
Query Processing over Graph-structured
Data on the Web

Maribel Acosta

Institute AIFB, Karlsruhe Institute of Technology (KIT), Germany

Maribel Acosta
Institute AIFB
Karlsruhe Institute of Technology (KIT)
Germany

Dissertation, genehmigt von der Fakultät für Wirtschaftswissenschaften des Karl-
sruher Institut für Technologie (KIT), 2017.
Referent: Prof. Dr. Rudi Studer
Koreferent: Prof. Dr. Maria-Esther Vidal

Tag der mündlichen Prüfung: 15. März 2017

Abstract

Linked Data initiatives have encouraged the publication of large datasets on the
Web. As a result, a huge dataspace known as the Linked Open Data (LOD) Cloud
has emerged, where data is represented using the graph-based data model RDF
and can be queried using the SPARQL language. In order to support querying ca-
pabilities over Linked Data sets, web access interfaces such as SPARQL endpoints
or Triple Pattern Fragment (TPF) servers have been deployed. TPF servers sup-
port the evaluation of single triple patterns and have been recently proposed as
a highly available mechanism to query RDF data online. Despite these develop-
ments, the web-like characteristics of RDF sources pose fundamental challenges to
Linked Data management that impact on the efficiency and effectiveness of query
processing engines over autonomous and remote RDF datasets.

Regarding efficient query processing, the lack of statistics about selectivities
and data distributions, as well as unpredictable data transfer rates and server
workload, can negatively impact the performance of query engines that consume
Linked Data, even in presence of the innovative querying capabilities offered by
TPF servers. This problem is mainly generated because existing SPARQL en-
gines implement query execution strategies of fixed plans following the traditional
optimize-then-execute paradigm, instead of following adaptive strategies that ad-
just query executions to unexpected runtime conditions. To tackle this problem,
in this thesis we present an adaptive SPARQL query engine tailored to execute
queries against TPFs. Our solution exploits the statistics provided by TPFs dur-
ing query optimization to devise effective plans quickly. The plans are executed
by our adaptive engine able to change query execution schedulers to reduce query
runtime. The results of our empirical studies indicate that our solution outper-
forms static web query schedulers in scenarios with unpredictable transfer delays
or data distributions and also provide novel insights about the tradeoffs of different
adaptive strategies when evaluating selective and non-selective queries.

An orthogonal but equally important aspect of querying Linked Data is the
quality of the retrieved data. Recent studies reveal that RDF datasets exhibit
varying quality in different dimensions including completeness, semantic validity,
and semantic accuracy. Moreover, the semi-structured nature of RDF data makes
it very hard to assess the quality of datasets up front. Executing SPARQL queries
against data with quality issues leads to low-quality and even incomplete results.
To overcome similar challenges in structured databases, state-of-the-art solutions
have investigated a hybrid paradigm in which the contribution of human crowds
is integrated into query processing to enhance the quality of the query results.

i

Based on these findings, we propose a novel hybrid query processing engine that
brings together machine and human computation to execute SPARQL queries.
Our solution implements a query engine that relies on the graph structure of
RDF data to decide on-the-fly which parts of a SPARQL query should be exe-
cuted against a dataset or via crowdsourcing. Our engine encodes the knowledge
collected from the crowd as fuzzy RDF graphs which are exploited in subsequent
query executions. We empirically evaluated the performance of our solution and
the experimental results show that our engine is able to enhance the completeness
of SPARQL queries while retrieving correct answers from the crowd. Further-
more, we conducted an extensive empirical analysis to study the applicability of
crowdsourcing to detect different quality issues in Linked Data. We compare the
performance of combining experts and lay users in two different workflows. Our
results indicate that crowdsourcing is also a feasible solution to detect low-quality
statements in Linked Data sets and that both types of crowds exhibit complemen-
tary skills when assessing different quality issues.

In summary, the main contribution of this thesis is the definition of flexible
query processing strategies over RDF graphs on the web. In this thesis, we show
how query engines can change plans on-the-fly with adaptive techniques to reduce
execution time or even contact humans to enhance the quality of query answers.
Due to the constant growth of graph-structure data on the web, more flexible
data management infrastructures are required in order to be able to efficiently
and effectively exploit the vast amount of knowledge accessible on the web.

ii

Contents

Abstract i

Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Problem Statement 2
1.3 Challenges and Overview of the State-of-the-Art 3

1.3.1 Challenges for Efficient SPARQL Query Processing 3
1.3.2 Challenges for Effective SPARQL Query Processing 5

1.4 Hypotheses and Research Questions 7
1.5 Contributions 9
1.6 Outline 10

Chapter 2. Foundations of Linked Data Management 13
2.1 Linked Data 13
2.2 The Resource Description Framework (RDF) 14
2.3 Querying RDF Data: The SPARQL Query Language 18
2.4 Querying RDF Data on the Web 21

2.4.1 URI Dereferencing and Link Traversal 22
2.4.2 SPARQL Endpoints 23
2.4.3 Linked Data Fragments 23

2.5 Foundations of Query Processing 25
2.5.1 Query Optimization 26
2.5.2 Adaptive Query Processing 28

Chapter 3. Adaptive Query Processing over Linked Data 31
3.1 Introduction 31

3.1.1 Research Questions 32
3.1.2 Contributions 33
3.1.3 Structure of the Chapter 34

3.2 Motivating Example 34
3.3 Related Work 36

3.3.1 Adaptive Link Traversal Approaches 36
3.3.2 Adaptive Query Processing Against SPARQL Endpoints 37
3.3.3 Query Processing Approaches Against TPF Servers 38

3.4 The nLDE Approach 39
3.5 nLDE Query Optimizer 40

3.5.1 Estimation of Query Plan Cardinalities 41

3.5.2 Placing Physical Operators 42
3.5.3 Building Query Tree Plans 43
3.5.4 nLDE Optimizer: Algorithm Description 45
3.5.5 Complexity of the nLDE Query Optimizer 49

3.6 nLDE Adaptive Routing Query Engine 49
3.6.1 Adaptive Operators 50
3.6.2 Eddies 50
3.6.3 Network of Linked Data Eddies (nLDE) 53
3.6.4 Termination of nLDE 56
3.6.5 Correctness of nLDE 57

3.7 Routing Policies 62
3.7.1 Routing Policy from Eddies to Adaptive Operators 62
3.7.2 Routing Policy from Adaptive Operators to Eddies 63

3.8 Experimental Study 63
3.8.1 Experimental Settings 63
3.8.2 Efficiency of the nLDE Optimizer 64
3.8.3 Effectiveness of the nLDE Optimizer 66
3.8.4 Impact of the nLDE Routing-based Adaptivity on Execu-

tion Time in Perfect Networks 70
3.8.5 Effectiveness of the nLDE Routing-based Adaptivity Under

the Presence of Network Delays 72
3.9 Summary and Future Work 77

Chapter 4. Foundations of Crowdsourcing 81
4.1 Overview 81
4.2 Types of Crowdsourcing 82

4.2.1 Microtasks 82
4.2.2 Contests 84

4.3 Crowdsourcing Workflows 85
4.3.1 Hybrid Crowdsourcing Workflows 86
4.3.2 Human-based Workflow: Find-Fix-Verify 86

Chapter 5. Crowdsourcing Query Answer Completeness over Linked
Data 89
5.1 Introduction 89

5.1.1 Research Questions 90
5.1.2 Contributions 92
5.1.3 Structure of the Chapter 92

5.2 Motivating Example 93
5.3 Related Work 94

5.3.1 Hybrid Query Processing for Relational Data 94
5.3.2 Crowd-based Linked Data Management Applications 96
5.3.3 Web Data Quality Assessment 97

5.4 The HARE Approach 98
5.4.1 Problem Definition 98
5.4.2 Proposed Solution 98

5.5 RDF Completeness Model 99

iv

5.6 Representation of the Crowd Knowledge 103
5.6.1 Crowd Contradiction 106
5.6.2 Crowd Unknownness 107

5.7 HARE Microtask Manager 108
5.7.1 User Interface Generator 108
5.7.2 Microtask Executor 110

5.8 HARE Query Optimizer 112
5.8.1 Complexity of the HARE Query Optimizer 116

5.9 HARE Query Engine 116
5.9.1 A SPARQL Fuzzy Set Semantics 116
5.9.2 HARE BGP Executor 121
5.9.3 Complexity of HARE Query Evaluation 125

5.10 Experimental Study 127
5.10.1 Experimental Settings 127
5.10.2 HARE Crowdsourcing Capabilities 128
5.10.3 Size of Query Answer 130
5.10.4 Quality of Crowd Answers 133
5.10.5 Crowd Response Time 135

5.11 Summary and Future Work 139

Chapter 6. Crowdsourcing Linked Data Quality Issues 141
6.1 Introduction 141

6.1.1 Research Questions 142
6.1.2 Contributions 144
6.1.3 Structure of the Chapter 144

6.2 Preliminaries: Linked Data Quality Issues 145
6.3 Related Work 147

6.3.1 Using Crowdsourcing in Linked Data Management 147
6.3.2 Web Data Quality Assessment 148

6.4 Crowdsourcing Linked Data Quality Assessment 150
6.4.1 Problem Statement 150
6.4.2 Proposed Hybrid Crowdsourcing Workflow 151
6.4.3 Crowdsourcing Workflows Proposed in Our Approach 151

6.5 Find Stage: Contest-based Crowdsourcing 154
6.6 Find Stage: Paid Microtask Crowdsourcing 155
6.7 Verify Stage: Microtask Crowdsourcing 158

6.7.1 Task for Incorrect Object Value 160
6.7.2 Task for Incorrect Datatypes or Language Tags 162
6.7.3 Task for Incorrect Links 162

6.8 Properties of Our Approach 162
6.9 Experimental Study 164

6.9.1 Experimental Settings 165
6.9.2 Evaluation of the Expert-Worker Workflow: Combining LD

Experts (Find Stage) and Microtasks (Verify Stage) 166
6.9.3 Evaluation of Using Microtask Crowdsourcing in Find and

Verify Stages 173

v

6.9.4 Evaluation of (Semi-)Automatic Approaches 179
6.10 Final Discussions 182
6.11 Summary and Future Work 184

Chapter 7. Conclusion 187
7.1 Summary 187
7.2 Outlook 189
7.3 Closing Remarks 191

Acronyms 192

Bibliography 195

List of Figures 208

List of Tables 214

List of Algorithms 217

Chapter A. Query Benchmarks 221
A.1 Benchmark 1 221
A.2 Benchmark 2 225

vi

Chapter 1

Introduction

1.1. Motivation

In the last decade, the World Wide Web (Web) has become a huge dataspace that
contains data and information of all kind. Traditionally, the Web was composed
of resources that mainly consisted of documents annotated with the HyperText
Markup Language (HTML). Nowadays, the Web has evolved into a “Web of Data”
that comprises not only documents but also the representation of real-world enti-
ties or concepts. One of the most prominent visions about the Web of Data is the
Semantic Web1, where resources are interconnected and enriched with semantics.
As a result, the Semantic Web is an enormous graph with linked semantic data.

To achieve the vision of the Semantic Web, a set of best practices called Linked
Data have been proposed [24]. Linked Data establishes the foundations and tech-
nologies to publish and connect semantic graph-based data on the Web. According
to the Linked Data principles and the World Wide Web Consortium (W3C), the
recommended data model to provide Semantic Web data is the Resource De-
scription Framework (RDF). RDF defines a semi-structured data model, where
resources correspond to nodes of a graph. Directed links between nodes constitute
RDF triples composed of subjects, predicates, and objects.

Linked Open Data (LOD) initiatives have promoted the publication of RDF
graphs in different knowledge domains including Life Sciences, governmental data,
news, geographical data, cross-domain and many others.2 As of 2017, more than
1,000 datasets have been made openly available using RDF and other Semantic
Web standards.3 Although this situation evidences the success of LOD move-
ments, it also encourages the Semantic Web community to develop computational
tools to manage Linked Data successfully.

One of the core tasks in Linked Data management is query processing [20].
To execute queries over RDF graphs online, query engines access and retrieve
RDF data from autonomous sources on the Web. This requires the deployment of
client-server querying approaches in which the communications between the query
engine (client) and the RDF source (server) is carried out over a network using

1https://www.w3.org/standards/semanticweb/
2http://lod-cloud.net
3http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/

1

https://www.w3.org/standards/semanticweb/
http://lod-cloud.net
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/

1. Introduction

the Hypertext Transfer Protocol (HTTP) protocol. In this scenario, unpredictable
changes – such as network delays or server workload – impose serious challenges
on the efficiency of client-server querying approaches over RDF graphs.

Another important aspect of retrieving RDF data from autonomous sources is
the quality of the data. The survey by Zaveri et al. [180] reveals that RDF data
on the Web exhibit varying quality in different dimensions including complete-
ness, semantic validity, and semantic accuracy. Data with low quality imposes
fundamental challenges on query processing. Traditionally, query engines assume
that the data is complete and correct. Even in the context of querying Linked
Data, approaches assume that RDF graphs are complete [76]. In cases when these
assumptions do not hold, as in Web data [120], the effectiveness of query engines
is negatively impacted thus returning incomplete or incorrect answers [63].

All in all, inefficient query processing techniques and low data quality consti-
tute a substantial barrier for real-world applications to consume RDF data from
autonomous sources. Therefore, this thesis studies the problem of efficient and
effective query processing over RDF graphs available on the Web.

1.2. Problem Statement

As stated in Section 1.1, this thesis focuses on the processing of queries over
RDF graphs available on the Web. According to the W3C, the recommended
language to formulate queries over RDF is the SPARQL Protocol and RDF Query
Language (SPARQL) [143]. The problem of SPARQL query processing consists
in computing the answers (or ‘solutions’) of a given SPARQL query when it is
executed over an RDF graph or dataset. Formally, this problem is known as
the Evaluation problem. In the following, we present the definition of the
Evaluation problem as established by Pérez et al. [127].

Definition 1 (The Evaluation Problem [127]) Given a solution µ, an RDF
graph D, and a SPARQL query Q. Let [[Q]]D be the solutions of executing Q over
D. The Evaluation problem is defined as the decision problem: Is µ ∈ [[Q]]D?

The time complexity of the Evaluation problem is PSpace-complete in gen-
eral, and PTime for the simplest fragments of SPARQL [127, 140] (more details
in Chapter 2). Besides these theoretical bounds, SPARQL engines exploit query
optimization and execution strategies to compute query answers. In consequence,
query processing strategies directly impact on query performance in terms of ex-
ecution time. Therefore, the first research problem tackled in this thesis is the
problem of efficient SPARQL query processing, which we define in the following.

Problem 1 (Efficient SPARQL Query Processing) Let D be an RDF graph
and Q a SPARQL query and. The solutions of evaluating Q over D are denoted
[[Q]]D. The problem of efficient SPARQL query processing is defined as follows:

2

1. Introduction

• The query processing strategies minimize the cost (in terms of execution
time) of computing [[Q]]D.

• The complexity of computing [[Q]]D remains the same as the complexity
defined for the Evaluation problem.

An orthogonal but equally important aspect of query processing is the qual-
ity of the query answers. In query processing, engines make assumptions about
the completeness and correctness of the dataset. Nonetheless, these assumptions
not always hold in web data [120], especially when data is modeled with semi-
structured models such as RDF. In consequence, SPARQL queries executed over
RDF graphs may return incomplete or even incorrect answers. Following this
motivation, the second research problem tackled in this thesis is the problem of
effective SPARQL query processing, which we define in the following.

Problem 2 (Effective SPARQL Query Processing) Let D be an RDF graph
and Q a SPARQL query. Consider D∗ the virtual dataset that contains all the
triples that should be in D without quality issues, i.e., D∗ is complete and correct
with respect to D. The solutions of evaluating Q over D and D∗ are denoted
[[Q]]D and [[Q]]D∗, respectively. The problem of effective SPARQL query process-
ing consists in computing [[Q]]D such that [[Q]]D = [[Q]]D∗.

1.3. Challenges and Overview of the State-of-the-Art

In the following, we discuss the challenges to tackle the research problems defined
in Section 1.2 and report on the main findings of the state-of-the-art.

1.3.1. Challenges for Efficient SPARQL Query Processing

Depending on the query processing scenario, SPARQL query engines encounter
different challenges for achieving high performance. In this thesis, we investigate
an instance of this problem, where SPARQL queries are executed over a single
RDF data source that is available on the Web. In this case, the communication
between the query engine (client) and the source (server) is carried out over a
network. SPARQL query engines contact the source via HTTP requests, and
the source sends back the necessary data to the query engine for carrying out the
query execution. Given these particular characteristics of our scenario, we identify
the following challenges for evaluating SPARQL queries efficiently.

• Lack of Statistics
In query processing, query optimizers traditionally rely on statistics or data
summaries to devise plans that can be executed efficiently. Devising plans
with inaccurate or missing statistics could jeopardize the query performance:
ineffective plans generate large amounts of intermediate results which in turn
increases the overall execution time. In other words, devising good query

3

1. Introduction

plans is key for the query engine to achieve high performance. However,
collecting meaningful statistics may be difficult or even impossible, especially
in scenarios with remote data sources [50]. In the context of SPARQL
query processing, most RDF interfaces on the Web provide no statistics
about the data distribution in RDF datasets. Currently, only Triple Pattern
Fragments provide basic metadata about the cardinality of the fragments.
The challenge in this scenario is then to devise SPARQL query optimization
techniques able to devise effective query plans even when the engine has
only access to limited statistics about the RDF dataset.

• Unexpected Data Correlations
Another important aspect in query processing is the distribution of the data.
Highly correlated data may produce large intermediate results at runtime
which hinders efficient query processing. Traditionally, query optimizers
assume that the data is independently and uniformly distributed. This
assumption, however, does not always hold in practice [86]. In particular,
due to the semi-structured (often referred as schema-less [7]) nature of the
RDF data model, RDF datasets exhibit skewed distributions. In cases when
SPARQL query engines do not have access to exact cardinalities – and even
in the presence of accurate data summaries or statistics – it is hard for the
query optimizer to identify data correlations beforehand [158]. The challenge
is to develop query processing strategies – during optimization and runtime
– to mitigate the negative effects of unexpected data correlations.

• Expressive Power of the Source
To access RDF data on the Web, a wide range of HTTP interfaces have
been proposed with different expressivity. The expressivity of a source is
determined by the type of operations that it is capable of executing [178]:
the more complex the operations are the higher the expressive power of
the source is. In the context of SPARQL query processing, SPARQL end-
points constitute RDF sources with high expressivity since they are able to
execute all SPARQL operators. RDF sources with lower expressivity are,
for example, Triple Pattern Fragment (TPF) servers, which only support
the evaluation of SPARQL triple patterns. The source expressivity dic-
tates the client-server querying paradigm [62, 95] that engines must follow
to execute queries. In sources with high expressivity, query operators can
be pushed to the server following a query shipping [62] approach. On the
other hand, engines that execute queries over sources with low expressive
power must follow a data shipping [62] approach: client-side engines retrieve
relevant data for query execution from the source and execute all query op-
erators at the client. Data shipping, in general, incurs high communication
costs [95] since the number of requests sent to the source and the amount
of data transferred over the network is relatively higher than in query ship-
ping strategies. In turn, executing queries over sources with low expressive
power may negatively impact on query performance in terms of execution

4

1. Introduction

time. The challenge for SPARQL query processing over RDF interfaces with
low expressivity is then to minimize the communication costs between the
client and the server. This can be achieved by reducing the number of re-
quests sent from the SPARQL query engine to the RDF data source, and
the amount of data transferred from the source to the query engine.

• Environment Unpredictability
In certain query processing environments, as in remote sources or data
streams, runtime conditions may change suddenly [50]. This particular-
ity is especially prevalent when queries are executed over sources publicly
available on the Web, where many clients can access the same source simul-
taneously. As a result, server workload may drastically change jeopardiz-
ing the response time of the source and even its availability. In addition,
client-server communication in Web environments is subject to unexpected
network delays, which directly affect the rate at which data arrives at the
query engine. The challenge for query processing in environments like these
is to devise execution strategies able to cope with unpredictable changes at
runtime and mitigate their negative effect on query performance.

