
Lab class: Autonomous robotics
Exercise sheets

Institut für Neuroinformatik

March 7-11, 2022

A Basic movement commands

Problem: Let the robot drive from the starting position to the target (see
Figure 1). The trajectory of the robot has to remain within the arena and
may not touch any obstacles or walls. For this task and for this task only,
assume that you know where the obstacles are. Use only wheel velocity
commands to achieve this goal.

Educational objectives:

� Understanding basics of webots

� Getting to know the webots python controller interface

Presentation objectives:

� The robot drives from start to target position without any collision
and stays at the target

1



start

obstacle

target

obstacle

Figure 1: The environment for the first problem.

2



B Kinematics

Problem: We now have an environment without obstacles, where the starting
and end position can be varied (Figure 2). Write a program that brings
the robot from an arbitrary starting position to an arbitrary end position.
The program should get the coordinates (e.g., in millimeters) of the starting
position and end position as well as the initial orientation (e.g., in degrees) of
the robot as parameters. The coordinates should be expressed in the global
(allocentric) coordinate frame defined by webots. The final orientation of the
robot does not matter.
We have marked some exemplary positions P1, . . . , P4 in the environment
that you may use, but other coordinates also have to work as starting and end
positions. Try all combinations of starting positions and end positions with
several initial orientations to make sure there are no errors in your code.1

(Hint: Turn first, drive later.)

Educational objectives:

� Understanding the trigonometry for determining the direction of
the target

� Understanding how to rotate the robot by a given angle

� Understanding how to make the robot drive a given distance

Presentation objectives:

� The tutor chooses an arbitrary start point, end point, and initial
orientation

� The robot should drive from start to end point and stop there

� Repeat for a second set of locations and orientation

1You will continue to use this code on subsequent problems so make sure that it is free
of errors.

3



200

190

180

170

160

150

140

130

120

10

100

90

80

70

60

50

40

30

20

110

380

370

360

350

340

330

320

310

210

300

290

280

270

260

250

240

230

220

390

400

200 190 180 170 160 150 140 130 120 100 90 80 70 60 50 40 30 20110210270 260 250 240 230 220

10

10200 190 180 170 160 150 140 130 120 100 90 80 70 60 50 40 30 20110210270 260 250 240 230 220

200

190

180

170

160

150

140

130

120

100

90

80

70

60

50

40

30

20

110

380

370

360

350

340

330

320

310

210

300

290

280

270

260

250

240

230

220

390

400

10

[mm]

 

Figure 2: The environment for the second problem.

4



1 Controlling the robot

1.1 Odometry

Problem: Write a program that determines the robot’s current position and
plots its path. The controller in this template already executes a series of
random movements over a period of time. Do not change anything about
this random movement generator and assume that you do not know the
commands given to the robot. You, however, know starting position and
orientation of your robot. Given those determine how the location and ori-
entation of the robot changes while it is driving. At the end of the movement
plot the robot’s trajectory, e.g. with matplotlib. Please choose an appropriate
coordinate system for your plot.
(Hint: The current position and orientation of the robot can be determined
by integrating sensor readings, i.e., encoder values, over time.)

Educational objectives:

� Plotting data with python

� Understanding the equations and trigonometry involved in odome-
try

Presentation objectives:

� Let the controller run

� Print the current location and orientation to the console in each
time-step

� Show a trajectory plot at the end of the movement

� Repeat three times for different random trajectories

1.2 Detecting obstacles with sensors

Problem: If we introduce obstacles into the environment (see Figure 3) the
robot will need to estimate their location to appropriately avoid them. In
this task, you will evaluate how the robot’s infrared sensors react to obstacles
and how sensor information may be used for robot control. Systematically
analyze how a single frontal infrared sensor reacts to a single obstacle at

5



different distances while the robot remains still (Choose sensor p0 or p7).
Take multiple measurements and analyze the mean as well as the standard
deviation for each distance. Visualize your findings in a plot.
Use your knowledge about the sensor behavior to implement a function that
converts the sensor readings into an approximation of the distance between
the robot and an obstacle (for example, in cm). Verify your conversion by
printing the live-values of the measured distances to the console while the
robot is standing still. Write a program that makes the robot drive forward
and reliably stops it once an obstacle is observed at a distance of 1 cm (2 cm).

Educational objectives:

� Understanding how to read out and process the infrared sensors of
the e-puck robot

� Understanding how the distance of the obstacle influences the in-
frared sensors

Presentation objectives:

� Print the current sensor values and their conversion into distance
to the console

� While the robot is standing still, slowly move an obstacle towards
the robot to verify your conversion

� Let the robot drive in a straight line towards an obstacle. It should
stop 1 cm before the obstacle.

� Repeat the step above for 2 cm.

1.3 Obstacle avoidance

Problem: Write a program that makes the robot drive from a starting position
(e.g., one of A1, . . . , A3) to an end position (e.g., one of B1, . . . , B3), while
avoiding an obstacle in the environment (Figure 3). While navigating the
environment, the robot may not touch the obstacle. Do not hard-code the
obstacle’s position into your program. Instead, use the infrared sensors to
detect when the robot is close to an obstacle and then avoid it by changing
course. The robot has to reach the target after avoiding the obstacle. After
the movement plot the robot’s trajectory.

