

Muscle stretched — la axon activity increases — alpha MN activity of the same muscle increases — the same muscle shortened
(length increases) —alpha MN activity of the opposite muscle decreases — the opposite muscle relaxed



The Ib axon of the Golgi tendon
organ excites an inhibitory
interneuron, which inhibits the alpha
motor neurons of the same muscle

Golgi tendon organ circuit
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Bear et al. Figure 13-24



Reciprocal inhibition and Renshaw cell
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Kandel et al. Figure 35-5



Modelling of spinal reflexes
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The mass-spring model of muscles

* A physical mass-spring-damping system:
- Elastic component k: proportional to position
- Viscous component c: resistance depends on velocity A

Force
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L

* Biological muscle-joint system has a similar “spring-like Compresion || Figngaion
behavior” ~

- But note: muscles can only pull, not push |
- A joint with agonist and antagonist muscles work bidirectional }M‘VWW«-:

- Both passive mechanics and reflexes contribute AV
eV AVAVAVAVATAV L o
R VAVAVAV AV AV AV A

https://en.wikipedia.org/




Active tension (g)

Experimental measurement of muscle elastic property

The resting length (4) of the “spring” can be modified by brain descending command

Cat leg muscles

m

Force (kg )

! v-fibers
block
AN Ex.tension (mm)
Vestib
stim. (V)

4

Length (mm)

Flexor torque (Nm)

(=]

Extensor torque

Human arm muscles

In IEnnOna!
Load g  VeMeng
o (! ""“"*r b

5 / [

§

5/ 7
/ /

7 _/ passhe

eﬂensmﬂ -

: J { C o

f 59
’??o Oi?a

Al Ven?e[}{/

Muscle length(x)

Human eye muscles

120

8

3

muscle tension (Q)
3 3

201

45°N 30° 15°  0° 15° 30° 45°T

AN

eye position

Reviewed in Feldman and Zhang, J Neurophysiol. 2020



The mass-spring model

Force A: Equilibrium Point

>
Length

A is the muscle length when external force = muscle force =0 (analogous to spring’s resting length)

Stabilization of EP is contributed by muscle passive mechanics and reflexes .
Latash. J Hum Kinet 2009



Movement emerges due to the interaction between muscular
system and external load

F .
oree B: Active Movement

A /

>
ANE— A, l, l, Length

The force-length characteristics do not change. Change of A results in change of EP
Latash. J Hum Kinet 2009



Movement emerges due to the interaction between
muscular system and external load

Force C: Passive Movement
A
LF--—-——----—--——--
Ll —— —— —
>
Length

Change of external force (L) results in change of EP

Latash. J Hum Kinet 2009



Movement emerges due to the interaction between
muscular system and external load

A: Reciprocal command (r)

Torque
A -
As2 Asq Angle
;“92 }'e1

The joint torque-angle characteristic (thick lines) is the algebraic sum of the corresponding muscle characteristics.
Shifts of both Af and Ae in the same direction result in a shift of the joint characteristic parallel to the angle axis.

Latash. J Hum Kinet 2009



Movement emerges due to the interaction between
muscular system and external load

B: Coactivation command (c)
Torque

Asp Ao Angle
)\'f1 ;\'ez

Shifts of Af and Ae in opposite directions lead to a change in the slope of the joint characteristic

Latash. J Hum Kinet 2009



Biomechanical models

- Current research topic:

VW

Using theorectial models of arm reaching
(incl. reflex loops) to study the temporal
structure of neural descending control signals

PE
<€
t’( E 1.\'!’-.'
b
l.h"."("
CE: Contractile element Kistemarker et al. 2007

SE: Series elastic element
PE: Parallel elastic element
lyrc: Muscle-tendon complex length

OpenSim model

Force

Chan&Moran 2006 Muscle model Reflex model



Summary: How muscles work?

* Muscles are the actuators for movement
* Muscle spindle senses muscle length
 Spinal reflex loops modulate motor output

* Muscles act as a non-linear mass-spring model



Overview of human motor system

Neural control

e Central nervous system (CNS)
- Brain
- Spinal cord

e Muscles

Scott. Nature Reviews Neuroscience 2004



Human brain circuits for movement generation
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Kandel et al. Figure 14-7



Motor Cortex — descending control of spinal cord
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Motor Cortex:

Primary cortex (M1)
Premotor area (PMA)
Supplementary motor area(SMA)

Bears et al. Figure 14-7
Bears et al. Figure 14-8



Premotor area (PMA)

Discharge of PMA neuron before a movement

Action potential activity
of PMA neuron

Instruction
stimulus

Instruction
stimulus
on

Trigger
stimulus

Trigger
stimulus
on

Bears et al. Figure 14-9

Discharge of a mirror neuron in PMA

Monkey watches another
monkey pick up peanut

Monkey watches human
pick up peanut

Monkey watches human
pick up peanut with forceps

Bears et al. Figure 14-10



Cerebellum: coordination of movement
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Bears et al. Figure 14-7

nuclear cell

To thalamus
(motor cortex)

Cerebellum: anatomy
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Cerebellum - control model

Inverse model Forward model
(Feedback error-learning) (Smith-predictor)
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Cerebellum: diseases

Deficits in coordination and timing
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Kandel et al. Figure 42-1
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Basal ganglia: modulation of movement
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Basal ganglia: neural loop
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Kandel et al. Figure 43-2



Basal ganglia: Parkinson’s disease

\\ T

Degeneration

Parkinson’s disease

* Resting tremor

* Rigidity/Freezing

* No tremor when moving

e Cause: loss of dopaminergic neurons
* Why such neurons die is unknown
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Basal ganglia: Parkinson’s disease

Video 1

Video: Cycling for Freezing Gait in Parkinson's Disease. www.youtube.com



Summary: How the brain works in movement generation?

* Motor cortex involves in the planning, control, and execution of
voluntary movements

* Cerebellum coordinates voluntary movements

* Basal ganglia strongly interconnects with several brain regions
for movement production



Conclusions

* Human movements have regular kinematic patterns.

* Muscle forces are driven by descending activations and modulated by
spinal reflex loops.

 Several brain regions are directly involved in movement and
interconnected. Deficts in those regions cause movement disorders.
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