To address the aforementioned challenges, the survey by Deshpande et al. [50]
indicates that there have been two lines of proposed solutions.

The first line of proposed solutions includes specialized optimization tech-
niques for declarative queries. For instance, in commercial relational databases,
optimizers are enhanced with domain-specific and even user hints to achieve high-
performance execution in a limited set of queries [50]. In the case of SPARQL
engines, to scale up in scenarios with insufficient statistics about the datasets,
query optimizers rely on heuristics [13, 118, 142, 158, 168] that exploit the char-
acteristics of RDF graphs and SPARQL operators to devise effective query plans.

The second line of solutions comprises adaptive query processing techniques
that monitor the execution conditions to adjust query processing at runtime.
Different types of adaptive techniques [50, 80] have been proposed, including intra-
operator, inter-operator, and routing-based adaptivity (cf. Chapter 2). Studies
have shown that engines that implement routing-based adaptivity achieve flexible
query execution able to cope with unpredictable changes at runtime [21, 155].

1.3.2. Challenges for Effective SPARQL Query Processing

Effective query processing addresses the problem of the quality of query solutions.
The evaluation of queries produces answers based on the data that fulfill the
conditions specified in the query without taking into consideration the quality
of the accessed data. Furthermore, due to the openness of web data and the
fundamental properties of the RDF data model, achieving high-quality results
when evaluating SPARQL queries is not trivial. In the following, we summarize
the main challenges for effective SPARQL query processing.

5

1. Introduction

• Open World Assumption and Absence of Null Values
Models to represent data can be characterized by the types of assumption
they make, i.e., the open/closed world assumption and the support of null
values [23]. Traditional databases, for example, are based on the Closed
World Assumption (CWA) with null values. Under the CWA, data that is
not represented or recorded is assumed to be non-existent or false. In con-
trast, under the Open World Assumption (OWA), data that is not explicitly
recorded is considered unknown. Another important dimension is the repre-
sentation of null values. The presence of a null value indicates that the value
is missing.4 However, data on the Web follows the OWA and, in addition,
the RDF data model does not support the definition of null values. These
two key aspects (OWA without null values) of RDF data impose fundamen-
tal challenges on deciding data completeness: it is unknown a priori whether
a value is actually missing in the dataset.

• Semi-structured Data Model
Structured data models as in relational databases rely on a schema that
specifies the restrictions (e.g., integrity constraints, in the relational model)
that are satisfied by the data [6]. In contrast, semi-structured data mod-
els such as RDF rely on two fundamental properties: data is schema-less
and self-describing [7]. Schema-less data is characterized by not having a
strict separation between the data description and the data itself (or in-
stances) [6, 34]. Self-describing data provides a flexible schema (sometimes
denominated data guide [6]) about the structure of the data without impos-
ing strict restrictions over the data. In consequence, data consistency and
correctness are not intrinsically checked in semi-structured models. The
schema-less and self-descriptive nature of semi-structured data result in ir-
regular structures [6] where different identifiers or descriptions are used for
the same pieces of data, or some instances are over-specified while oth-
ers are incomplete. These fundamental properties of semi-structured data,
which are prevalent in RDF datasets, hinder the quality of query processing
approaches in terms of answer correctness and answer completeness. The
challenge is to devise querying techniques to overcome the negative impact
of irregular structures in RDF datasets on the answer quality.

• Wide Range of Data Quality Issues
The concept of data quality is rather flexible [121] and highly depends on
the type of data and the context in which it is consumed. Zaveri et al. [180]
identified quality issues in Linked Data and classified them into different di-
mensions including completeness, accuracy, availability, among others. The
particularities of Linked Data impose novel challenges on quality assessment
due to the following factors [134, 180]: RDF data is provided by autonomous
sources, vocabularies and RDF datasets may change over time, and the

4Atzeni and De Antonellis [19] discuss further semantics of null values, but this topic is
considered out of the scope of this thesis.

6

1. Introduction

semi-structured nature of RDF leads to high heterogeneity within an RDF
graph. These factors in combination result in a wide range of instantiations
of Linked Data quality issues that depend on the structure and the seman-
tics of the data. The challenge is then to develop flexible approaches to
detect and repair quality issues in RDF datasets.

To tackle the problem of answer completeness in models that assume the
OWA without null values, approaches exploit the Local Closed World Assump-
tion (LCWA). In this way, LCWA allows for estimating the (local) completeness of
portions of the dataset to identify missing values. To complete or correct the data,
approaches rely on reference sources [120] (or oracles) that have the knowledge to
curate the data. In terms of completeness, state-of-the-art solutions have inves-
tigated different oracles to complete web data and RDF graphs by, for example,
automatically extracting data from web tables [53] and NLP graphs [173], respec-
tively. Besides automatic approaches, a branch of state-of-the-art solutions resorts
to crowdsourcing where humans act as oracles to complete databases [63, 112, 123].
Regarding quality issues, state-of-the-art solutions have also investigated auto-
matic approaches to detect incorrect data [59, 93, 104, 126, 156]. Nonetheless,
these solutions are tailored for specific quality issues and, in some cases, are not
sufficient to detect quality issues related to the semantics of the data.

1.4. Hypotheses and Research Questions

Based on the challenges and findings of the state-of-the-art described in Sec-
tion 1.3, in the following, we formulate the hypotheses and research questions
that are investigated in this thesis.

Hypothesis I SPARQL query processing can be carried out efficiently over
remote Linked Data sources with low expressive power.

In the context of efficient SPARQL query processing over remote sources, in
this thesis, we focus on accessing Linked Data via a novel interface denominated
Triple Pattern Fragment (TPF). TPF sources are characterized for providing lim-
ited metadata and low query expressivity. In consequence, SPARQL query pro-
cessing over remote TPF servers requires the submission of a large number of
requests over the network. As stated in Section 1.3, the lack of descriptive statis-
tics and the number of requests that are sent over the network may negatively
impact query performance. These limitations, nonetheless, can be overcome when
applying appropriate query processing techniques such as adaptivity. Therefore,
in Hypothesis I we state that efficient SPARQL query processing over low ex-
pressive sources is still possible. In our work, we study the impact of different
query plans and routing-based adaptive techniques on performance when queries
are executed over remote TPF servers. In particular, we investigate the following
research questions associated with Hypothesis I:

7

1. Introduction

i.1 Is it feasible to efficiently devise query plans over TPFs that speed up query
execution?

i.2 Does routing-based adaptivity ensure correct SPARQL query execution?

i.3 What is the impact of the type of plan on query processing performance
when queries are executed over TPFs?

i.4 How does routing-based adaptivity impact on query processing performance
when queries are executed over TPFs?

Hypothesis II The answer completeness of SPARQL queries can be en-
hanced with human input collected via microtask crowdsourcing.

As described in Section 1.3, several approaches have investigated the problem
of answer completeness over relational databases. To tackle this problem, state-
of-the-art solutions propose a hybrid query processing paradigm in which crowds
are oracles that complete query answers. Based on these findings, we state in
Hypothesis II that crowdsourcing can also be integrated into SPARQL query
processing to enhance the completeness of query answers. Yet, due to the semi-
structured nature of Linked Data sets and the assumptions of the RDF model
(OWA without null values), the results of the relational state-of-the-art cannot
be directly applied to the problem of SPARQL query processing. Therefore, we
investigate the following research questions with regards to Hypothesis II:

ii.1 What is the computational complexity of identifying portions of SPARQL
queries that yield missing values and integrating human input during query
processing?

ii.2 Is it feasible to augment the answer completeness of SPARQL queries via
microtask crowdsourcing?

ii.3 What is the impact of exploiting the semantic descriptions of resources in
RDF graphs on the performance of the crowd when solving missing values?

Hypothesis III Linked Data quality issues concerning the semantics of the
data can be detected via crowdsourcing.

In the context of data quality, semantic-related quality issues require domain
knowledge or certain understanding about the meaning of the data. As described
in Section 1.3, state-of-the-art approaches have successfully applied experts to de-
tect quality issues of semantic character in Linked Data sets. Nonetheless, reach-
ing out to a large pool of experts is a rather challenging task and in some cases
not feasible. To overcome this limitation, different crowdsourcing mechanisms can

8

1. Introduction

be used to acquire human input from crowds with varying skills, including both
experts and lay users. Following this motivation, we state in Hypothesis III that
crowdsourcing can be used to assess the quality of Linked Data regarding the
semantics of the data. In our work, we study crowdsourcing mechanisms that in-
volve experts (via a contest) and lay users (via microtasks). For Hypothesis III,
we formulate the following research questions:

iii.1 Is it feasible to detect Linked Data quality issues via crowdsourcing?

iii.2 In a crowdsourcing approach, is it feasible to employ unskilled lay users to
identify Linked Data quality issues and to what extent is expert validation
needed and desirable?

iii.3 What is the impact in terms of accuracy of applying two-fold crowdsourc-
ing workflows for detecting Linked Data quality issues, instead of one-step
solutions for pointing out quality issues?

1.5. Contributions

Regarding our defined hypotheses and research questions, this thesis provides the
following contributions to the problem of SPARQL query processing:

Contribution 1 A query engine that implements query optimization and adap-
tive techniques to efficiently execute SPARQL queries over Linked Data sources
with low expressivity.

To study Hypothesis I regarding efficient query processing, we propose the
nLDE query engine [10]. The components of the nLDE engine take into consider-
ation the characteristics of the Linked Data sources. One of our contributions to
this research problem is a query optimizer that runs in polynomial time (with re-
spect to the size of the query) and exploits metadata and the structure of SPARQL
queries to reduce the number of requests sent to the source. Also, our query engine
is the first in supporting different types of adaptivity against static Linked Data
sources with low expressivity. We conduct an empirical evaluation to compare
our optimizer with the state-of-the-art; our results confirm that our optimizer
produces plans that reduce the execution time of queries. Our empirical results
also indicate that supporting adaptivity leads to a better continuous performance
when the connection to the source exhibits delays. We also provide formal proofs
of the theoretical properties of our query processing techniques.

Contribution 2 A hybrid query engine that integrates crowd knowledge into
SPARQL query execution to enhance Linked Data set completeness.

With Hypothesis II we investigate the issue of incomplete SPARQL query an-
swers due to missing statements in Linked Data sets. To tackle this problem,
we devise the HARE query engine [9, 8]. Within HARE, we propose an RDF
completeness model that relies on the Local Closed World Assumption (LCWA)
to identify missing values. The proposed engine exploits the completeness model

9

1. Introduction

at runtime and resolves missing values via crowdsourcing. Among our contri-
butions, we propose a crowd knowledge representation based on fuzzy sets, in
which human assessments are modeled as fuzzy RDF triples to represent pos-
itive, negative, and unknown statements. This distinction between statements
collected from the crowd allows for detecting contradictions or identifying do-
mains for which the crowd is unknowledgeable. To combine human assessments
and RDF data, we define a SPARQL fuzzy set semantics. As part of our contribu-
tions, we formally demonstrate that the complexity of evaluating SPARQL queries
with our knowledge representation remains the same with respect to the semantics
of SPARQL [127, 140]. Also, the results of our crowdsourcing experiments confirm
that HARE effectively enhances the answer completeness of SPARQL queries.

Contribution 3 A two-stage crowdsourcing approach to identify and classify se-
mantically incorrect statements in Linked Data sets.

With Hypothesis III we investigate the problem of detecting Linked Data
quality issues related to the semantics of the data. Among our contributions, we
provide a formalization of this research problem and we propose a two-stage crowd-
sourcing workflow [15, 14] that adapts a well-known crowd-based pattern [27]. Our
approach is tailored for detecting incorrect statements or triples in RDF graphs
generated from non-RDF sources via declarative mappings. In addition, we state
the formal properties of our approach which directly determine the overall cost
of reaching to the crowd at different stages. We then investigate two variants
of our crowdsourcing workflow to assess RDF triples: the first variant combines
experts and lay users while the second variant solely relies on lay users. One of
our main contributions is an extensive empirical study to understand the factors
that impact on the effectiveness of human-based quality assessment. Our study
reveals the tradeoffs of employing different types of crowds for detecting specific
Linked Data quality issues and how to combine the skills of the crowd to max-
imize the effectiveness of our approach. Our empirical study is the first study
in exploring the challenges and opportunities of involving human contributors at
different stages into the process of Linked Data curation.

1.6. Outline

The remainder of this thesis comprises six chapters as follows:

• Chapter 2: Foundations of Linked Data Management
Chapter 2 introduces the concepts and terminology used throughout this
thesis. In this chapter, we describe the foundations of modeling and access-
ing Linked Data as well as the foundations of query processing.

• Chapter 3: Adaptive Query Processing over Linked Data
In Chapter 3, we investigate Hypothesis I and present our approach for
executing SPARQL queries over Linked Data published as fragments. In
particular, our approach provides an optimizer that exploits the fragment
metadata and provides adaptive techniques to cope with network delays.

10

1. Introduction

• Chapter 4: Foundations of Crowdsourcing
In this thesis, we use crowdsourcing as a mean to access to human contribu-
tors, i.e., the crowd is considered a source of knowledge. Therefore, Chapter
4 describes the basic terminology of crowdsourcing and different modalities
of crowdsourcing that are studied in the following chapters.

• Chapter 5: Crowdsourcing Query Answer Completeness over Linked Data
In Chapter 5, we investigate Hypothesis II and describe our solution to en-
hance answer completeness of SPARQL queries. Our approach exploits the
graph structure of RDF datasets to automatically detect potential incom-
plete statements and resolve the missing values via crowdsourcing.

• Chapter 6: Crowdsourcing Linked Data Quality Issues
In Chapter 6, we study Hypothesis III and further analyze quality issues
in Linked Data besides incompleteness. In this chapter, we study the op-
portunities and limitations of human-based assessment for detecting quality
issues in DBpedia, one of the most prominent datasets in Linked Data. We
investigate two different crowds – experts and lay users – and compare their
performance against (semi-)automatic approaches.

• Chapter 7: Conclusions and Outlook
In Chapter 7, we present a summary of our results and contributions to
the problem of query processing over Linked Data. We also discuss future
research directions based on our work.

11

Chapter 2

Foundations of
Linked Data Management

In this chapter, we introduce the concepts and theoretical foundations that are
necessary for the remainder of this thesis. Since our work focuses on graph-
based data on the Web published as Linked Data, we start by introducing Linked
Data in Section 2.1. In Section 2.2 we define RDF, the data model used in
Linked Data. Then we introduce SPARQL, the language to query RDF data, in
Section 2.3. A summary of different types of RDF sources on the Web to execute
SPARQL queries is presented in Section 2.4. Lastly, we present an overview of
the foundations of query processing in Section 2.5. In the latter, we focus on
conventional optimization techniques and query evaluation strategies.

2.1. Linked Data

Linked Data (LD) is a set of best practices for publishing and connecting machine-
readable data on the Web. In a broader sense, Linked Data enables the semantic
descriptions of things on the Web. This is crucial to realize the Semantic Web,
where data can be directly or indirectly interpreted by machines.

Linked Data relies on the technology stack of the Web. In Linked Data, pieces
of data denominated resources represent not only documents but also real-world
entities (people, locations, etc.) or abstract concepts. Each resource is unequiv-
ocally identified by a Uniform Resource Identifier (URI) [25] and is accessible via
the Hypertext Transfer Protocol (HTTP) [58], the foundation of data exchange on
the Web. For example, the resource Lidocaine (a chemical compound) is identi-
fied with the URI http://dbpedia.org/resource/Lidocaine. Furthermore, resources are
enriched with useful information described with machine-readable vocabularies
or ontologies. Lastly, resource descriptions must contain semantic links to other
resources, i.e., resources are connected via relations with a defined meaning.

In summary, resources published as Linked Data must be identifiable, acces-
sible, self-described, and linked. These properties of the resources (or things) are
encapsulated in the four Linked Data principles [24]:

13

2. Foundations of Linked Data Management

1. Use URIs to name things.

2. Use HTTP URIs, so that users can look up those names.

3. When a user looks up a URI, provide useful information, using the standards,
e.g., RDF (Section 2.2) or SPARQL (Section 2.3).

4. Include links to other URIs, so that users can discover more things.

Linked Data enables the consumption of semi-structured datasets on the Web.
Nonetheless, to ensure that Linked Data reaches its full potential, LD sets are
published under an open license which leads to the creation of Linked Open Data
(LOD). LOD enables users to freely reuse the available data which in turn facil-
itates the integration of data across the Web. LOD initiatives have encouraged
the publication of large linked datasets from different knowledge domains. As a
result, a global dataspace of semantically enriched and connected datasets has
emerged known as the Linking Open Data Cloud (LOD Cloud) [31]. During the
last decade, the LOD Cloud has grown considerably, passing from comprising nine
datasets in 2007 to more than 1, 000 in 2014 [139]. Altogether, the datasets of the
LOD Could contain billions of inter-connected statements that constitute a very
large semantic graph. In the LOD Cloud, one of the most prominent datasets is
DBpedia [102]. DBpedia contains semi-structured data extracted from the online
encyclopedia Wikipedia1. DBpedia is the result of leveraging natural language
into semantic data via mappings. Statements in DBpedia are described with the
DBpedia ontology and modeled with the Resource Description Framework.

2.2. The Resource Description Framework (RDF)

According to the Linked Data principles, Linked Data published on the Web must
be described using the Resource Description Framework (RDF). RDF provides a
graph-based data model to represent semi-structured data on the Web.

The RDF data model allows for expressing positive statements in the form of
tuples, denominated RDF triples. Each RDF triple is composed of a subject, a
predicate, and an object as follows:

• Subject: Resource or entity that is described.

• Predicate: Property (relation) that associates the subject with the object.

• Object: Value of the predicate. It can be another resource or a sequence of
strings denominated ‘literal’.

Resources in RDF can be either identified by a Universal Resource Identifier
(URI) or unidentified. Unidentified resources are denominated blank nodes and
model existential variables in the graph. Furthermore, literals in RDF can be

1https://www.wikipedia.org/

14

https://www.wikipedia.org/

2. Foundations of Linked Data Management

enriched with datatypes – as defined in the XML Schema [109] – or language tags
– as specified in the BCP 47 [47] in conformance with the RDF specification [79].
In RDF, URIs, literals, and blank nodes are called RDF terms. We follow the
notation from Pérez et al. [127] and the RDF specification [79] and present the
formal definition of RDF terms, RDF triples, and generalized RDF triples.

Definition 2 (RDF Term [79], (Generalized) RDF Triple [127, 79]) Let U ,
B, L be disjoint infinite sets of URIs, blank nodes, and literals, respectively. An
element of the set U ∪B ∪L is called an RDF term. A tuple (s, p, o) ∈ (U ∪B)×
(U)×(U∪B∪L) is denominated an RDF triple, where s is called the subject, p the
predicate, and o the object. When (s, p, o) ∈ (U∪B∪L)×(U∪B∪L)×(U∪B∪L)
then (s, p, o) is a generalized RDF triple.

Example 1 The following are examples of statements modeled as RDF triples
using the DBpedia ontology2.

Lidocaine is a drug.
(dbr:Lidocaine, rdf:type, dbo:Drug)

Lidocaine has name “Lidocaine” in English.
(dbr:Lidocaine, dbp:drugName, “Lidocaine”@en)

Lidocaine has label “Lidocaine” in English.
(dbr:Lidocaine, rdfs:label, “Lidocaine”@en)

Lidocaine is administered orally.
(dbr:Lidocaine, dbp:routesOfAdministration, dbo:Oral administration)

A set of RDF triples is a conjunction of positive statements. Formally, a set
of RDF triples constitutes an RDF graph. Figure 2.1 depicts an RDF graph with
four RDF triples that describe the resource dbr:Lidocaine (as of Example 1).

In an RDF graph, each triple corresponds to a pair of connected nodes. In this
way, subjects and objects of triples are nodes, while predicates are directed labeled
edges that link nodes. Since nodes in RDF graphs can be connected via several
edges, conceptually, RDF graphs can be defined as multigraphs. Furthermore,
several RDF graphs can be contained in a structure denominated RDF dataset.
We formally define RDF graphs and RDF datasets in the following.