6



200

190

180

170

160

150

140

130

120

10

100

90

80

70

60

50

40

30

20

110

380

370

360

350

340

330

320

310

210

300

290

280

270

260

250

240

230

220

390

400

200 190 180 170 160 150 140 130 120 100 90 80 70 60 50 40 30 20110210270 260 250 240 230 220

10

10200 190 180 170 160 150 140 130 120 100 90 80 70 60 50 40 30 20110210270 260 250 240 230 220

200

190

180

170

160

150

140

130

120

100

90

80

70

60

50

40

30

20

110

380

370

360

350

340

330

320

310

210

300

290

280

270

260

250

240

230

220

390

400

10

[mm]

Figure 3: The environment for the rest of the lab class.

7



Make the obstacle avoidance dependent on the position of the obstacle, that
is, if the obstacle is right in the middle of the robot’s path, avoid it more
strongly than if it is off to the side of the path.
Once this works, extend the program further so that the robot drives back
and forth indefinitely between the starting position and the ending position.

Educational objectives:

� Creating your own approach to obstacle avoidance

Presentation objectives:

� The tutor chooses an arbitrary starting, end, and obstacle position

� The robot should drive back and forth two times between start and
end position without touching the obstacle

� Repeat for a different set of start, end, and obstacle position

� The robot should demonstrate a stronger avoidance for an obstacle
directly in its path

2 Attractor dynamics

2.1 Target approach

Problem: You will now solve the problem of section B again, but this time,
using an attractor dynamics approach.
Write an attractor dynamics that rotates the robot on the spot toward the
target. Use a sine dynamics that is defined over the orientation of the robot.
Once turning on the spot works, add a constant forward speed to drive the
robot to the target while turning.

Educational objectives:

� Understanding how attractor dynamics can orient the robot toward
the target

� Understanding a numerical method for solving dynamics

8



� Investigating the properties of dynamics as a mechanism for con-
trolling a robot

Presentation objectives:

� The tutor chooses an arbitrary start point, end point, and initial
orientation

� The robot should drive from start to end point and stop there

� Repeat for a second set of locations and orientation

Tasks for the report:

� Explain the dynamical system and why it makes the robot turn toward
the target. Create at least two figures (i.e., a phase plot of the dynamics
and a plot that shows how the system develops over time) and refer
to the plots in your explanation. What does each figure mean with
respect to the robot?

� Over which variable is the dynamical system defined?

� Explain the concepts of an attractor and a repellor using the figures
you created. Mark attractors and repellors in the phase plot.

� In which cases does the robot fail to reach its target? Explain how this
depends on the chosen parameter values using multiple exemplary plots
of the robot’s trajectory.

2.2 Obstacle avoidance

Problem: Extend your program so that the robot can avoid obstacles while it
is driving toward the target. The robot should still move forward and turn at
the same time. Additionally, it should be repelled from obstacles and avoid
them in smooth trajectories. Solve the obstacle avoidance by modifying the
dynamical system you have implemented for the last problem. Use the force-
lets described in the background material for obstacle avoidance. You will
need to choose values for various parameters; make sure you understand the
equations involved here first.
Hint: Plot the weight function λobs with your choices for β1 and β2 for dif-
ferent distances, d, to understand their effect on the avoidance behavior.

9



Educational objectives:

� Understanding the equation for obstacle force-lets and its parame-
ters.

� Understanding the properties of a combination of different influ-
ences on the heading direction.

Presentation objectives:

� Explain which values you chose for β1 and β2 and why.

� Choose an arbitrary start and end position and place two obstacles
in between such that they form a gap of roughly 4 cm.

� While driving from start to goal the robot should drive around the
pair of obstacles.

� Widen the gap to roughly 8 cm. While driving from start to goal
the robot should now pass directly through the gap.

Tasks for the report:

� In the environment the robot is navigating, which elements represent
attractors and which represent repellors? Why? Explain.

� Explain the equations you use to generate the influence of the obstacles.
Explain how each parameter of the equation influences the shape of the
function and how this impacts the robot’s behavior. Make plots where
appropriate.

� Discuss the robot’s perception of obstacles: Does it perceive them as a
discrete set of obstacles? (How) does this correspond with the expla-
nation of the attractor dynamics in the background material?

� Explain the bifurcation that the dynamics undergoes between Fig-
ures 12 and 13 in the background material. Why is there a repellor
for each obstacle in Figure 12, while there is only a single repellor
in Figure 13? What does this mean for the robot’s behavior? Make
drawings and explain.

� Compare the dynamic obstacle avoidance approach to your algorithmic
solution. In doing so, also compare plots of the robot’s trajectory
generated with the two approaches.

10


	Basic movement commands
	Kinematics
	Controlling the robot
	Odometry
	Detecting obstacles with sensors
	Obstacle avoidance

	Attractor dynamics
	Target approach
	Obstacle avoidance