2URIs can be abbreviated using prefixes. For instance, the following URI
http://dbpedia.org/resource/resource/Lidocaine is shortened as dbr:Lidocaine where dbr corre-
sponds to http://dbpedia.org/resource/resource. In Example 1, we assume the following prefixes:
dbr : http://dbpedia.org/resource/resource

dbo : http://dbpedia.org/resource/ontology

dbp : http://dbpedia.org/resource/property

rdf : http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs : http://www.w3.org/2000/01/rdf-schema#.

15

http://dbpedia.org/resource/resource
http://dbpedia.org/resource/ontology
http://dbpedia.org/resource/property
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#

2. Foundations of Linked Data Management

dbr:
Oral_administration

dbr:
Lidocaine

dbp:routesOf
Administration

dbo:Drug

“Lidocaine”@en rdfs:label

dbp:drugName

rdf:type

Subject Predicate Object

Figure 2.1: Graphical representation of an RDF graph. Each pair of connected nodes is
an RDF triple. Subjects and objects of RDF triples constitute the nodes of
the graph. Predicates of RDF triples correspond to directed labeled edges.

Definition 3 (RDF Graph, RDF Dataset [127]) Let U , B, L be disjoint in-
finite sets of URIs, blank nodes, and literals, respectively. An RDF graph G is a
directed labeled multigraph G = (N,E,Σ,L) where:

• N ⊂ (U ∪B ∪ L) a finite set of RDF terms that correspond to nodes,

• E ⊆ N ×N a finite set of edges that connect RDF terms,

• Σ ⊂ U a set of labels uniquely identified with URIs,

• L : E → 2Σ a function that maps edges to sets of labels.

An RDF dataset D is a set {G0, 〈u1, G1〉, ..., 〈un, Gn〉} where each ui is an URI
and each Gj is an RDF graph. G0 is called the default graph of D. Each 〈ui, Gi〉
is called a named graph.

For the sake of simplicity, in the remainder of this work, we assume that an
RDF dataset is composed of only the default graph, and we use the terms RDF
graph and RDF dataset interchangeably.

Triples modeled in an RDF dataset follow the Open World Assumption (OWA).
In OWA, statements that are not represented in the dataset are considered un-
defined, i.e., the truth value of those statements could be either true or false.
In other words, incomplete data is assumed by default in OWA. In contrast,
structured data models rely on the Closed World Assumption (CWA) in which
statements that cannot be derived from the dataset are assumed false.

RDF Schema (RDFS) and the Web Ontology Language (OWL)

As illustrated in the RDF graph from Figure 2.1, RDF resources can belong to
classes. In our example, the resource dbr:Lidocaine is an individual of the class
‘drugs’ identified with the URI dbo:Drug. Instances of classes in RDF are specified

16

2. Foundations of Linked Data Management

with the predicate rdf:type. Although RDF allows for specifying class member-
ships, RDF does not provide the formal semantics of classes and individuals. This
type of expressivity is then provided by the RDF Schema (RDFS) [33] vocabulary.

RDFS extends the RDF data model to include the definition of logical relations
among resources, classes, predicates, and datatypes. For instance, RDFS classes
group a set of resources (individuals) that have certain properties in common.
Furthermore, RDFS supports the definition of class hierarchies – highly used
in ontology modeling – via the predicate rdfs:subClassOf. In the following, we
summarize the RDFS properties that are relevant for our work:

• rdfs:subClassOf: The subject class is contained in the object class.
Example: (dbo:Drug, rdfs:subClassOf, dbo:ChemicalSubstance).

• rdfs:domain: The domain of a property specifies the type of a resource that
occurs as the subject in a triple where the predicate is that property.
Example: (dbp:routesOfAdministration, rdfs:domain, dbo:Drug).

• rdfs:range: The range of a property specifies the type of a resource that
occurs as the object in a triple where the predicate is that property.
Example: (dbp:routesOfAdministration, rdfs:range, dbo:Dosage forms).

• rdfs:label: Human-readable name for the described resource.
Example: (dbo:Lidocaine, rdfs:label, ”Lidocáına”@es).

• rdfs:comment: Human-readable description of the resource.
Example: (dbo:Lidocaine, rdfs:comment, ”Lidocaine is used to numb tissue”).

Further logical conditions or constraints can be imposed on the description
of resources with the Web Ontology Language (OWL) [4]. OWL extends RDFS
and defines the semantics of properties with higher expressivity than RDFS. In
the following, we describe the most relevant OWL constraints for our work; we
distinguish among constraints at the level of individuals, classes, and predicates:

• Individual level: For instance, the OWL construct owl:sameAs models the
equality of individuals.

• Class level: OWL axioms model the equivalence or disjointness of classes.

• Predicate level: OWL axioms model logical characteristics of properties such
as symmetry or transitivity. Furthermore, cardinality restrictions of proper-
ties can be expressed with OWL. These restrictions may specify the number
of different values for a given property, as well as whether the property is
functional or inverse functional.

Ontologies with RDFS or OWL expressivity not only semantically describe
resources on the Web but also allow for inferring new facts about the data de-
scribed with such ontologies. Furthermore, reasoning mechanisms can be applied
over the data to determine whether RDFS and OWL constraints are satisfied [93].
Violations of these constraints could lead to inconsistencies within a dataset which
constitute data quality issues (cf. Chapter 6).

17

2. Foundations of Linked Data Management

2.3. Querying RDF Data: The SPARQL Query Language

The W3C recommended language for querying RDF data is the SPARQL Protocol
and RDF Query Language (SPARQL) [143]. SPARQL is a declarative language
where queries are specified as graph-based templates that are matched against
the RDF dataset; this is known as graph pattern matching.

The basic unit of SPARQL is the triple pattern. Triple patterns are similar
to RDF triples where the subject, predicate, or object may be variables. In a
query, variables act like placeholders which are bound with RDF terms to build
the solutions of the query. A set of triple patterns is denominated a Basic Graph
Pattern (BGP). The definition of triple patterns and BGPs is as follows.

Definition 4 (Triple Pattern, Basic Graph Pattern [127]) Let U , B, L be
disjoint infinite sets of URIs, blank nodes, and literals, respectively. Let V be a
set of variables such that V ∩ (U ∪ B ∪ L) = ∅. A triple pattern is defined as a
3-tuple (s, p, o) ∈ (U ∪V)× (U ∪V)× (L∪U ∪V), where the components subject,
predicate, and object correspond to RDF terms or variables. Let tp1, tp2, ..., tpn
be triple patterns. A basic graph pattern (BGP) B is the conjunction of triple
patterns, i.e., B = tp1 And tp2 And ... And tpn.

Triple patterns can be further combined with Filter, Union, Opt, or And
to construct more complex graph patterns denominated SPARQL expressions. In
addition, the SPARQL specification defines four different query forms: Ask, Se-
lect, Describe, and Construct. In this work, we focus on SPARQL Select
queries which return a set of bound variables.

Definition 5 (SPARQL Expression, Select Query [140]) Let V be a set
of variables. A SPARQL expression is built recursively as follows. (1) A triple
pattern is an expression as in Definition 4. (2) If Q1, Q2 are expressions and R is
a filter condition3, then Q1 Filter R, Q1 Union Q2, Q1 Opt Q2, Q1 And Q2

are expressions. Let Q be a SPARQL expression and S ⊂ V a finite set of vari-
ables. A SPARQL Select query is an expression of the form SelectS(Q).

To illustrate a SPARQL Select query, consider the following example. Syn-
tactically, SPARQL expressions are specified within the Where clause of the
query. The conjunction of expressions (And) is written as ‘.’, and expression
variables are specified with the prefixes ‘?’ or ‘$’. The syntax ‘*’ after the
Select clause denotes all the variables in the query.

Example 2 The following SPARQL query retrieves drugs with their route of admin-

istration, such that the drugs are annotated with prefixes “C01” or “C07” in the Anatomical

Therapeutic Chemical (ATC) classification system.

3A filter condition R is a boolean expression. If R1, R2 are filter conditions, then ¬R1,
R1 ∧ R2, and R1 ∨ R2 are filter conditions.

18

2. Foundations of Linked Data Management

1 PREFIX dbp: <http://dbpedia.org/property/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3

4 SELECT ∗ WHERE {
5 ?drug dbp:routesOfAdministration ?route . # tp1
6 {?drug dbo: atcPrefix ”C01” . } # tp2
7 UNION
8 {?drug dbo: atcPrefix ”C07” . } # tp3
9 }

The previous query is composed of three triple patterns tp1, tp2, and tp3 com-
bined in the SPARQL expression: tp1 And (tp2 Union tp3).

The evaluation of SPARQL queries over RDF data is based on mappings. A
mapping instantiates variables in a SPARQL expression with RDF terms. Each
mapping represents a possible answer for a given SPARQL expression.

Definition 6 (SPARQL Mappings [140]) A mapping is a partial function µ :
V → (B ∪ L ∪ U) from a subset of variables to RDF terms. The domain of a
mapping µ, dom(µ), is the subset of V for which µ is defined. Two mappings µ1,
µ2 are compatible, written µ1 ∼ µ2, if ∀x ∈ dom(µ1) ∩ dom(µ2) : µ1(x) = µ2(x).
Further, vars(tp) denotes all variables in triple pattern tp, and µ(tp) is the triple
pattern obtained when replacing all x ∈ dom(µ) ∩ vars(tp) in t by µ(x).

The solution of a SPARQL expression or query is the result of combining
SPARQL mappings accordingly. The SPARQL algebra defines the operations to
combine sets of SPARQL mappings, denominated mapping sets.

Definition 7 (SPARQL Algebra [127, 140]) Let Ω, Ωl, Ωr be mapping sets,
R denotes a filter condition, and S a finite set of variables. SPARQL algebraic
operations are defined as follows:

Ωl on Ωr := {µl ∪ µr | µl ∈ Ωl, µr ∈ Ωr : µl ∼ µr}
Ωl ∪ Ωr := {µ | µ ∈ Ωl ∨ µ ∈ Ωr}
Ωl \ Ωr := {µl ∈ Ωl | ∀µr ∈ Ωr : µl � µr}
Ωl on Ωr := (Ωl on Ωr) ∪ (Ωl \ Ωr)

πS(Ω) := {µ1 | ∃µ2 : µ1 ∪ µ2 ∈ Ω ∧ dom(µ1) ⊆ S ∧ dom(µ2) ∩ S = ∅}
σR(Ω) := {µ ∈ Ω | µ |= R}

Where |= tests that a mapping µ satisfies the filter condition R.

When evaluating a SPARQL query over an RDF dataset, the query and its
expressions (cf. Definition 5) are translated into algebraic operations specified in
Definition 7. The function that performs this translation defines the semantics
of SPARQL. We assume that SPARQL query evaluation is carried out under
set semantics, i.e., the result of evaluating every SPARQL expression is a set of
mappings. We present the semantics of SPARQL query evaluation in the following.

19

2. Foundations of Linked Data Management

Definition 8 (SPARQL Set Semantics [127, 140]) Let D be an RDF dataset,
tp a triple pattern, and Q, Q1, Q2 SPARQL expressions, R a filter condition, and
S a finite set of variables. Let [[·]]D be a function that translates SPARQL expres-
sions into SPARQL algebra operators as follows:

[[tp]]D := {µ | dom(µ) = vars(tp) and µ(tp) ∈ D}
[[Q1 And Q2]]D := [[Q1]]D on [[Q2]]D

[[Q1 Opt Q2]]D := [[Q1]]D on [[Q2]]D

[[Q1 Union Q2]]D := [[Q1]]D ∪ [[Q2]]D

[[Q Filter R]]D := σR([[Q]]D)

[[SelectS(Q)]]D := πS([[Q]]D)

The following example illustrates the evaluation of the SPARQL expression
from Example 2 against an RDF dataset.

Example 3 Consider the following RDF dataset D:

1 (dbr:Adenosine, dbp:routesOfAdministration , ”Intravenous”)
2 (dbr: Urapidil , dbp:routesOfAdministration , ”Oral”)
3 (dbr:Adenosine, dbo: atcPrefix , ”C01”)
4 (dbr: Urapidil , dbo: atcPrefix , ”C02”)
5 (dbr: Penbutolol , dbo: atcPrefix , ”C07”)

Assume that we want to evaluate the following SPARQL expression
Q = tp1 And (tp2 Union tp3) over D, where:

tp1 = (?drug, dbp:routesOfAdministration, ?route)
tp2 = (?drug, dbo:atcPrefix, ”C01”)
tp3 = (?drug, dbo:atcPrefix, ”C07”)

By the definition of the SPARQL semantics (cf. Definition 8), the evaluation
of Q over D corresponds to:

[[Q]]D = [[t1]]D on ([[t2]]D ∪ [[t3]]D)

Taking into consideration the triples in D, it follows that [[t1]]D, [[t2]]D, and
[[t3]]D generates the mapping sets Ωl, Ω2, and Ω3 (respectively) as:

Ωl = { µ1 = {drug → dbr:Adenosine, route → ”Intravenous”}
µ2 = {drug → dbr:Urapidil, route → ”Oral”} }

Ω2 = { µ3 = {drug → dbr:Adenosine}}

Ω3 = { µ4 = {drug → dbr:Penbutolol}}

20

2. Foundations of Linked Data Management

Let Ωr = Ω2 ∪Ω3. By definition of the ∪ operator in Definition 7, Ωr is com-
posed of the mappings that belong either to Ω2 or to Ω3.

Ωr = { µ3 = {drug → dbr:Adenosine}
µ4 = {drug → dbr:Penbutolol}}

Lastly, Ωl on Ωr is carried out. To illustrate the evaluation of the on operator,
first we look at the compatible mappings from Ωl and Ωr. The mappings µ1 and
µ3 are compatible (µ1 ∼ µ3), since µ1(drug) = µ3(drug) which is dbr:Adenosine, and
drug is the only variable they share. In this case, the on operator merges the two
mappings as µ1∪µ3 which results in {drug → dbr:Adenosine, route → ”Intravenous”}.
Note that µ1 � µ4, µ2 � µ3, and µ2 � µ4. Finally, the solution of Q over D is:

[[Q]]D = {{drug → dbr:Adenosine, route → ”Intravenous”}}

To analyze the complexity of SPARQL query evaluation, the associated de-
cision problem Evaluation is defined as follows [127]: Given a mapping µ, an
RDF dataset D, and a SPARQL expression or query Q as input: is µ ∈ [[Q]]D?

Theorem 1 ([127, 140]) The Evaluation problem is in (1) PTime for ex-
pressions constructed using only And and Filter operators; (2) NP-complete
for expressions constructed using And, Filter, and Union operators; (3)
PSpace-complete for graph pattern expressions.

The definition of Evaluation is based on the SPARQL set semantics. How-
ever, Schmidt et al. [140] demonstrated that the same complexity results apply
when computing the solution of SPARQL queries under bag semantics.

2.4. Querying RDF Data on the Web

To access RDF datasets on the Web, different HTTP-based interfaces have been
deployed: from RDF dumps – where the whole dataset is available for download
– to more sophisticated services capable of processing SPARQL queries.

In this section, we present interfaces that have been studied in the literature
to evaluate SPARQL queries (cf. Section 2.3) over RDF data online: URI deref-
erencing (Section 2.4.1), SPARQL endpoints (Section 2.4.2), and Linked Data
Fragments (Section 2.4.3). Conceptually, the main difference among these inter-
faces is the expressivity of the requests they are able to handle. In terms of query
processing, high expressive sources are able to evaluate query operators (i.e., op-
erators are pushed to servers) which minimizes the number of requests submitted
to the server. This, in turn, reduces query runtime as fewer requests are sent over
the network to contact the remote source. In general, there is a direct relation
among expressivity and query performance when sources are capable of executing

21

2. Foundations of Linked Data Management

Low!

High!

Expressivity!
Low! High!

SPARQL
Endpoint

Av
ai

la
bi

lit
y
!

Dereferencing

Triple Pattern
Fragment Server

Figure 2.2: Tradeoff between expressive power and availability of HTTP-based inter-
faces to access RDF data online. Empirical results reported in the literature
suggest that low-expressivity sources achieve higher availability.

complex operations: the higher the expressive power of the source the better the
query performance (in terms of execution time). However, a recent survey con-
firms that high expressivity comes at the cost of low availability [18]. Availability
of a source is defined as the ratio of requests successfully served versus the total
number of requests sent to the source [18]. This is captured in Figure 2.2. In the
following sections, we describe each studied interface and analyze their challenges
and opportunities for online SPARQL query processing.

2.4.1. URI Dereferencing and Link Traversal

Following the Linked Data principle 2, dereferencing URIs is the most basic inter-
face to access RDF data online. To retrieve information associated with a resource,
clients perform requests (as defined in HTTP) over the URI of the resource. This
process is known as URI dereferencing.

URI dereferencing is a core task in link traversal querying engines to evaluate
SPARQL queries over RDF data on the Web. SPARQL query approaches that
rely on link traversal [78, 98, 159, 160] compute query results by dereferencing
URIs and feeding the retrieved data into SPARQL operators implemented by the
engine. The resulting mapping sets may contain undiscovered URIs which the
engine must in turn dereference. In this way, link traversal engines follow the
links in the intermediate results as the query evaluation goes.

Handling URI requests is a rather simple operation for the server. In conse-
quence, the availability of servers that provide access to RDF data via derefer-
encing is high, as shown in Figure 2.2. Nonetheless, this type of interface exhibits
practical and fundamental issues for query processing. First, during link traver-
sal, large amounts of requests are posed against the source which may negatively
impact on query performance depending on the server workload and network con-
ditions. Second, in terms of query processing, the expressivity of this interface
is intrinsically low: none of the query operators can be executed by the server.

22

2. Foundations of Linked Data Management

Although query engines mitigate this limitation by performing query operators
at the client, link traversal approaches rely on seed URIs or seed RDF graphs
to evaluate SPARQL queries. In case that none of these exist, certain classes
of SPARQL queries cannot be solved using link traversal approaches. Typical
examples of these queries are those where only the predicates are instantiated.
In summary, relying on URI dereferencing imposes a fundamental constraint and
negatively affects the expressivity of queries that can be executed online.

2.4.2. SPARQL Endpoints

A SPARQL endpoint is a service that allows for querying RDF datasets online
via SPARQL queries (cf. Section 2.3). SPARQL endpoints are available on the
Web and support the SPARQL protocol [174], which is built on top of HTTP.

Clients – humans or machines – can pose queries against SPARQL endpoints
which, in theory, are capable of executing any given valid SPARQL query and
return the results to the requester. Therefore, as shown in Figure 2.2, SPARQL
endpoints are considered RDF querying interfaces with high expressive power.

Due to the large number of requests4 and the complexity of SPARQL queries,
SPARQL endpoint providers may impose practical restrictions to these servers.
These restrictions include limits on: i) the cardinality of the result set that can be
retrieved from the endpoint, or ii) the maximum query execution time. Despite
these restrictions, the performance and availability vary notably among SPARQL
endpoints on the Web. In particular, Salvadores et al. [136] observe that complex
SPARQL queries directly impact on the endpoint performance. Furthermore, the
analysis by Buil-Aranda et al. [18] indicates that SPARQL endpoints on the Web
suffer from availability, as is reflected in Figure 2.2. To overcome these limitations,
recent works [11, 12] have shown the potential of following hybrid policies to
enhance the performance of SPARQL endpoints when executing complex queries
by distributing the workload among the client and the server.

2.4.3. Linked Data Fragments

Linked Data Fragments [165] is a framework that formally defines Linked Data
interfaces with varying expressive power. Conceptually, URI dereferencing (cf.
Section 2.4.1) and even SPARQL endpoints (cf. Section 2.4.2) can be considered
as interfaces to access different fragments of Linked Data.

To mitigate the limitations of URI dereferencing and SPARQL endpoints,
Verborgh et al. propose a Linked Data Fragment which is called Triple Pattern
Fragment (TPF) [165, 167]. TPFs extend the GetData interface [73] to be able
to evaluate any given triple patterns against an RDF dataset. The expressivity
of TPFs is higher than URI dereferencing – since TPFs support a fragment of
SPARQL – but notably lower than SPARQL endpoints (cf. Figure 2.2). Empirical

4The DBpedia endpoint (http://dbpedia.org/sparql) processes almost 500, 000 queries
per day according to log files from USEWOD 2013 Research Dataset doi:10.5258/SOTON/

379399

23

http://dbpedia.org/sparql
doi:10.5258/SOTON/379399
doi:10.5258/SOTON/379399

2. Foundations of Linked Data Management

studies indicate that TPF servers are low-cost interfaces to access RDF datasets
and TPF servers achieve higher availability than SPARQL endpoints [165, 167].

The evaluation of a triple pattern against a TPF server results in a sequence5

of RDF triples that match the given triple pattern; this is called a fragment6.
Given that some fragments may contain a large number of triples, fragments
are partitioned into fragment pages. Fragment pages contain a fixed maximum
number of triples; this number is configured by the data provider. To retrieve
then an entire fragment, clients must iterate (or paginate) over the TPF pages.
Each fragment page is a 3-tuple (Ψ,M,C) composed of the following elements:

• Data Ψ: Sub-sequence of RDF triples in the dataset that is contained in the
fragment and belong to the selected fragment page.

• Metadata M : Estimated number of triples contained in the fragment, and
the maximum number of triples per fragment page.

• Control C: Link to retrieve the next fragment page.

The set of all possible Triple Pattern Fragments for a given dataset is denom-
inated a TPF collection. In the following, we define the semantics of evaluating a
triple pattern against a TPF collection over an RDF dataset.

Definition 9 (Triple Pattern Fragment Query Semantics) Let D be an RDF
dataset, tp a triple pattern (as in Definition 4), and F a Triple Pattern Fragment
collection over D. The result of evaluating tp against F , i.e., [[tp]]F , is defined as
follows:

[[tp]]F := {µ(tp) | dom(µ) = vars(tp) and µ(tp) ∈ D}

Notice that the main difference between the TPF query semantics and the
SPARQL semantics is that the result of evaluating a triple pattern against a TPF
collection is a set of triples, instead of a set of solutions mappings as in SPARQL.

To evaluate SPARQL queries composed of more than one triple pattern us-
ing TPFs, query processing engines executed at the client must implement the
corresponding SPARQL operators. In comparison with SPARQL endpoints, the
workload of executing SPARQL operators is shifted from the server to the client.

The low expressivity of TPFs comes at the cost of higher network traffic:
clients must retrieve fragments from the TPF server to the query engine, which
in turn increases the query runtime. In consequence, when executing queries over
TPFs, SPARQL query engines must devise effective plans and execution strategies
to overcome the negative effects of the relatively low expressivity of TPFs.

5RDF triples are totally ordered by subject, predicate, and object by some ordering criteria.
6The original definition of a fragment specifies further elements, not only the sequence of

RDF triples. For the sake of simplicity, we introduce these elements at the level of fragment
page.

24

2. Foundations of Linked Data Management

Query Query Engine Query Optimizer
Physical plan

Query
results

Dataset

Access

SHJ

NL

Figure 2.3: Overview of query processing. The query optimizer devises a plan to eval-
uate a given query over a dataset. The physical plan specifies the order
of execution of operators, the type of physical operators, etc. The query
engine carries out the execution as defined in the plan by accessing the
corresponding dataset structures to produce the query results.

2.5. Foundations of Query Processing

In previous sections, we presented the semantics of SPARQL – the language to
query data modeled with RDF – and described different RDF data sources to
evaluate SPARQL queries online. In this section, we abstract from the data
model and the query language, and summarize the theoretical foundations and
techniques of processing queries to produce query results [70, 113].

In Figure 2.3, we depict an overview of the components of a query processor.7

The query processor receives a query to be executed against a dataset. The query
is issued by two components: the query optimizer and the query engine.

The query optimizer devises a physical plan to execute the given query. Phys-
ical plans encode how the execution of the query is carried out, including the
methods to retrieve the data, the order of executing the operators, and the types
of implementations that should be used at runtime. Typically, physical plans are
represented as trees. The leaves of the tree plan correspond to access methods to
retrieve data from the dataset. The internal nodes of the tree plan correspond to
operators that combine the retrieved data to produce the query answers.

Then, the query engine performs the query execution following the physical
plan devised by the optimizer. The query engine provides the implementations of
the operations specified in the plan. The engine accesses the dataset structures
and combines the resulting data to produce query answers.

The process just described is known as the optimize-then-execute paradigm.
Under this paradigm, the query engine does not change the plan. Nonetheless,
as discussed in the literature [22, 50, 80], the optimize-then-execute paradigm is
not always sufficient, especially in scenarios with high degree of uncertainty (lack
of statistics or remote sources). To overcome the limitations of this paradigm,

7This is a simplified representation of the architecture of a query processor. The literature
of databases includes more general architectures for query processing (for example, see Haas et
al. [74]). Nonetheless, in this section, we focus on the components that are, from a research
point of view, the most relevant for this thesis: the query optimizer and the query engine.

25

2. Foundations of Linked Data Management

adaptive query processing [50] techniques have been studied in which the engine
adjusts the query execution taking into consideration the runtime conditions.

In the following, we further describe existing techniques for query optimization
(cf. Section 2.5.1) and adaptive query processing (cf. Section 2.5.1).

2.5.1. Query Optimization

The query optimization problem can be defined as a search problem [36] whose
objective is to identify from the space of possible plans an effective plan that leads
to an efficient query execution. During query optimization, the optimizer traverses
the search space of plans by comparing equivalent plans, i.e., plans whose execu-
tions produce the same results. The space of possible plans is given by: (i) the
algebraic set of rules that preserve plan equivalence [36, 86] (e.g, join commutativ-
ity and associativity) and, (ii) the method-structure space [86] that contains the
available implementations of logical operations (e.g., Nested Loop and Symmet-
ric Hash Join implement the join operator). The optimizer determines the most
promising plans by performing selectivity estimations while exploring the search
space following a plan enumeration algorithm.

Selectivity Estimation

Selectivity (or cardinality) estimation consists in determining the number of in-
termediate results produced by an operator that combines a set of inputs. The
number of intermediate results is directly related with the cost of executing a
plan, i.e., the higher the number of results to process the more expensive (in both
time and space) the execution of the plan is. Therefore, selectivity estimations
are traditionally used by optimizers to identify effective plans.

In cost-based optimization, query optimizers compute the cost (a numerical
value) associated with each plan. Cost-based optimizers rely on statistical sum-
maries of the dataset to estimate selectivities. These summaries typically capture
relation cardinalities, data distributions, and other statistics that describe the
dataset. However, even in the presence of detailed statistics, cost-based optimizers
may produce inaccurate selectivity estimations since they assume that attributes
and values are independent, which in practice not always holds [50].

In some scenarios, statistical summaries of the dataset are simply not available.
For instance, in query processing over remote data sources, it is not always possi-
ble to gather enough statistics from the source to estimate selectivities accurately.
Another example is in query processing over dynamic data, where the dataset
changes with high frequency making it nearly impossible for the optimizer to
maintain up to date statistics. In cases like these, optimizers implement heuris-
tics to compare equivalent plans, without computing a numerical value for the
cost. For instance, in the context of SPARQL query optimization, Tsialiamanis
et al. [158] propose a set of heuristics to compare the selectivity of triple patterns
and joins exploiting the characteristics of SPARQL queries. In this way, heuristic-
based optimizers prune plans that are considered ineffective by the heuristic.

26

2. Foundations of Linked Data Management

(a) Left-linear (b) Right-linear (c) Zig-zag (d) Bushy

Figure 2.4: Different shapes of plans with join operators.

Plan Enumeration

Plan enumeration (also known as join ordering) consists in traversing the space
of possible plans. To explore the space of plans, optimizers implement search
strategies. The optimizer compares the plans explored with the search strategy
using a cost model or heuristics (as explained in the previous section) to identify
good plans or, in some cases, optimal plans. Ibaraki and Kameda [84] formally
demonstrated that identifying the optimal plan is an NP-complete problem8.

In plan enumeration, depending on the shape of the plans that are explored,
the size of the search space changes drastically. As illustrated in Figure 2.4, tree
plans can have different shapes: deep plans (left-linear and right-linear), zig-zag,
and bushy. For a query with n input relations, the size of the search space of
plans is: n! for deep plans, n! · 2n−2 for zig-zag plans, and (2n−2)!

(n−1)!
for bushy plans.9

It is clear then that the space of plans increases as more flexible tree shapes are
considered. For this reason and due to practical limitations, traditional query
optimizers were capable of exploring only deep plans10. However, deep plans
are not necessarily optimal. In fact, flexible tree structures, like bushy plans,
have two main advantages in query processing: i) bushy plans reduce the size
of intermediate results leading to a more efficient execution, and ii) bushy trees
enable parallel execution of independent sub-plans. Furthermore, optimizers that
enumerate bushy plans are capable of also identifying deep plans.

The literature of databases distinguishes three types of search strategies im-
plemented by relational optimizers to enumerate plans [86, 96]: exhaustive search,
heuristics, and randomized algorithms. The most prominent exhaustive strategy
is Dynamic Programming (DP) [144]. DP enumerates all bushy plans and de-
vises optimal plans, but its time complexity is O(3n) (with n the number of input
relations). Therefore, optimizing large queries with DP is extremely costly (in
terms of time and space) or even unfeasible. On the opposite side, heuristics aim
at pruning large sub-spaces of plans to devise ‘good’ plans (but not necessarily
optimal) quickly. Typically, these strategies run in polynomial time. For example,
the greedy algorithm presented by Kossmann and Stocker [96] runs in O(n3) and
enumerates bushy plans. Among the randomized algorithms, the most prominent
is 2PO, which is able to produce good plans in certain scenarios. However, the
runtime of these strategies is also random and may produce plans that are very far

8Even in the case when only Nested Loop joins are considered.
9These results account for trees with Cartesian products.

10For example, the optimizer of the R system initially considered only left-linear plans.

27

2. Foundations of Linked Data Management

from the optimal. Hybrid-strategies have also been studied. Iterative Dynamic
Programming [96] (IDP) combines DP with a greedy strategy to devise bushy
plans. Kossmann and Stocker [96] compared different variants of IDP and showed
that the best performant variant has time complexity O(n4).

The search space analysis presented previously accounts for logical plans, i.e.,
it considers only the shape of the tree. Nonetheless, the space of plans is also
determined by the method-structure space. The method-structure space includes
the access methods, physical operators, and other implementation-based charac-
teristics that are used by the query engine to execute the plan. While traversing
the space of plans, the optimizer selects the most appropriate alternative in the
method-structure space to execute a logical operation. In this way, the logical
plan becomes a physical plan which is then the input of the query engine.

2.5.2. Adaptive Query Processing

The query engine implements the execution techniques to carry out the evalua-
tion of the plan efficiently. Traditionally, query engines follow the optimize-then-
execute paradigm where the optimized plan is considered fixed. This paradigm,
however, is insufficient in scenarios in which the execution conditions do not
hold the assumptions made by the optimizer. To overcome the limitations of
the optimize-then-execute paradigm, engines implement adaptive query process-
ing [50, 80] to adjust their behavior by collecting feedback at runtime. In this
way, adaptivity is tailored for scenarios in which the optimizer devises sub-optimal
plans due to misestimated statistics, or unpredictable costs or data correlations.
Also, adaptivity has been successfully applied in online environments, for example,
in Internet applications [87], where remote data sources are contacted on-the-fly
and source availability or network delays may change unexpectedly.

Query engines that provide adaptive techniques can adjust execution sched-
ulers at different granularity: fine-grained adaptivity adjusts small processes (at
tuple-level or plan-level), while coarse-grained adaptivity adjusts larger processes
(e.g., at inter-query level). Depending on the type of the adaptive technique, the
engine is able to address certain issues during query execution. In this section, we
summarize fine-grained adaptive strategies that achieve different types of adap-
tivity [50, 80]: inter-operator, intra-operator, and routing-based adaptivity.

Inter-operator Adaptivity

Inter-operator adaptivity (or adaptive non-pipelined execution [50]) is performed
when the plan contains blocking operators. A blocking operator holds the pro-
duction of intermediate results until all the input tuples are processed. Blocking
operators materialize their output at materialization points.

Query engines that implement inter-operator adaptivity are able to invoke the
optimizer at runtime. Inter-operator adaptivity re-optimizes the plan at mate-
rialization points of the blocking operators. To do so, physical operators track
statistics about the system conditions at runtime to detect ineffective sub-plans.
Re-optimized plans re-use materialized intermediate results and must ensure that
all query answers are still produced with no spurious duplicates.

28

2. Foundations of Linked Data Management

SELECT *
FROM R, S, T, U
WHERE R.x = S.x
AND S.y = T.y
AND T.z = U.z
AND σp(T)

Eddy

R S

R!

S T

T U

Output

σΡ(T)

S! T! U!

Figure 2.5: Eddy operator. Example of executing the given query with an eddy. R, S,
T, and U are input relations. Eddy routes tuples from the input relations
or operators to operators. Figure adapted from Avnur and Hellerstein [21].

Different inter-operator adaptive approaches have been proposed. In central-
ized settings, mid-query re-optimization [90] consists in generating new plans when
the statistics gathered in checkpoints indicate that costs estimated by the opti-
mizer are inaccurate. In the context of query processing over remote sources,
query scrambling [16] re-optimizes the plan when a source is delayed while com-
puting results from the available sources. In all cases, the query optimizer uses
all available information (estimates and statistics) to try to devise a better plan.

Intra-operator Adaptivity

Intra-operator adaptivity is provided by non-blocking operators. Non-blocking
operators produce intermediate results incrementally by sending output tuples
immediately to the next operator. Intra-operator adaptive approaches perform
adaptivity at tuple level, thus achieving adaption at a very fine granularity.

The Symmetric Hash Join [175] and XJoin [162] are join operators that support
intra-operator adaptivity. The Symmetric Hash Join overcomes the limitation of
blocking operators and builds hash tables for both of its inputs. In this way, the
operator is able to consume data from the inputs as soon as the data is available.
The XJoin extends the Symmetric Hash Join and adapts query execution in the
presence of large intermediate results. XJoin liberates main memory by flushing
tuples to secondary memory opportunistically.

Intra-operator adaptivity is well-suited for environments where the data arrives
progressively, e.g., from remote sources or data streams. This type of adaptivity
enables scheduling flexibility [50] adjusting the query execution according to run-
time changes (e.g., unexpected delays), even if a fixed plan is followed.

Routing-based Adaptivity: Eddies

In routing-based adaptive approaches, query execution does not follow a single
plan. Tuples generated during query execution are processed by physical operators
called routers. Routers flow tuples through plan operators and adapt the order in
which tuples are sent to the operators.

29

2. Foundations of Linked Data Management

Avnur and Hellerstein [21] propose a tuple routing operator called eddy. As
shown in Figure 3.8, eddies combine several unary or binary physical operators
into an n-ary operator during query execution. Initially, eddies receive tuples
from the input relations and opportunistically send the tuples to the physical
operators. After a tuple is processed by an operator, it is sent back to the eddy to
continue its course through the plan operators. As a result, eddies generate plans
tuple-by-tuple thus performing adaptivity at a very fine granularity.

In principle, eddies could route tuples to any physical operator of the plan.
However, arbitrary routings may generate incorrect query answers. To ensure
sound results, eddies rely on tuple annotations (also called tuple signatures [50]).
Tuple annotations encode the operators that are valid for each tuple. These
annotations are taken into consideration by eddies when performing the routings.

To select the destination of tuples, eddies implement routing policies. Routing
policies are a set of rules that – among the valid routes or plans – selects the
next operator (or destination) of a tuple [50]. In consequence, routing policies
determine the efficiency of the query execution. Eddies implement either proba-
bilistic or deterministic routing policies, which can be fed with statistics collected
by the eddy during runtime. However, it is important to mention that the more
sophisticated a routing policy is the higher the overhead that it introduces to the
query engine. Therefore, to observe the performance benefits of the eddies it is
necessary to devise routing policies that exploit the properties and capabilities of
the environment in which the query processing is carried out.

30

Chapter 3

Adaptive Query Processing
over Linked Data

3.1. Introduction

The Linked Open Data Cloud has experienced an impressive growth over the
last decade [139], and consequently, the number of Linked Data applications is
progressively increasing [64]. Managing Linked Data usually requires querying
RDF datasets through web access interfaces. In Chapter 2, we discussed different
interfaces to access and query RDF datasets on the Web, including SPARQL
endpoints and Triple Pattern Fragment (TPF) servers [165]. SPARQL endpoints
are highly expressive RDF data sources that, in principle, allow users to pose
any SPARQL query against the server. In contrast, TPF servers are novel RDF
data sources with low expressivity that support the evaluation of SPARQL triple
patterns. The result of evaluating a triple pattern against a TPF server is a
fragment which can be paged and contains metadata about the fragment page
size and the approximated fragment size. To access an RDF dataset through a
SPARQL endpoint or a TPF server, SPARQL query engines have been proposed.
For example, federated query engines access SPARQL endpoints [13, 69, 142], and
the client-side SPARQL query engine [165] contacts TPF servers.

Despite these RDF data management developments, the web-like character-
istics of Linked Data sources impose fundamental challenges on SPARQL query
processing. The lack of statistics about selectivities and data distributions, un-
predictable data transfer rates and server workload, can negatively impact the
efficiency of query engines against Linked Data, even in presence of the innovative
querying capabilities offered by SPARQL endpoints and TPF servers. Moreover,
the low expressivity of TPFs exacerbates these challenges due the large amount
of requests posed to the servers to execute a single query, where conditions may
change from one request to another. In this scenario, deficient query perfor-
mance is mainly generated because: i) the query optimizer of the engine devises
plans that lead to inefficient query execution, or ii) the query engine implements
query processing strategies that rely in some way on the traditional optimize-then-
execute paradigm, which may fail when runtime conditions change unexpectedly.
Therefore, the research problem tackled in this chapter is devising query process-

31

3. Adaptive Query Processing over Linked Data

ing techniques that efficiently execute SPARQL queries over Linked Data sources
that do not support the evaluation of all query operators, i.e., sources with rela-
tively low expressive power.

To overcome the limitations of the optimize-then-execute paradigm, adaptive
strategies have been proposed to modify the query execution on-the-fly according
to the runtime conditions. Adaptive query processing has been extensively studied
in the context of heterogeneous databases [22, 50, 97]. Adaptivity can be imple-
mented at different granularity levels: fine-grained granularity indicates adapta-
tion of small processes, e.g., per-tuple basis; while granularity is coarse-grained
whenever adaptivity is attempted for large processes. Additionally, adaptivity
can be divided into intra- and inter-operator, and routing-based. Intra-operator
techniques implement fine-grained granularity adaptivity, even in the context of
a fixed query plan. Contrary, inter-operator techniques re-schedule initial plans
based on uncertainties in the execution cost, size of intermediate results, and
unexpected delays. Finally, eddies [80] are routing operators that continuously
reorder a query execution, by sending each intermediate tuple through the query
operators in a variety of orders that simulate different query plans. Routing poli-
cies determine the destination of intermediate tuples. Eddies can be executed in
a distributed fashion to avoid bottlenecks of a centralized eddy [155].

The survey by Deshpande et al. [50] reports that adaptivity has been imple-
mented in a wide range of relational database systems. In the context of Linked
Data sources, several query engines [13, 78, 99, 165] over RDF data have been pro-
posed to perform adaptivity at query execution time. Most of these query engines
implement either intra- or inter-operator adaptivity to query RDF datasets. The
approach by Le Phuoc et al. [99] is the only one that, at the moment, supports
eddy operators to reorder the plan operators when executing queries over Linked
Stream Data1 sources. However, routing-based adaptivity has not been studied
in (static) Linked Data sources with low expressivity like TPFs.

3.1.1. Research Questions

i.1 Is it feasible to efficiently devise query plans over TPFs that speed up query
execution?

i.2 Does routing-based adaptivity ensure correct SPARQL query execution?

i.3 What is the impact of the type of plan on query processing performance
when queries are executed over TPFs?

i.4 How does routing-based adaptivity impact on query processing performance
when queries are executed over TPFs?

To investigate our research questions, we devise a novel client-side query pro-
cessing engine that builds a Network of Linked Data Eddies (nLDE) [10] to effi-
ciently execute SPARQL queries against TPF servers. First, nLDE relies on TPF

1Linked Stream Data is defined as streaming data – e.g., from sensors or other real-time
sources – published following the Linked Data principles.

32

3. Adaptive Query Processing over Linked Data

metadata [165] to identify an initial bushy tree plan that reduces intermediate
results. Leaves of the plan are grouped in star-shaped subtrees and internal nodes
represent adaptive physical operators. Thus, intra-operator adaptivity is initially
achieved. Simultaneously, eddies are created and empowered with Linked Data
metadata to route tuples through the adaptive operators by following a pipeline
strategy. We propose an innovative eddy routing policy that considers well-known
SPARQL optimization heuristics [158]. In our approach, eddies are autonomous
and any of them can produce query answers from tuples that have been already
routed through all the nLDE adaptive operators. In this way, nLDE addresses
adaptivity by executing different plans per tuple.

We empirically study the efficiency of our network of Linked Data Eddies
engine (nLDE engine) on SPARQL queries against RDF data exposed via TPF
servers. Under the assumption of networks with no delays, we compare our query
optimization techniques and adaptive strategies with the current TPF client. Ex-
perimental outcomes suggest that nLDE plans conduce to execution schedulers
able to overcome drawbacks caused by the lack of correlation statistics even for
queries with large intermediate results. Furthermore, we study the performance
of our nLDE engine in presence of data transfer delays. The observed results con-
firm that routing adaptive query processing strategies provide a flexible solution
for Linked Data management in unpredictable environments.

3.1.2. Contributions

The main contribution presented in this chapter is a SPARQL query engine able to
efficiently execute queries against remote RDF data sources with low expressivity.
Furthermore, we make the following research contributions to the problem of
adaptive query processing:

• An efficient query optimizer that exploits metadata provided by TPFs to
devise plans that reduce the number of requests submitted to the source.

• A query engine that implements a network of eddies and physical operators
to execute the query while supporting intra-operator and routing adaptivity.
In our approach, eddies are autonomous and independently produce answers
from tuples that have been already routed through all the operators.

• A formal analysis of the theoretical properties of eddies: we provide formal
proofs of the termination and correctness of SPARQL BGP query processing
with eddy operators.

• A novel routing policy tailored for SPARQL queries, which estimates oper-
ators’ selectivity during query execution.

• An extensive empirical study on hand-crafted SPARQL queries that show
the effectiveness of the proposed query optimizer and the benefits of the
adaptive strategies implemented in the nLDE query engine.

33

3. Adaptive Query Processing over Linked Data

2! 4!

1!

3!

(529)!

?d2!

?o!

?d1!

(2,430)!

(2,430)!

(695)!(136)!

(71,141)!

(5,651)!

(a) Left-linear plan

1 3 2 4
(695) (2,430) (2,430) (529)

(173) (136)

(5,651)

?d1 ?d2

?o

(b) Bushy tree plan

Nested Loop Join

Symmetric Hash Join

Figure 3.1: Motivating example: query execution against TPFs. Different physical
query plans can be devised to execute the query from Listing 3.1. The ac-
tual number of intermediate results produced by each operator is enclosed in
parenthesis. The left-linear plan generates over 70, 000 intermediate results
while the bushy tree plan produces only around 300 intermediate results.

3.1.3. Structure of the Chapter

The rest of this chapter is structured as follows. Section 3.2 illustrates a motivating
example of the tackled problem. We then discuss the related work in Section 3.3.
In Section 3.4, we present an overview of the components of the nLDE architecture,
our proposed solution. The nLDE optimizer is described in Section 3.5. We
present the nLDE query engine in Section 3.6 and the proposed routing policy in
Section 3.7. Experimental results are reported and discussed in Section 3.8. We
conclude in Section 3.9 and present an outlook to future work.

3.2. Motivating Example

Consider the query from Listing 3.1 to retrieve the drugs classified as DBpedia and

Yago alcohols that share same routes of administration to be executed over TPFs. The
page size of these fragments is 100 and further metadata (Count) for each triple
pattern is shown in Listing 3.1.

Listing 3.1: SPARQL query against DBpedia to retrieve information about resources
classified as DBpedia alcohols and Yago alcohols.

1 PREFIX dbc: <http://dbpedia.org/resource/Category:>
2 PREFIX dbp: <http://dbpedia.org/property/>
3 PREFIX dcterms : <http://purl.org/dc/terms/>
4

5 SELECT ∗ WHERE {
6 ?d1 dcterms: subject dbc:Alcohols . # tp1 Count: 695
7 ?d2 a yago:Alcohols . # tp2 Count: 529
8 ?d1 dbp:routesOfAdministration ?o . # tp3 Count: 2430
9 ?d2 dbp:routesOfAdministration ?o . # tp4 Count: 2430

10 }

34

3. Adaptive Query Processing over Linked Data

Table 3.1: Results of executing the example query from Listing 3.1. The execution of a
bushy tree plan exhibits better performance than a left-linear plan.

Metric Left-linear Plan Bushy Tree Plan

Execution time (sec.) 318.90 3.03

Answers produced 1, 398 5, 651

Requests to the server 1, 693 67

We executed the query from Listing 3.1 using first the TPF client2, which
implements left-linear plans and Nested Loop Joins to evaluate the query, as
depicted in Figure 3.1a. In this approach, the triple pattern with the smallest
cardinality (Count) is executed first; in our example, this corresponds to tp2 with
approximately 529 results. For each solution of tp2, the LDF client binds the
triple pattern with the smallest cardinality that shares variables with tp2. In
our example, this would be tp4. The execution continues with this strategy for
each solution of the intermediate results. We measured the performance of the
LDF client when executing the example SPARQL query against the TPFs for the
English version of DBpedia3. The results of our measurements are reported in
Table 3.1. The query execution with the TPF client stopped after 318.90 seconds,
produced 1, 398 results, and performed 1, 693 requests.

Consider now executing the example query with the physical plan depicted in
Figure 3.1b. The shape of this plan corresponds to a bushy tree in which several
subtrees can be executed simultaneously, reducing the number of intermediate
results. For instance, the left-linear plan in Figure 3.1a for the example query
produces 136 + 71, 141 = 71, 277 intermediate results, while the bushy tree plan
in Figure 3.1b for the same query produces 173 + 136 = 309 intermediate results.
Moreover, joining the results with a symmetric operator is less expensive in this
case considering the cardinalities and page size of the fragments. For instance,
joining tp2 and tp4 with a Nested Loop Join results in 535 requests (6 requests to
retrieve the fragment of tp2 plus 529 requests for each binding), while performing a
Symmetric Hash Join generates only 31 requests (6 requests for tp2 plus 25 requests
for tp4). The execution of the bushy plan successfully finalized in 3.03 seconds,
and produced 5, 651 results4 with 67 requests (cf. Table 3.1). This example shows
that reducing the size of intermediate results minimizes the number of requests
sent to the TPF which, in turn, speeds up the query execution.

These results were obtained under the assumption of a network with no delays.
However, even efficient plans, like the one from Figure 3.1b, can be affected by
the presence of data transfer delays. For example, consider that the source that
resolves tp2 becomes very slow. To cope with scenarios like these, adaptivity can
be performed during query execution, for example, by routing tuples retrieved for

2https://github.com/LinkedDataFragments/Client.js
3http://fragments.dbpedia.org/2014/en
4The same number of results was obtained when executing the query against the DBpedia

endpoint at http://dbpedia.org/sparql.

35

https://github.com/LinkedDataFragments/Client.js
http://fragments.dbpedia.org/2014/en
http://dbpedia.org/sparql

3. Adaptive Query Processing over Linked Data

1! 3! 2! 4!
?d1! ?d2!

?o!
0! 1!

2!

(a) Tuples from tp4 are routed to
operator 2, instead of 1

1! 3!

4!

2!

?d1!

?d2!

?o!0!

2!

1!

(b) Tuples from tp3 are
routed to operator 2

3! 4!
?o!

2!?d2!

?d1!

2!

1!

0!

1!

(c) Plan generated by routings
from (a) and (b)

Figure 3.2: Example of adaptivity achieved with routing techniques. Diverse execution
plans are generated by re-ordering the execution of operators during query
execution. Dashed lines represent routing of tuples to operators.

tp4 to another join operator as depicted in Figure 3.2a. The result of re-routing
tuples from tp4 is a new plan shown in Figure 3.2b, in which the delayed source
is evaluated at the end. The plan can further change, as depicted in Figure 3.2c.
We executed the plan from Figure 3.2a on a network with a total delay5 of 1.99
seconds. When implementing the adaptivity presented in Figure 3.2, all the re-
sults were produced in 3.86 seconds. However, when the plan from Figure 3.2c
is executed following the optimize-then-execute paradigm under the presence of
delays, the evaluation of the query finishes in 5.03 seconds. This result indicates
that adaptivity is able to hide 1.16 seconds of the total delay in this example.
Therefore, in this chapter, we tackle adaptivity in Linked Data management and
propose a client-side query engine that builds a network of routing operators able
to adjust execution schedulers to unexpected delays.

3.3. Related Work

The optimize-then-execute paradigm allows for the generation of efficient plans
whenever data have few correlations or are enriched with abundant statistical
information that describes stable environments. Web-accessible RDF datasets,
however, rarely meet these characteristics, e.g., data distribution may be arbi-
trary or RDF data servers can unexpectedly become unavailable. Hence, adap-
tive query processing strategies that on-the-fly adapt query execution schedulers
become necessary. We analyze the adaptivity granularity achieved by web query
processing approaches that rely on HTTP interfaces to access RDF data.

3.3.1. Adaptive Link Traversal Approaches

Link traversal approaches rely on dereferencing HTTP URIs to evaluate SPARQL
queries. Existing link traversal query engines [78, 98] implement adaptivity at
different levels – source selection or query execution time – and granularity.

5Sum of all elapsed waiting times between receiving a fragment page i and the subsequent
page i+ 1.

36

3. Adaptive Query Processing over Linked Data

Hartig [78] proposes a Linked Data traversal approach that implements intra-
operator adaptivity. In this approach, source selection and link traversal are
interleaved during query execution time. A non-blocking iterator model that re-
lies on an asynchronous pipeline of iterators is used for traversing relevant links.
Iterators are executed in an order that is heuristically determined, e.g., the most
selective iterators are executed first; selectivity is estimated based on the bind-
ings of the triple patterns. Further, this approach achieves fine-grained adaptivity
under uncontrollable network conditions; the query engine is able to adapt execu-
tion schedulers according to the availability of the sources by on-the-fly detecting
whenever an HTTP server stops responding. However, the traversal strategies pro-
posed by Hartig [78] cannot adapt plans in presence of unexpected or arbitrary
data distributions, which may generate a large number of intermediate results
thus negatively impacting the query execution performance.

Another adaptive query engine that traverses Linked Data has been proposed
by Ladwig and Tran [98]. This approach implements adaptivity at two levels:
source selection and query execution. The adaptive source selection techniques
of this approach rely on aggregate indexes that keep information about data dis-
tributions. At this level, adaptivity is coarse-grained granularity. During query
execution time, Symmetric Hash Join operators implement intra-operator adap-
tivity able to incrementally produce answers tuple-by-tuple even when sources
become blocked, i.e., adaptivity is fine-grained granularity. Similar to the query
engine of Hartig [78], the approach by Ladwig and Tran [98] adapts execution
schedulers to unexpected network conditions such as data transfer delays.

In contrast to the previous approaches, we propose routing techniques which
allow for achieving adaptivity not only under the presence of network delays but
also under arbitrary data distributions. Router operators adapt query plans tuple-
by-tuple at execution time depending on the network conditions and the selectivity
of the join operators which is estimated on the fly.

3.3.2. Adaptive Query Processing Against SPARQL Endpoints

SPARQL endpoints evaluate highly expressive SPARQL queries and provide ac-
cess to RDF data on the Web efficiently. Nevertheless, endpoints may suffer from
typical web-publishing problems – data transfer are affected by network delays –
or their performance may be negatively affected due to the execution of complex
queries. Current federated engines – ANAPSID [13], SPLENDID [69], FedX [142]
and ADERIS [108] – implement adaptivity to mitigate to some extent the impact
of these problems when executing queries against endpoints.

In FedX and SPLENDID, the adaptivity granularity is coarse-grained and is
implemented at source selection. Both FedX and SPLENDID execute SPARQL
Ask queries when selecting sources which in turn allows for detecting currently
unavailable endpoints. This precludes the engines from contacting sources that are
offline or are irrelevant for query evaluation. This type of adaptivity supports the
generation of query plans according to the available endpoints at source selection
time. However, if a source suddenly becomes blocked during query execution,
FedX and SPLENDID are not able to adjust the query plan on the fly.

37

3. Adaptive Query Processing over Linked Data

ANAPSID supports fine-grained granularity adaptivity during query execu-
tion. Although the ANAPSID engine is not able to change the plan at runtime,
ANAPSID physical operators are tailored to cope with network delays and to
handle a large number of intermediate results produced by arbitrary data dis-
tributions. To achieve this, ANAPSID extends the Symmetric Hash Join [175]
and the XJoin [162] operators and provides non-blocking physical operators that
achieve intra-operator adaptivity. In the presence of large intermediate results,
ANAPSID operators liberate main memory by flushing tuples to secondary mem-
ory while guaranteeing no spurious duplicates and sound results. If SPARQL
endpoints become blocked during query execution, ANAPSID is still able to pro-
cess intermediate results by managing tuples that were not probed before. In
summary, ANAPSID is tailored to produce results as quickly as data arrives from
the endpoints and to detect when sources become unavailable to opportunistically
process intermediate results, speeding up query execution.

Another engine that implements adaptivity at query execution time is ADERIS.
ADERIS supports inter-operator adaptivity and re-invokes the query optimizer at
execution time. The optimizer then changes the join ordering on the fly to devise
efficient query plans according to the current runtime conditions. ADERIS re-
lies on cost-based optimization techniques to estimate join selectivities and detect
data transfer delays. The granularity of the adaptivity achieved by ADERIS is
coarse-grained since plans are re-optimized after the sources send all the data. In
consequence, re-optimized plans can still be sub-optimal in the cases when data
distributions are highly skewed as is the case of semi-structured data.

In summary, federated SPARQL query engines implement different adaptive
techniques that assist query execution against endpoints. In the case of FedX,
SPLENDID, and ANAPSID, because the optimize-then-execute paradigm is fol-
lowed, completeness of the query results or query execution efficiency is not always
guaranteed. Furthermore, even when plans are re-optimized on the fly, coarse-
grained adaptivity implemented by ADERIS is not sufficient to handle highly
skewed data distributions or to cope with scenarios of bursty data arrivals as in
TPF servers. In turn, our Network of Linked Data Eddies implements routing
strategies able to achieve fine-grained adaptivity. Routing operators allow for
changing the logical query plan tuple-by-tuple according to the varying network
conditions and the data distributions within each fragment.

3.3.3. Query Processing Approaches Against TPF Servers

Verborgh et al. [165, 166, 167] and Van Herwegen et al. [163] present a client-side
engine dubbed TPF Client to execute SPARQL queries against TPF servers.

Regarding the optimization techniques, TPF Client relies on fragment meta-
data to build left-linear plans where selective triple patterns are pushed down in
the tree plan. The optimizer proposed by Verborgh et al. [165, 166] in the initial
versions of TPF Client engine introduces spurious Cartesian products since join
ordering was solely determined by the fragment metadata without considering
join variables. The inclusion of unnecessary Cartesian products in the query plan
produces not only a large number of intermediate results but also generates addi-

38

3. Adaptive Query Processing over Linked Data

tional requests to the TPF server. A subsequent version of TPF Client proposed
by Van Herwegen et al. [163] and Verborgh et al. [167] overcomes this limitation
by considering join variables during query optimization. Although unnecessary
Cartesian products are now avoided, the TPF Client optimizer generates left-
linear plans that join triple patterns with Nested Loop Joins. In contrast, we
propose a query optimizer that devises bushy tree plans able to reduce the size
of intermediate results. In addition, our optimizer selects appropriate physical
operators taking into consideration the fragment metadata which, in turn, allows
for reducing the number of requests submitted to the TPF servers.

In terms of the query engine, TPF Client implements the non-blocking iterator
model proposed by Hartig [78]. In this way, TPF Client is able to adapt query ex-
ecution schedulers to different cardinality distribution of the data retrieved from
the TPF servers. Adaptivity is implemented at the level of TPF pages to en-
sure thus that the requests of more selective pages are executed first. Although
TPF Client may effectively adapt query schedulers to TPFs with arbitrary data
distributions, data transfer delays can negatively impact the performance of the
engine. In contrast, the nLDE engine relies on both metadata provided by TPFs
and novel routing techniques to identify efficient query plans that reduce execu-
tion time and number of requests. The router operators of nLDE estimate on
the fly join selectivities to adjust the query plan according to unexpected data
distributions that could not be foreseen by the optimizer. Therefore, the nLDE
engine dynamically adapts execution schedulers to changing conditions in terms
of transfer delays and data distribution of the TPF servers.

3.4. The nLDE Approach

We devise a query processing engine that implements a network of Linked Data
eddies (nLDE). Our engine is tailored to issue SPARQL queries in which RDF
sources are accessed in a triple-pattern fashion. In particular, we focus on opti-
mizing and executing queries against Triple Pattern Fragment (TPF) servers.

The main components of the nLDE engine are depicted in Figure 3.3. The
query optimizer minimizes the number of requests sent to the data source by reduc-
ing the size of intermediate results. To achieve this, the nLDE optimizer exploits
TPF metadata which specifies the cardinality of the fragments. Based on this in-
formation, the nLDE optimizer estimates join cardinalities to build physical plans;
the devised plans are tailored for TPFs. The adaptive query engine then executes
the optimized query plan. The query engine in our approach achieves fine-grained
adaptivity on account of a network of eddies. Eddies are routing operators that
dynamically adapt the optimized plan according to current execution conditions.
Eddies route intermediate results according to the rules defined by the routing
policy. Depending on the routing policies, adaptivity can be tailored for different
scenarios. We devise a routing policy tailored to cope with unexpected network
delays and arbitrary data distributions. This allows for mitigating inaccurate join
cardinality estimates computed during query optimization.

39

3. Adaptive Query Processing over Linked Data

SPARQL Query Q

Routing Policy Adaptive
Query Engine

Query Optimizer
Query plan

Input

Results for Q
Output

Fragment metadata

TPF Server

Fragments

RDF
Dataset D

Figure 3.3: The nLDE architecture. nLDE receives as input a SPARQL query Q to be
executed against the dataset D (accessible via a TPF server). The query op-
timizer exploits fragment metadata to build plans that reduce intermediate
results. The adaptive query engine executes the query plan, implementing
adaptivity based on a routing policy. The routing policy decides the order in
which the operators process the intermediate results. The output of nLDE
is the results of evaluating Q over D, i.e., [[Q]]D.

3.5. nLDE Query Optimizer

We propose a cost-based query optimizer to devise physical query plans that
can be efficiently executed against TPF servers. To ensure a good performance
and scalability of TPF servers, the number of requests sent by clients should be
minimized. Therefore, the goal of the optimizer is to devise plans that reduce
the number of requests submitted to the TPF servers, which can be attained by
reducing the size of intermediate results. To achieve this goal, the key tasks of
the nLDE physical optimizer are the following:

1. Estimate the cardinality of query plans: Plan cardinality estimations con-
stitute the basis for deciding which plan will lead to an efficient execution.

2. Place physical operators: Selecting appropriate physical operators allows for
evaluating sub-plans efficiently and reducing the number of requests submit-
ted to the source, as shown in the motivating example in Section 3.2.

3. Build query tree plans: As also illustrated in the motivating example (cf.
Section 3.2), the number of intermediate results generated during query
execution depends on the shape of the plan. Generating large intermediate
results not only slows down the execution of queries but can also increase
the number of contacts to the source. Therefore, it is important to build
query plans that minimize the size of intermediate results.

To accomplish each one of these tasks, the nLDE optimizer relies on TPF
metadata as well as on well-known techniques of query optimization over relational
and RDF data, as explained in the following.

40

3. Adaptive Query Processing over Linked Data

1! 3!
?d1!

0!

Card = 695! Card = 2430!

Card = 1563!

(a) Cardinality estimation

Requires requests 695
100!" #$= 7

Pagesize

Card

1!

Requires requests 3! 2430
100!" #$= 25

Nested Loop!

Symmetric Hash Join!

702 requests

 32 requests

(b) Placing physical operators

Figure 3.4: nLDE optimizer estimations. (a) The cardinality of the tree plan leaves is
extracted from the fragment metadata. The cardinality of the tree node in
the example is estimated as in Definition 10. (b) To place physical operators,
the optimizer considers the estimated cardinalities and the number of triples
retrieved per request (pagesize), and selects the operator that minimizes the
number of requests as in Definition 11.

3.5.1. Estimation of Query Plan Cardinalities

The nLDE optimizer estimates the cardinality of a query plan recursively: the base
case corresponds to sub-plans formed of single triple patterns, and the recursive
cases to sub-plans composed of SPARQL expressions, in this case, BGPs.

nLDE makes use of the TPF metadata to estimate plan cardinalities. To this
end, the only fragment metadata that can be currently exploited during query
optimization to estimate plan cardinalities is count6. The count attribute is an
approximated number of triples contained in the fragment. The value of count is
used in the base case of the nLDE cardinality estimator, i.e., count corresponds
to the cardinality of sub-plans composed of a single triple pattern.

To compute plan cardinality estimations in the recursive case (join expres-
sions), traditional cost-based optimizers rely on approximations of join selectivi-
ties. In the absence of selectivity factors of triple patterns in the TPF metadata,
we empirically tested different estimators to approximate join cardinalities includ-
ing product, sum, maximum (resp. minimum), and average. Using the product as
estimator leads to very pessimistic estimations since it is equivalent to assume that
a Cartesian product is carried out. The sum leads to monotonic estimations, i.e.,
the more triple patterns are joined the larger the number of intermediate results
is; then, the sum estimator produces inaccurate estimations in the presence of
highly selective joins. The maximum (resp. minimum) estimator leads to biased
estimations, e.g., the cardinality of a plan is always determined by the triple pat-
tern with the highest (resp. lowest) count value contained in one of the sub-plans.
Lastly, although the average might also produce imprecise estimations, it produces
more balanced approximations in the presence of highly selective joins. There-
fore, among all the studied estimators, we selected the average to approximate
the cardinality of BGP query plans. Formally, the nLDE model for estimating
plan cardinality over TPF is defined as follows.

6Denoted cnt in the formalization proposed by Verborgh et al. [165]

41

3. Adaptive Query Processing over Linked Data

Definition 10 (Cardinality Estimation of BGP Plans over TPFs) Let P
be the plan of a SPARQL query composed of a BGP. Assume that P is evaluated
over a TPF collection F . The cardinality of P , card(P), is recursively estimated
as follows. If P is a triple pattern tp, then card(P) = M(ftp).count, where ftp is a
fragment of F that matches tp, and M is the metadata obtained from a page of ftp.
In the case that P is the result of joining two sub-plans Pi and Pj, i.e., P = Pi on
Pj, then the cardinality of the plan P is estimated as card(P) =

⌈
card(Pi)+card(Pj)

2

⌉
.

Example 4 Consider the sub-plan (tp1 on tp3) for the the following triple patterns
of the motivating example query from Listing 3.1 where:

?d1 dcterms: subject dbc:Alcohols . # tp1 Count: 695
?d1 dbp:routesOfAdministration ?o . # tp3 Count: 2430

Figure 3.4a illustrates the cardinality estimation model implemented by the
nLDE optimizer. The leaves of the tree plan correspond to triple patterns. As
stated in Definition 10, an approximation to the cardinality of the leaves (base
case) is obtained from the TPF metadata. In this case, the cardinality (card) of
tp1 is 695, and the cardinality of tp2 is 2430. Then, to estimate the join cardinality
of (tp1 on tp3), the nLDE optimizer computes

⌈
695+2430

2

⌉
= 1563.

3.5.2. Placing Physical Operators

One of the tasks of a physical optimizer is to decide the types of physical operators
that are used to execute the plan. Currently, nLDE supports two types of physical
operators which are based on the Symmetric Hash Join (onSHJ) and the Nested
Loop join (onNL). To decide the type of physical operator to place in a sub-plan,
the nLDE optimizer relies on the cardinality estimations and the TPF metadata.
From the TPF metadata, nLDE uses in this task the pagesize attribute, which
specifies the maximum number of triples that can be transferred from a TPF
server in a single request. To illustrate how the nLDE optimizer decides between
onSHJ or onNL, consider the following example.

Example 5 Consider the query plan (tp1 on tp3) as shown in Figure 3.4a. As-
sume that the pagesize of the fragments is 100. As illustrated in Figure 3.4b,
transferring the triples of tp1 generates

⌈
695
100

⌉
= 7 requests against the server.

Analogously, the number of requests produced to retrieve tp3 is
⌈

2430
100

⌉
= 25.

In the case that the optimizer places a Nested Loop join to combine tp1 and
tp3, i.e., (tp1 onNL tp3), then the number of requests submitted to the source
is 7+695 = 702, i.e., 7 requests to resolve tp1 and 695 requests for each of the so-
lutions of tp1. However, if a Symmetric Hash Join is placed, i.e., (tp1 onSHJ tp3),
then the number of requests is 7 + 25 = 32, i.e., 7 contacts to the source to resolve
tp1 and 25 to resolve tp3.

The previous example shows how physical operators can be assigned to min-
imize the amount of requests posed against the TPF server. It is important to

42

3. Adaptive Query Processing over Linked Data

notice that the join methods Symmetric Hash Join and Nested Loop Join impact
on the number of requests only in the case when the inner sub-plan consists of
a single triple pattern. In the other cases, the nLDE optimizer always places a
Symmetric Hash Join to allow for evaluating several sub-plans simultaneously. In
the following, we define the rule implemented by the nLDE optimizer to decide
the type of physical join operator to combine two sub-plans.

Definition 11 (Placing Physical Join Operators) Let Pi and Pj be two sub-
plans of a BGP query. Consider that Pj is composed of a single triple pattern tp
and that Pi and Pj are combined in the logical plan (Pi on Pj). Further, assume
the following notation:

• card(Pi) is the estimated cardinalities of the sub-plan Pi, as in Definition 10,

• M(ftp) corresponds to the metadata of the TPF ftp selected by tp.

Then, the nLDE optimizer generates the plan (Pi onNL Pj) if the number of
requests submitted by the outer sub-plan is less than the number of requests required
to resolve the inner sub-plan, i.e., if the following condition holds:

card(Pi)︸ ︷︷ ︸
Estimated # requests generated

by the outer sub-plan

<

⌈
M(ftp).count

M(ftp).pagesize

⌉
︸ ︷︷ ︸

Requests generated by the inner sub-plan

Otherwise, the nLDE optimizer generates the plan (Pi onSHJ Pj).

3.5.3. Building Query Tree Plans

To build the query plan, the nLDE optimizer implements heuristics to devise
Star-Shaped Groups (SSGs) and bushy trees. Vidal et al. [168] showed that plans
generated by the combination of these two optimization techniques are able to
decrease the execution time of SPARQL queries in comparison to other plans
(e.g., left-linear plans). An SSG is a set of acyclic triple patterns that share one
variable. SSGs are built around variables in the subject or object of the triple
patterns of a SPARQL query. In the following, we present the definition of SSGs.

Definition 12 (Star-Shaped Group (SSG) [168]) A triple pattern (?X, p, o)
or (s, p, ?X) such that s 6= ?X, p 6= ?X, and o 6= ?X is an SSG around ?X. If P
and P’ are SGGs around ?X, such that vars(P)∩ vars(P ′) = {?X} then P on P ′

is an SSG around ?X.

Given a SPARQL query, there might be different SSGs that can be devised for
that query. For instance, consider the following triple patterns (which are taken
from the motivating example query in Listing 3.1).

?d1 dcterms: subject dbc:Alcohols . # tp1
?d2 a yago:Alcohols . # tp2
?d1 dbp:routesOfAdministration ?o . # tp3
?d2 dbp:routesOfAdministration ?o . # tp4

43

3. Adaptive Query Processing over Linked Data

?d1

dbc:Alcohols

dcterms:

subject

?o

dbp:routesOf
Administration

(a) SSG around the variable
?d1 in subject position

?d2

yago:Alcohols

rdf:type

?o

dbp:routesOf
Administration

(b) SSG around the variable
?d2 in subject position

dbp:routesOf

Administration

?o

?d1

?d2

dbp:routesOf
Administration

(c) SSG around the variable
?o in object position

Figure 3.5: Examples of Star-Shaped Groups (SSGs) that can be constructed with the
triple patterns from the SPARQL query from Listing 3.1.

Figure 3.5 shows different SSGs that can be constructed with the previous
triple patterns. Note that, depending on the identified SSGs, the optimizer might
produce different plans. For example, one plan can be composed of the SSGs
from Figure 3.5a and Figure 3.5b, which are joined by the variable ?o as shown in
Figure 3.6a. Another plan can be built with the SSG from Figure 3.5c; however,
when this SSG is devised, it is not possible to construct another SSG with the
remaining two triple patterns. The resulting plan, in this case, is depicted in
Figure 3.6b. The efficiency of a plan is determined not only by the amount of
SSGs in the plan but also by the cost of the SSGs. Therefore, the challenge is to
identify appropriate SSGs that lead to plans that can be evaluated efficiently.

Once the SSGs are identified, the optimizer combines them to build the query
tree plan. As explained in Chapter 2, tree plans may have different shapes: deep
(cf. Figure 3.6b) (left-linear or right-linear), zig-zag, or bushy (cf. Figure 3.6a).
The shape of the plan directly impacts the number of intermediate results and, in
consequence, the query execution time. In contrast to deep plans, bushy tree plans
are able to reduce the size of intermediate results which speed up the execution
of queries over RDF [168] and relational data [62, 96].

Exploring the space of bushy plans is computationally challenging since there
are (2n−2)!

(n−1)!
logical bushy tree plans for a SPARQL query with n triple patterns.

This result only accounts for logical plans. However, when physical operators
are taken into consideration, the space of bushy plans increases exponentially.
For instance, assume that for the join operator two physical implementations
are provided (e.g, Nested Loop and SHJ), then the size of the space of physical

plans is 2n−1 · (2n−2)!
(n−1)!

. It is clear then that a strategy that enumerates all possible
solutions is not able to scale up, especially for queries with a large number of
triple patterns. As also discussed in Chapter 2, several strategies such as Dynamic
Programming and its extension IDP have been proposed in the Database area to
explore the space of plans and even produce optimal7 query plans in some cases.

7The optimal plan is defined as the plan with the lowest cost computed by the optimizer’s
cost model [96].

44

3. Adaptive Query Processing over Linked Data

1! 3! 2! 4!
?d1! ?d2!

?o!

SSG around
?d1

SSG around
?d2

(a) Plan built with SSGs from Fig-
ure 3.5a and Figure 3.5b

3! 4!

2!

1!
?o!

?d1!

?d2!

SSG around
?o

(b) Plan built with SSG from Fig-
ure 3.5c

Figure 3.6: Examples of query plans built with Star-Shaped Groups (SSGs) from Fig-
ure 3.5. Besides the difference in the tree shape, the plan shown in (a)
comprises two SSGs, while the plan in (b) only contains one SSG.

Nonetheless, these strategies are not only expensive in terms of time complexity8

but they assume that the cost of the plan is static, i.e., the cost computed at query
optimization does not change during query execution. Although this assumption
holds in centralized settings, this is not always the case in remote scenarios. In
particular, the evaluation of queries over TPFs requires numerous requests to the
sources during query execution where unexpected conditions may occur suddenly
thus changing the cost of the plan. Therefore, instead of implementing expensive
optimization techniques tailored for static scenarios, we focus on algorithms able
to traverse the space of plans quickly while still producing good query plans.

In the following section, we present an algorithm that builds SSGs and bushy
tree plans to reduce the number of requests submitted to TPF servers. Our pro-
posed algorithm can be executed in polynomial time (with respect to the number
of triple patterns in the query) and produce effective plans.

3.5.4. nLDE Optimizer: Algorithm Description

In this section, we describe how the nLDE physical optimizer presented in Algo-
rithm 1 works. To illustrate the behavior of the algorithm, consider the following
BGP with the triple patterns of the motivating example query from Listing 3.1.

?d1 dcterms: subject dbc:Alcohols . # tp1 Count: 695
?d2 a yago:Alcohols . # tp2 Count: 529
?d1 dbp:routesOfAdministration ?o . # tp3 Count: 2430
?d2 dbp:routesOfAdministration ?o . # tp4 Count: 2430

8Recall from Chapter 2 that the time complexity of Dynamic Programming is O(3n) and the
best performing variant of IDP is O(n4).

45

3. Adaptive Query Processing over Linked Data

Algorithm 1: nLDE Query Optimizer
Input: Query Q = {tp1, tp2, ..., tpn}
Output: Bushy tree plan PQ for Q
// Get triple pattern metadata

1 for tpi ∈ Q do
2 (tpi.count, tpi.pagesize)← getMetadata(tpi)

// Order Q such that tp′i.count ≤ tp′i+1.count
3 Q′ ← 〈tp′1, tp′2, ..., tp′n〉
// Stage 1: Build index star-shaped groups (SSG)

4 S ← ∅
5 while Q′.length() > 0 do
6 s← Q′.getF irst()
7 Q′.remove(s)
8 varss ← vars(s)
9 for tp′i in Q

′ do
10 if |varss ∩ vars(tp′i)| = 1 then
11 P ← placePhysicalOperator((s on tp′i))
12 P.count← cardinalityEstimation(s.count, tp′i.count)
13 Q′.remove(tp′i)
14 s← P

15 S ← S ∪ {s}
// Stage 2: Build bushy tree to combine SSGs with common variables

16 PQ ← list(S)
17 while ∃ si and sj in PQ such that vars(si) ∩ vars(sj) 6= ∅ do
18 Select si and sj from PQ with smallest i, j s.t. vars(si) ∩ vars(sj) 6= ∅
19 PQ.remove(si)
20 PQ.remove(sj)
21 PQ.append((si onSHJ sj))

// Stage 3: Place Cartesian products between SSGs with no common

variables

22 while |PQ| > 1 do
23 Select si and sj from PQ
24 PQ.remove(si)
25 PQ.remove(sj)
26 PQ.append(((si onSHJ sj))
27 return PQ

Given a BGP query Q, the optimizer retrieves the metadata for each triple
pattern in Q (lines 1-2). In particular, the algorithm selects the estimated number
of triples or cardinality of the fragment (count) and the maximum number of
triples accessed per fragment page (pagesize). Then, the algorithm orders the
triple patterns according to their count value (line 3). Following our running
example, triple patterns are ordered as follows: Q′ = 〈tp2, tp1, tp3, tp4〉.

46

3. Adaptive Query Processing over Linked Data

The optimizer then proceeds in three stages:

• Stage 1 builds Star Shape Groups (SSGs) based on the fragment metadata.

• Stage 2 combines SSGs in bushy tree plans.

• Stage 3 places the necessary Cartesian products. This stage is only carried
out in the case that the query Q originally contains Cartesian products.

In Stage 1, the algorithm groups triple patterns as SSGs. In each iteration
of this stage, Algorithm 1 builds an SSG. To build an SSG, the optimizer starts
by selecting the first triple pattern of the list Q′ (line 6) and stores it in the
algorithm variable s; note that the first triple pattern in Q′ is the most selective
triple pattern in Q′ that has not been processed so far. The SSGs are built around
the variables (varss, line 8) contained in the most selective triple pattern s. Then,
the algorithm iterates over Q′ to find a triple pattern tp′i to join with s (lines 9-
14). In particular, tp′i and s must share exactly one variable in common (line
11), i.e., tp′i and s constitute an SSG. To join s and tp′i, the optimizer places a
physical operator (line 11) that would lead to an efficient execution according to
Definition 11 and builds the plan P . Then, the optimizer estimates the cardinality
of P as specified in Definition 10. Stage 1 is completed when all triple patterns
in Q′ belong to an SSG. The result of this stage is the set S that contains SSGs.
In the following, we illustrate the execution of Stage 1 for building SSGs with the
triple patterns from the running example.

Example 6 (nLDE Optimizer - Stage 1) In the first iteration of the while of
Stage 1, the optimizer selects the first triple pattern in Q′ = 〈tp2, tp1, tp3, tp4〉,
i.e., s = tp2, where tp2 is the pattern (?d2, a, yago:Alcohols). The optimizer then
builds an SSG around the variables of tp2, i.e., varss = {?d2}, by iterating over
Q′ = 〈tp1, tp3, tp4〉. The only triple pattern that forms an SSG with s = tp2 in
this case is tp4 = (?d2, dbp:routesOfAdministration, ?o). Applying Definition 11, the
optimizer places a SHJ to create the physical plan P = (tp2 onSHJ tp4). The
estimated cardinality of P is

⌈
529+2430

2

⌉
= 1480 by following Definition 10. Given

that the remaining triple patterns in Q′ do not constitute an SSG with tp2, then
the optimizer adds (tp2 onSHJ tp4) to the set S of SSGs built so far and continues
with another iteration.

In the second while iteration of Stage 1, the optimizer selects the first pattern
in Q′ = 〈tp1, tp3〉, i.e., s = tp1, where tp1 = (?d1, dcterms:subject, dbc:Alcohols).
The optimizer now builds an SSG around the variables of tp1 which in this case
is varss = {?d1}. Since tp3 = (?d1, dbp:routesOfAdministration, ?o) forms an SSG
with tp1, the optimizer combines tp1 and tp3. As shown in Example 5, the physical
operator that leads to an efficient evaluation of (tp1 on tp3) is an SHJ, therefore, the
optimizer creates the physical plan P = (tp1 onSHJ tp3), with estimated cardinality
of 1563 (cf. Example 4). At this point, there are no other triple patterns in Q′,
therefore, the optimizer adds the SSG (tp1 onSHJ tp3) to S and the execution of
the first stage finalizes.

The outcome of Stage 1 in our running example is two SGGs as follows:

S = {(tp2 onSHJ tp4), (tp1 onSHJ tp3)}

47

3. Adaptive Query Processing over Linked Data

In Stage 2, the optimizer builds bushy tree plans. Bushy trees are joined
at this stage using SHJ operators, which allow for evaluating several sub-plans
simultaneously. To do so, the optimizer combines subtrees created so far (lines
16-21) which are maintained in the variable PQ of Algorithm 1. Initially, PQ
contains the list of SSGs identified in Stage 1 (line 16). The optimizer then
heuristically joins subtrees si and sj that share at least one variable in common
(line 18). To ensure that bushy trees are built, the heuristic selects si and sj from
PQ with the smallest i and j (where i and j are the positions of the subtrees in PQ),
i.e., smaller subtrees are combined first. Note that if si and sj are joined, then
they are removed from PQ (lines 19-20) and the resulting sub-plan (si onSHJ sj)
is appended to PQ, i.e., larger plans are located at the end of PQ. The optimizer
executes Stage 2 while there exist joinable subtrees in PQ. The outcome of Stage
2 is PQ that contains a set of bushy trees. In the following, we illustrate the
execution of Stage 2 for the running example.

Example 7 (nLDE Optimizer - Stage 2) Following the running example, PQ
is initialized as the list that contains the SSGs identified in Stage 1, i.e., PQ =
〈(tp2 onSHJ tp4), (tp1 onSHJ tp3)〉.

In the first iteration of Stage 2, the optimizer selects the subtrees si = (tp2 onSHJ

tp4) and sj(tp1 onSHJ tp3) from PQ since they share the variable ?o. At the end of
this iteration, PQ contains the sub-plan 〈((tp2 onSHJ tp4) onSHJ (tp1 onSHJ tp3))〉.

Since there are no more joinable subtrees in PQ, the execution of Stage 2
finalizes. The outcome of this stage in our running example is as follows:

PQ = 〈((tp2 onSHJ tp4) onSHJ (tp1 onSHJ tp3))〉

Lastly, the optimizer combines subtrees that could not be joined before (since
they share no variables in common) in Stage 3. In this stage, no particular heuris-
tics are followed: The optimizer arbitrarily selects two sub-plans and places a
Cartesian product among them. This stage finalizes when PQ contains a single
bushy tree, i.e., there are no more subtrees to combine.

After the optimizer executes the three stages, the algorithm terminates and
produces the bushy tree plan contained in PQ. PQ is a plan for the input query
Q that reduces the amount of requests submitted to the server.

Example 8 (nLDE Optimizer - Stage 3 and Termination) In our running
example, PQ contains only one subtree after Stage 2. Therefore, the optimizer does
not execute Stage 3 in this example.

In the running example, the outcome of the nLDE optimizer is the plan PQ
shown in Figure 3.7. Note that PQ is equivalent to the bushy tree plan from the
motivating example (cf. Section 3.2) and depicted in Figure 3.1b.

48

3. Adaptive Query Processing over Linked Data

2! 4! 1! 3!
?d2! ?d1!

?o!
0! 1!

2!

Nested Loop Join

Symmetric Hash Join

Figure 3.7: Physical query plan devised by the nLDE optimizer (cf. Algorithm 1) for
the motivating example query. The plan corresponds to a bushy tree and
physical operators are assigned according to Definition 11.

3.5.5. Complexity of the nLDE Query Optimizer

The following theorem states the time complexity of the nLDE optimizer.

Theorem 2 Let n be the number of triple pattern contained in a BGP Q.
The time complexity of the nLDE optimizer to devise a plan for Q is O(n2).

Proof We show that the time complexity of collecting the metadata and per-
forming all the stages of the nLDE optimizer is at most O(n2). Firstly, obtaining
the metadata is carried out in n steps, since the optimizer retrieves the fragment
metadata for each of the triple patterns in the query Q. Then, ordering the triple
patterns according to the metadata can be achieved in O(n · log(n)) using an order-
ing algorithm as Mergesort [91]. In Stage 1, the nLDE optimizer verifies whether
each triple pattern in Q′ can be combined with other triple patterns (also in Q′) to
produce SSGs. Note that the size of Q′ is reduced every time that a triple pattern
is added to an SSG. In the worst case, each triple pattern leads to a single SSG or,
in other words, each SSG is composed of exactly one triple pattern. In this case,
the number of steps performed in Stage 1 is n·(n−1)

2
, i.e., the time complexity of

Stage 1 is O(n2). In Stage 2, the optimizer iterates over the list PQ that contains
the SSGs identified in the previous stage. For each element in PQ, the algorithm
then verifies whether there exists another joinable element in PQ. Therefore, the
algorithm performs at most n2 steps in Stage 2. Lastly, the size of PQ is reduced
by one in each iteration of Stage 3, i.e., the optimizer carries out exactly |PQ|
steps in this stage. In the worst case, the size of PQ is n, i.e., the triple patterns
from Q do not share variables in common and should be combined with Cartesian
products in Stage 3. In this case, the time complexity of Stage 3 is O(n). �

With the demonstration of the previous theorem, we have formally answered
research question i.1. We also conducted an empirical study (cf. Section 3.8.2)
to analyze the efficiency of the query optimizer in practice.

3.6. nLDE Adaptive Routing Query Engine

The plan PQ devised by the optimizer is then executed by the nLDE adaptive
query engine designed to operate in unpredictable environments. Our query engine

49

3. Adaptive Query Processing over Linked Data

performs routing operator adaptivity [80], able to change the order of the initial
plan according to the current conditions of execution. Tuples9 generated during
query execution can be routed to physical operators following a different order
than the one designated by the optimizer. In our query engine, adaptivity is
performed per-tuple basis. Our query engine is composed of adaptive operators
(cf. Section 3.6.1) and eddies (cf. Section 3.6.2), and together they compose a
network of Linked Data Eddies (nLDE) (cf. Section 3.6.3).

3.6.1. Adaptive Operators

In order to perform routing adaptivity, physical operators used to execute the
plan PQ should follow a non-blocking strategy [80], i.e., the operators produce
tuples incrementally as soon as data from a source becomes available. This type
of operators is denominated adaptive operators. Considering that PQ contains k
adaptive operators, each operator is identified with a different label from 0 to
k − 1. For example, in Figure 3.7, the label of the Join operator between tp1 and
tp3 is 0. In addition, each operator has a priority initially given by the execution
order induced by PQ, but operator priorities are updated as the execution goes
on. In the following, we define an adaptive operator in our query engine.

Definition 13 (Adaptive Operator) Given a query plan PQ for a query Q, an
adaptive operator o is a physical non-blocking operator in PQ. Each operator o in
PQ is annotated with two numbers denoted label(o) and priority(o) and a boolean
active(o), such that:

• label(o) corresponds to an identifier of o in PQ and is unique;

• priority(o) represents the priority of o in PQ and induces the order in which
o has to be executed in PQ;

• active(o) represents the status of o. active(o) = True indicates that o is
processing a tuple, and active(o) = False otherwise .

Currently, the nLDE query engine implements two adaptive join operators:
a symmetric join and a dependent join (such as Nested Loop). These operators
are implemented by extending the ANAPSID operators agjoin (a symmetric join)
and adjoin (a dependent join) [13].

3.6.2. Eddies

During query execution, tuples are sent from adaptive operators to eddies. An
eddy [21] is an operator that serves as a tuple router and that dynamically flows
tuples through plan operators. Eddies are able to change the order of the evalua-
tion of adaptive operators with respect to the plan devised by the query optimizer,
taking into consideration the current execution conditions. To do so, eddies rely
on tuple annotations denominated Ready and Done vectors.

9In the remainder of this chapter, we use the terms tuple and (SPARQL) solution mappings
interchangeably.

50

3. Adaptive Query Processing over Linked Data

The Ready and Done vectors are composed of k bits, where k is the number of
adaptive operators in the plan PQ. The Ready vector of a tuple indicates operators
eligible to process that tuple. On the other hand, the Done vector indicates the
operators that have already processed the tuple.

Initially, the Done vector of tuples that arrive from the source when evaluating
a triple pattern10 have all the bits set to OFF. This indicates that the incoming
tuples have not been processed by adaptive operators yet. Unlike the Done vector,
the Ready vector of tuples retrieved from the source can be designed to represent
different classes of plans. For instance, the case when all the Ready bits are set
to ON represents the full class of bushy trees, including the plans that contain
Cartesian products. To lead to an efficient query evaluation, our approach exploits
the plan identified previously by the nLDE query optimizer (cf. Section 3.5).
Therefore, the initial Ready vectors in our approach are constructed following the
optimized plan. Our Ready vectors represent the class of bushy trees that can be
obtained by applying algebraic transformations over the optimized plan using the
commutativity and associativity rules of join operators [140] that do not introduce
Cartesian products. The following example illustrates how the Ready vectors are
created in our approach for the incoming tuples.

Example 9 In our running example, PQ contains three (k = 3) adaptive opera-
tors, therefore, the Ready and Done vectors are composed of three bits each.

The tuples resulting from tp2 and tp4 should be processed by operators 0 and
2, but not by operator 1 – according to the plan PQ from Figure 3.7. In this case,
the Ready vector of these tuples is 101.

Moreover, according to PQ from Figure 3.7, the incoming tuples from tp1 and
tp3 should be processed by operators 1 and 2, but not by operator 0. In this case,
the Ready vector of these tuples is 011.

Regarding the Done vector, as explained earlier, the Done vector is initially
000 for all the incoming tuples. If a tuple has only been processed by the adaptive
operator with label 1, then its Done vector is 010.

All tuples that flow into an eddy e are introduced into a routing buffer RBe.
Tuples in RBe are processed following a strategy First-come, First-served (FCFS),
i.e., oldest tuples are attended first. Tuples in RBe are routed to the next adaptive
operator following a routing policy RPe (cf. Section 3.7). Operators that have
not processed a tuple t in RBe are computed by performing the bitwise operation
Readyt − Donet; then, one adaptive operator is selected by its priority according
to the implemented routing policy RPe.

Example 10 Figure 3.8 illustrates the routing buffer RBe and routing policy RPe
of an eddy e. Consider the tuple t = {d1 → dbr:Bupranolol, o → ”Oral, topical”} in
RBe. t is annotated with the vectors Readyt = 011 and Donet = 010. To route
the tuple t, the routing policy RPe computes 011 − 010, which results in 001.
This result indicates that the operator 2 is the only eligible operator that has not
processed t. In consequence, the eddy sends t to the operator 2.

10Retrieving tuples from the source is comparable to the access methods performed in relational
databases.

51

3. Adaptive Query Processing over Linked Data

Tuple Ready Done

{d1àdbr:Avanagil, d2àBeraprost, oà“Oral” } 111 111

{d1àdbr:Bupranolol , oà“Oral, topical”} 011 010

{d2àdbr:Ethynol} 101 000

{d1àdbr:Carteolol} 011 000

{d1àdbr:Atenolol, oà“Oral or IV”} 011 000

Routing Buffer (RBe)

Output

2

1

0

All Done entries ON

Selectable operators
011-010= 001

Routing Policy (RPe)

?o

?d1

?d2

Selectable operators
101-000= 101, get
priorities of 0 and 2

Figure 3.8: Eddy operator e: Tuples are inserted into the Routing Buffer (RBe), anno-
tated with Ready and Done vectors. The Routing Policy (RPe) selects the
operator to route tuple t. e outputs a tuple when it has been processed by
all operators (when the tuple t is annotated with Donet = 111).

In the following, we provide a formal definition of an eddy.

Definition 14 (Eddy Operator) Given an initial query plan PQ with k adap-
tive operators. An eddy e to execute PQ is defined as a 2-tuple e = (RBe, RPe)
where RBe corresponds to a routing buffer and RPe is a routing policy. RBe con-
tains a set of tuples generated during the execution of PQ. Each tuple t in RBe is
annotated with a pair of k-bit vectors named Readyt and Donet, such that:

• A value of ON in the entry i of the Readyt vector of t indicates that t should
be processed by the adaptive operator o such that label(o) = i.

• A value of ON in the entry i of the Donet vector of t indicates that t has
been already processed by the adaptive operator o such that label(o) = i.

• t is produced as an output of the evaluation of PQ when all entries in its
Donet vector are ON.

RPe is a function to route tuples from the eddy e to adaptive operators of PQ. RPe
receives a tuple t in RBe and outputs the label(o) of the adaptive operator o where
t will be sent to. Lastly, active(e) represents the status of e. active(e) = True
indicates that e is processing a tuple, and active(e) = False otherwise.

Property 1 Let t be a tuple processed in a nLDE. The vectors Readyt and Donet
meet the following condition:

Donet[i] = ON⇒ Readyt[i] = ON

for all entry i in Donet and Readyt.

Algorithm 2 describes the steps carried out by an eddy. The eddy operator
sets its active status to True (line 1) and then gets the first element t of RBe

(FCFS policy) (line 2). If all the entries in Donet are ON, the eddy outputs the
tuple t as part of the query results (lines 3-4). Otherwise, the eddy obtains the
set of operators that have not processed t yet (line 6). The routing policy RPe

52

3. Adaptive Query Processing over Linked Data

Algorithm 2: nLDE Eddy Operator
Input: Routing Buffer RBe, Routing Policy RPe

1 active(e)← True
2 t← RBe.pop()
3 if Donet[i] = ON, for all bit i in Donet then
4 yield(t)

5 else
6 eligible operators ← Readyt −Donet
7 o← RPe(eligible operators)
8 route(t, o)

9 active(e)← False

selects one operator – denoted o – out of the eligible operators (line 7) and the
eddy sends the tuple t to the operator o (line 8). Lastly, the eddy sets its active
status to False (line 9), until the next tuple is processed.

Eddies in our approach are enhanced with the capability of directly outputting
results when a tuple has been processed by all operators (Algorithm 2, line 4). This
allows for pipelining final results efficiently. In contrast, in the distributed eddies
proposed by Tian and DeWitt [155], final results are routed to an intermediary
eddy (eddy sink). When queries produce a large amount of results, the eddy sink
could become a bottleneck, while in our approach the final output is produced in
parallel by several autonomous eddies.

3.6.3. Network of Linked Data Eddies (nLDE)

Our query engine implements an adaptive network to execute query plans, called
Network of Linked Data Eddies (nLDE). A nLDE is composed of a set of adaptive
operators and a set of eddies that dynamically send tuples among each other, con-
structing a bipartite graph G (see Figure 3.9). The number of adaptive operators
is given by the plan to be executed.

An eddy operator can get “clogged” when non-selective queries are executed
against sources, and the transfer rate is faster than what the eddy is able to
process. In order to avoid a “clogged” eddy, several eddies can be part of a
nLDE such that the workload is distributed. This is particularly important when
executing non-selective queries in which large amounts of intermediate results
(tuples) have to travel through the network. Future work could focus on studying
the optimal number of eddies in a network given the characteristics of a query or
even creating eddies on demand.

Figure 3.9 depicts a nLDE with two eddies for the query plan from Figure 3.7
of our running example. Edges in the graph G from eddies to adaptive operators
indicate that tuples were sent through these routes. Assuming that Eddy 0 is the
one depicted in Figure 3.8, the nLDE contains an edge from Eddy 0 to operators 2
and 0 since tuples {d1→ dbr:Bupranolol, o→ “Oral, topical”} and {d2→ dbr:Ethynol}
were routed to these operators, respectively. Analogously, an edge from an adap-
tive operator to an eddy indicates that at least a tuple was sent through that

53

3. Adaptive Query Processing over Linked Data

2

1

0

?o

?d2

?d1

Eddy
0

Eddy
1

G

1

2

3

4

nLDE

Figure 3.9: Network of Linked Data Eddies (nLDE). The illustrated nLDE is composed
of two eddy operators and three adaptive operators. The eddies consume
tuples resulting from the evaluation of the query triple patterns (1 , 2 , 3 ,
and 4 in the figure). Eddies and adaptive operators constitute a bipartite
graph G. Edges in G represent routing paths of tuples.

route. For instance, Figure 3.9 depicts an edge from the Join operator with label
0 to Eddy 0. When inspecting the routing buffer of Eddy 0 (Figure 3.8), the tuple
{d1→ dbr:Bupranolol, o→ “Oral, topical”} is annotated with Done = 010, indicating
that this tuple was only processed by the operator with label 1, therefore this
operator was the one that sent the tuple to Eddy 0.

Besides eddies and adaptive operators, nLDE takes into consideration the
characteristics of SPARQL queries and properties of Linked Data sets accessed
to resolve different portions of a query. This information is denominated Triple
Pattern Descriptor (TPD) and consists of annotating the triple patterns from the
query with metadata. A TPD is then exploited by eddies in a nLDE to devise
efficient routes to process RDF data. Figure 3.10 illustrates the TPD for our
running example: triple patterns of the query are annotated with their corre-
sponding cardinality (number of triples) and with the position of joins (e.g., joins
by subject-subject and object-object) with other patterns. However, one impor-
tant factor when executing queries is the selectivity of operators: operators with
high selectivity produce less intermediate results. Due to skewed data distribution
in RDF datasets, selectivity may vary depending on the RDF resources that are
being processed and cannot be a priori estimated by solely analyzing triple pat-
tern cardinalities. We propose therefore an eddy routing policy (cf. Section 3.7)
tailored for RDF data that considers not only the productivity of operators but
also the position of joins in SPARQL queries [158] to favor the routing of tuples
to join operators where the estimated selectivity is high. In the following, we
formally define a Network of Linked Data Eddies and its components.

Definition 15 (Network of Linked Data Eddies) Given a query Q and a plan
PQ for Q, a Network of Linked Data Eddies for PQ is a 2-tuple nLDE = (G, TPD),
where G is a bipartite graph G = (E ∪O, V) and TPD is a triple pattern descrip-
tor. E is a set of eddy operators, O is the set of adaptive physical operators in
PQ, and V is a set of directed edges, such that:

54

3. Adaptive Query Processing over Linked Data

Subject Predicate Object Metadata

?d1 dcterms:subject dbc:Alcohols Count = 695 …

?d2 rdf:type yago:Alcohols Count = 529 …

?d1 dbp:routeOfAdministation ?o Count = 2430 …

?d2 dbp:routeOfAdministation ?o Count = 2430 …

Join 0:
ss

Triple Pattern Descriptor (TPD)

Join 1:
ss

Join 2:
oo

Figure 3.10: Triple Pattern Descriptor (TPD). A TPD of a nLDE maintains informa-
tion about triple patterns from the query: metadata and operator position,
e.g., subject-subject join (ss), object-object join (oo).

• V ⊆ (E ×O) ∪ (O × E).

• If (e, o) (with e ∈ E and o ∈ O) belongs to V then the eddy e has routed at
least one tuple to the adaptive operator o.

• If (o, e) (with e ∈ E and o ∈ O) belongs to V then the adaptive operator o
has sent at least one tuple to the eddy e.

TPD corresponds to a set of pairs (tp, Mtp), where tp is a triple pattern of
Q and Mtp corresponds to metadata of tp. Example of metadata could be: join
position, RDF data source, cardinality, and fragment page size.

In order to ensure the correct processing of tuples, eddies, and adaptive oper-
ators should respect a set of rules. For instance, eddies cannot route a tuple to
an arbitrary operator, but it has to consider the processing history of the tuple –
given by its Ready and Done vectors. This restriction is defined in the following.

Definition 16 (Routing Rule from Eddy to Adaptive Operator) Given a
set of adaptive operators O and an eddy operator e = (RBe, RPe) in a nLDE, RPe
routes tuples from RBe according to the following rule: e can route a tuple t in
RBe to an adaptive operator o ∈ O with identifier label(o) = i only if Readyt[i] =
ON and Donet[i] = OFF; the set of operators that meet these conditions for t are
denominated ‘eligible operators of t’.

Property 2 For all tuple t in nLDE, Readyt and Donet are constructed correctly
when

eligible operators of t = ∅ ⇔ Donet[i] = ON

for all entry i in Donet.

Before sending a tuple to an eddy, an adaptive operator has to build the Ready
and Done vectors of the tuple. The correct creation of the Ready vector ensures
that the tuple will not be processed more than once by an adaptive operator.
Furthermore, the correct creation of the Done vector guarantees that the tuple
will be processed by all the corresponding operators. In the following, we present
the rules to update the Ready and Done vectors of intermediate results.

55

3. Adaptive Query Processing over Linked Data

Definition 17 (Rules to Update Ready and Done Vectors) Given an adap-
tive operator o in an nLDE and a set of eddy operators E. Consider a tuple t
produced by a binary operator o when combining tuples ti and tj. The tuple t is
sent to an eddy operator e ∈ E with the following signature:

• Readyt corresponds to the bitwise OR logical operation of the Ready vectors
of tuples ti and tj,

• Donet corresponds to the bitwise OR logical operation of the Done vectors
of tuples ti and tj, and the identifier of o represented by label(o).

In case the operator o is unary, Donet is updated by performing the bitwise
OR logical operation with label(o), while Readyt remains the same.

The proper update of the Ready and Done vectors of tuples ensure that the
execution of queries with nLDE terminates and the query answers are correct. In
the following sections, we discuss the termination and correctness of nLDE.

3.6.4. Termination of nLDE

The execution of SPARQL queries with nLDE terminates when: i) all the data has
been retrieved from the sources, and ii) all the intermediate results have flowed
through all the adaptive operators. To ensure correct termination, nLDE creates
especial tuples denominated eof tuples. After nLDE retrieves all the tuples that
resolve a triple pattern against the TPF server, the query engine appends an eof
tuple to the intermediate results. In this way, nLDE creates an eof tuple for
each triple pattern in the SPARQL query. eof tuples are compatible with each
other and are annotated with Ready and Done vectors as the other tuples. In the
following, we define the conditions of nLDE termination.

Definition 18 (nLDE Termination) Let nLDE = (G, TPD) be a network of
Linked Data Eddies with G = (E ∪ O, V). The execution of a SPARQL query Q
over a dataset D with nLDE terminates iff:

Condition 1 ∃e ∈ E that produces an eof tuple such that Doneeof[i] = ON
for all entry i in Doneeof,

Condition 2 ∀j ∈ (E ∪O) active(j) = False.

Note that nLDE creates eof tuples only after retrieving all solution mappings
of a triple pattern executed over a dataset. Therefore, to ensure nLDE termina-
tion, the dataset must be finite. This is formally stated in the following theorem.

56

3. Adaptive Query Processing over Linked Data

Theorem 3 The execution of a query Q over a dataset D with nLDE ter-
minates if D is finite.

Proof Lets assume that D is finite and that the incoming tuples from D are
annotated with Ready and Done vectors correctly. Note that SPARQL query pro-
cessing over finite sources11 produce finite intermediate results and solutions. By
contradiction, lets assume that nLDE does not terminate when executing Q over
D. By Definition 18, it follows that at least one operator is active at all times or
that nLDE does not produce an eof tuple when executing Q over D.

If an operator is active at all times, then the intermediate results are infinite,
therefore, D is also infinite. This contradicts our hypothesis.

If nLDE does not produce an eof, we have two cases. In the first case, there is
no eof tuple in nLDE. This means that no eof tuple was retrieved from the source
D, which is equivalent to say that D is infinite. This contradicts our hypothesis.
In the second case, there is an eof tuple in nLDE such that Doneeof[j] = OFF,12

for some j in Doneeof. Without loss of generality, assume that the other entries
in Doneeof are ON, i.e., Doneeof[i] = ON for all i 6= j. Then, we can distinguish
two further sub-cases:

• Readyeof[j] = ON. By Definition 16, nLDE should eventually route the eof
tuple to the operator with label j. Given that Doneeof[j] = OFF, the eof
tuple is waiting infinitely to be processed by the operator with label j. This
can only occur if the intermediate results are infinite, i.e, D is also infinite.
This contradicts our hypothesis.

• Readyeof[j] = OFF. By Property 1, in this case, the vectors Ready and Done
of the eof tuple are the same. Therefore, the set of eligible operators of eof,
computed as Ready−Done, is empty. By Property 2, bit j of Doneeof should
be ON, which means that the Ready and Done vectors of eof were updated
incorrectly. This contradicts our hypothesis. �

3.6.5. Correctness of nLDE

The execution of SPARQL BGP queries with nLDE is correct in terms of com-
pleteness and soundness. In this section, we define the conditions of complete and
sound query answers and then formally demonstrate that nLDE is correct.

The first criterion of correctness discussed in this section is completeness. A
query evaluation approach is complete if it produces all the solutions as defined
in the semantics of the query language before it terminates. nLDE answer com-
pleteness is formally defined in the following.

11Assuming simple entailment.
12Note that, if Doneeof[i] = ON for all entries i then, by Definition 14, nLDE produces eof

which is not our assumption.

57

3. Adaptive Query Processing over Linked Data

Definition 19 (nLDE Completeness) Given a SPARQL query Q executed over
a finite dataset D. Let nLDE(Q)D be the set of solution mappings produced by
nLDE when executing Q over D. The query execution of nLDE is complete if:

[[Q]]D ⊆ nLDE(Q)D

By Theorem 3, it is guaranteed that nLDE terminates when executing queries
over finite datasets. The following examples show that Condition 1 and Condi-
tion 2 from Definition 18 are not individually sufficient to ensure completeness.

Example 11 This example shows how a network of eddies may produce incom-
plete query answers if only Condition 1 from Definition 18 is met.

Consider the query plan depicted in Figure 3.11a. The plan is composed of
two join operators that combine the results of evaluating the triple patterns tp1,
tp2, and tp3. Figure 3.11a also shows the solution mappings and eof tuples from
evaluating the triple patterns together with the instant of time (∆i) that these
were obtained from the source. For example, µ′′3 arrived from the source at ∆t1
and eof3 at ∆t2 when evaluating tp3.

Assume that the only compatible mappings are µ3, µ′3, and µ′′3. The solution
of evaluating the plan is, in this example, the tuple µ3 ∪ µ′3 ∪ µ′′3. Furthermore,
lets assume that Condition 1 is a sufficient condition for nLDE termination.
This means that nLDE terminates when all eof tuples are combined, i.e., when
eof1 ∪ eof2 ∪ eof3 is output.

In this example, the query plan is evaluated by a network that contains two
eddies. The tuples that arrive from the source are processed by the eddies. For
instance, Eddy 0 inserts the mapping µ′′3 into its routing buffer (RB0) at instant
∆t2, while Eddy 1 inserts eof3 into RB1 at instant ∆t3. Figure 3.11c shows the
content of the routing buffers of the eddies.

The eddies then route the tuples to join operators or the output. The attribute
“Route” in the routing buffers from Figure 3.11c indicates the selected operator to
route a tuple to, computed with some routing policy. For example, Eddy 0 sends
µ′′3 to join 1. The join operator 1 inserts µ′′3 into the corresponding hash table at
instant ∆t3 as shown in Figure 3.11b. The eddies process tuples continuously and
at instant ∆t6 a race condition occurs (highlighted in Figure 3.11c): both eddies
decide to route a tuple to the same join operator at the same time.

Consider the scenario in which eof2 is processed by join operator 1 before µ3.
In this case, the join operator 1 produces eof2 ∪ eof3 at ∆t8 before combining
µ3 ∪ µ′′3 at ∆t9. Then, the combination of eof1 with eof2 ∪ eof3 occurs in the
join operator 1 before the query answer µ3 ∪ µ′3 ∪ µ′′3 is produced also by operator
1. Figure 3.11c shows that the approach terminates at ∆t10 while the query an-
swer is output at ∆t11. In consequence, if only Condition 1 is considered for
termination then the network of eddies produces an incomplete answer.

58

3. Adaptive Query Processing over Linked Data

1! 2!

3!

Δt1 µ1,
Δt2 µ2,
Δt3 µ3,
Δt4 EOF1

Δt3 µ'3,
Δt4 EOF2

Δt1 µ''3,
Δt2 EOF3

0!

1!

(a) For each triple pattern, the fig-
ure shows the solution mappings
(µ) and the eof tuples retrieved
from the source. ∆i denotes the
point in time in which a tuple is
received.

0!

Δt4 µ1

Δt5 µ2

Δt8 EOF1

Δt10 µ3 µ’’3

Δt6 µ’3

Δt9 EOF2 EOF3

1!

Δt7 EOF2

Δt8 µ3

Δt3 µ’’3

Δt4 EOF3

Hash Table Hash Table Hash Table Hash Table

(b) Hash tables constructed by join operators with label
0 and 1. ∆i denotes the point in time in which an
operator inserts a tuple into a hash table.

Tuple Ready Done Route

Δt3 EOF3 01 00 1

Δt6 EOF2 11 00 1

Δt7 EOF1 11 00 0

Δt8 EOF2 EOF3 11 10 0

Δt10 EOF1 EOF2 EOF3 11 11 Output

Δt11 µ3 µ’3 µ’’3 11 11 Output

Tuple Ready Done Route

Δt2 µ’’3 01 00 1

Δt3 µ1 11 00 0

Δt4 µ2 11 00 0

Δt5 µ’3 11 00 0

Δt6 µ3 11 00 1

Δt9 µ3 µ’’3 11 10 0

RB0 RB1

(c) Routing buffers of eddies. ∆i denotes the point in time in which an eddy operator processes a
tuple from the routing buffer (RB). The attribute “Route” in RB depicts the destination of a
tuple: either a join operator (with labels 0 or 1), or the output.

Figure 3.11: Example of incomplete query answers when Condition 2 from defini-
tion 18 is not satisfied. Assume that µ3, µ′3, µ′3 are the only compatible
mappings, i.e., the query answer is µ3 ∪ µ′3 ∪ µ′′3. The approach terminates
when eof1∪ eof2∪ eof3 is output. At instant ∆t6 two eddies are trying
to route µ3 and eof2 to the same operator (highlighted in Figure 3.11c).
If eof2 is processed first, the approach terminates at ∆t10. Note that the
tuple µ3∪µ′3∪µ′′3 is not produced before ∆t10, in consequence, the approach
terminates before producing the query answer.

Example 12 This example shows how a network of eddies may produce incom-
plete query answers if only Condition 2 from Definition 18 is considered suffi-
cient for termination. In this case, nLDE terminates as all the operators are idle
(active = False), i.e, the operators in the network have processed all the inter-
mediate results that have been generated so far. However, the eof tuple has not
been produced yet (Condition 1 is not met), i.e., the data from the sources has
not been completely dereferenced. This means that nLDE terminates before all the
data from the sources is processed, which potentially produces incomplete answers.

59

3. Adaptive Query Processing over Linked Data

As illustrated, the two termination conditions of nLDE are necessary to ensure
answer completeness. The following theorem establishes then that completeness
is ensured by nLDE when executing BGPs.

Theorem 4 If nLDE terminates then the execution of SPARQL BGP queries
with nLDE is complete with respect to the dataset.

Proof Consider a dataset D and a BGP query Q executed over D with nLDE.
For this proof, we assume that D is finite and that the set of solution mappings
retrieved from the source (the TPF over D) is complete, for each triple pattern in
Q. Let µ be a solution mapping such that µ ∈ [[Q]]D. We will demonstrate that
µ ∈ nLDE(Q)D, by induction on the structure of Q.

In the base case, Q is composed of a triple pattern tp. Therefore, nLDE(Q)D
consists in evaluating the triple pattern tp = Q over the source of D, i.e., [[tp]]D.
By hypothesis, the set of mappings retrieved via the TPF (the source of D) is
complete. This means that a mapping µ ∈ [[tp]]D should have arrived at the
network before the eof tuple. Given that, in this case, the query plan consists
in only retrieving data from the source, no routing is carried out; hence, it is
straightforward that µ is processed by the eddies before the eof tuple. As a result,
µ is produced before nLDE terminates, i.e., µ ∈ nLDE(Q)D for the base case.

We may now assume that the induction hypothesis holds for each SPARQL
expression. In the inductive case, Q is composed of And expressions (since we
focus on BGP queries). Consider that Q consists of k + 1 (with k > 0) triple
patterns and that Q = (Q1 And Q2), for some SPARQL expressions Q1 and Q2.
By definition of the SPARQL algebra, [[Q]]D = [[Q1]]D on [[Q2]]D. Let µ1 and
µ2 be solution mappings such that µ1 ∈ [[Q1]]D, µ2 ∈ [[Q2]]D, and µ1 ∼ µ2, i.e.,
µ1 ∪ µ2 ∈ [[Q]]D. We will show that µ1 ∪ µ2 ∈ nLDE(Q)D.

The evaluation of Q with nLDE can be specified as:

nLDE(Q)D = (nLDE(Q1)D
j
on nLDE(Q2)D)

where the label of the adaptive join operator that combines Q1 and Q2 is j. Without
loss of generality, assume that Q1 comprises adaptive join operators with labels x
such that 0 ≤ x < j, and Q2 comprises adaptive join operators with labels y such
that j < y ≤ k. By induction hypothesis, it holds that µ1 ∈ nLDE(Q1)D and
µ2 ∈ nLDE(Q2)D. Therefore:

Readyµ1 [x] = ON Doneµ1 [x] = ON (with 0 ≤ x < j)

Readyµ2 [y] = ON Doneµ2 [y] = ON (with j < y ≤ k)

Given that neither Q1 nor Q2 contains the join operator with label j, the Ready
and Done vectors of µ1 and µ2 when evaluating Q meet the following conditions:

Readyµ1 [j] = ON Doneµ1 [j] = OFF

Readyµ2 [j] = ON Doneµ2 [j] = OFF

60

3. Adaptive Query Processing over Linked Data

According to Definition 16, the only eligible operator of µ1 and µ2 is j. There-
fore, these tuples are routed to operator j. By hypothesis, nLDE(Q)D terminates
which ensures that all the intermediate results are processed. The join operator j
eventually processes µ1 and µ2; since µ1 ∼ µ2, j produces µ = µ1 ∪ µ2. Note that
Doneµ is constructed as Doneµ = Doneµ1 OR Doneµ2 OR label(j). This operation
results in Doneµ[i] = ON, for all 0 ≤ i ≤ k. In consequence, µ ∈ nLDE(Q)D. �

The second criterion of correctness discussed in this section is soundness. A
querying approach is sound if it produces solutions as defined in the semantics of
the query language. In the following, we define the condition that should be met
by nLDE to guarantee soundness with respect to the semantics of SPARQL.

Definition 20 (nLDE Soundness) Given a SPARQL query Q executed over a
dataset D. Let nLDE(Q)D be the set of solution mappings produced by nLDE
when executing Q over D. The query execution of nLDE is sound if:

nLDE(Q)D ⊆ [[Q]]D

The following theorem establishes that soundness is guaranteed by nLDE.

Theorem 5 The execution of SPARQL BGP queries with nLDE is sound.

Proof Consider a dataset D and a BGP Q executed over D with nLDE. For this
proof, we assume that the solution mappings retrieved from the source (the TPF
server over D) are correct. Let µ be a solution mapping such that µ ∈ nLDE(Q)D.
We will demonstrate that µ ∈ [[Q]]D by induction on the structure of Q.

In the base case, Q is composed of a triple pattern tp. Therefore, nLDE(Q)D
corresponds to the evaluation of the triple pattern tp = Q against the source of
D. Each µ ∈ nLDE(Q) is a solution mappings directly obtained from the data
dereferenced from the source. Since we assume that the source is correct, we
conclude that µ ∈ [[Q]]D, for the base case.

We may now assume that the induction hypothesis holds for each SPARQL ex-
pression. Since this work focuses on BGP queries, Q is composed of And expres-
sions in the inductive case. Without loss of generality, assume that µ is the result
of joining two mappings µ1 and µ2 (µ = µ1 ∪ µ2), such that µ1 ∈ nLDE(Q1)D
and µ2 ∈ nLDE(Q2)D, for some SPARQL expressions Q1 and Q2. Consider
that µ1 and µ2 are joined by the adaptive operator with label j. In this case,
µ1 ∪ µ2 ∈ nLDE(Q1)D on nLDE(Q2)D if:

µ1 ∼ µ2

Readyµ1 [j] = ON Doneµ1 [j] = OFF

Readyµ2 [j] = ON Doneµ2 [j] = OFF

By inductive hypothesis, it holds that µ1 ∈ [[Q1]]D and µ2 ∈ [[Q2]]D. Since µ1 ∼
µ2, it also holds that µ1 ∪ µ2 ∈ [[Q1]]D on [[Q2]]D, i.e., µ ∈ [[Q]]D. �

With the proofs of Theorem 4 and Theorem 5, we can conclude that for any
SPARQL BGP queryQ executed over a finite datasetD it holds that nLDE(Q)D ≡
[[Q]]D, i.e., the execution of BGP queries with nLDE is correct. This answers our
research question i.2 for SPARQL BGP queries.

61

3. Adaptive Query Processing over Linked Data

2! 4! 1! 3!
?d2! ?d1!

?o!
0! 1!

2!
Depth 0

Depth 1

Figure 3.12: Initialization of the priorities of adaptive operators in nLDE. In our running
example, the depth (with respect to the tree root) of the join operators with
label 0 and 1 is higher than the height of operator 2. Therefore, the initial
priorities of operators 0 and 1 are higher than the priority of operator 2.

3.7. Routing Policies

3.7.1. Routing Policy from Eddies to Adaptive Operators

The eddies in nLDE process the tuples in the routing buffer following a strategy
first-come, first-served (FCFS). When a tuple t is routed from an eddy, the routing
policy selects among the eligible operators of t the one with the highest priority.
Eddies in nLDE initialize the priorities of adaptive operators according to the plan
devised by the optimizer: the higher the depth of the operator in the tree plan
the higher the priority of the operator. Figure 3.12 illustrates how the priorities
of operators are initialized in the query plan of our running example.

During query execution, the priority of adaptive operators is updated to reflect
the current conditions of the execution. To reduce the number of tuples that flow
in the network, nLDE updates the priorities of operators according to the observed
operator selectivity: the more selective an operator is the higher its priority is.
nLDE eddies estimate operator selectivities as follows. Given an adaptive operator
o, the priority of o is computed as the inverse of the operator selectivity:

priority(o) =
tuples routed to o

tuples received from o

Measuring the ratio of tuples produced vs. consumed by an operator allows
for estimating its selectivity. When join operators exhibit similar performance, an
operator is chosen over the others based on the join position specified in the nLDE
triple pattern descriptor (TPD), following the precedence relation of SPARQL
join selectivity proposed by Tsialiamanis et al. [158]:

p on o ≺ s on p ≺ s on o ≺ o on o ≺ s on s ≺ p on p

where s, p, o correspond to the position of subject, property, and object of vari-
ables in triple patterns.

62

3. Adaptive Query Processing over Linked Data

In addition, our routing policy respects the following restrictions:

Restriction 1 Tuples are not routed to non-symmetric operators, other-
wise, the number of requests to sources could be increased;

Restriction 2 Tuples are not routed to operators that do not share vari-
ables in common, to avoid the generation of Cartesian products which in
turn produce a large number of tuples in the network.

3.7.2. Routing Policy from Adaptive Operators to Eddies

As explained in Section 3.6, there are no theoretical restrictions when routing
tuples from adaptive operators to eddies. However, when several eddies are part of
a nLDE, it is important to design simple routing policies from adaptive operators
that allow for distributing the workload among the eddies.

In this work, we implement a simple routing policy in which an operator
randomly chooses an eddy following a uniform distribution, i.e., all eddies have
the same probability to be selected. Once an adaptive operator has registered to
an eddy, all the tuples produced by that operator are sent to the selected eddy.

3.8. Experimental Study

We empirically assess the efficiency and effectiveness of the client-side Network of
Linked Data Eddies (nLDE) engine. The goal of the following experiments is to
provide empirical evidence for answering research questions i.1, i.3, and i.4.

3.8.1. Experimental Settings

Dataset and Server: We deployed a TPF server to access the English version
of DBpedia (version 2015). The backend for the TPF server is the binary se-
rialization of DBpedia represented with the structure Header Dictionary Triple
(HDT) [55]. The server is deployed on a Debian GNU/Linux 8.6 64-bit machine
with CPU AMD Opteron 6204 3.3 GHz (4 physical cores) and 32 GB RAM.

Query Benchmarks: We designed two benchmarks of queries by analyzing triple
patterns answerable for DBpedia. The benchmark queries were designed based
on real-world queries. Benchmark 1 comprises 20 queries composed of BGPs of
between 4 and 14 triple patterns; these queries are non-selective and produce a
large number of intermediate results. Benchmark 2 is composed of a total of 25
queries with BGPs of between three and six triple patterns. Benchmark 2 includes
queries about topics in five domains: History, Life Sciences, Music, Sports, and
Movies. The benchmark queries are available at Appendix A.

Implementations: We implement proxies to configure data transfer delays. Both
the nLDE engine and proxies are implemented in Python 2.7.6. The client-side
Web query engine of Triple Pattern Fragments (TPF client) [165] is used as the

63

3. Adaptive Query Processing over Linked Data

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Triple patterns

T
im

e
(m

ill
is

ec
on

ds
)

Linear Model
Quadratic Model

(a) Time spent by the nLDE optimizer when
retrieving fragment metadata

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Triple patterns

T
im

e
(m

ill
is

ec
on

ds
)

Linear Model
Quadratic Model

(b) Time spent by the nLDE optimizer when
computing the query plan (stages 1-3)

Figure 3.13: Efficiency of the nLDE optimizer per SPARQL query. Elapsed time of the
nLDE optimizer (y-axis) in function of the number of triple patterns per
SPARQL query (x-axis). Linear and quadratic regression models are com-
puted using the method of Iteratively Reweighted Least Squares (IRLS).

baseline. Clients were executed on a Debian Wheezy 64 bit machine with CPU:
2x Intel(R) Xeon(R) CPU E5-2670 2.60 GHz (16 physical cores), and 256 GB
RAM. The clients and server run on different machines connected via intranet.

Evaluation Metrics: The following metrics are computed for each benchmark.
i) Execution Time: Elapsed time spent by a query engine to complete the execu-
tion of a query. It is measured as the absolute wall-clock system time as reported
by the Python time.time() function. ii) Number of Requests: Total number of
requests submitted to the servers during query execution. iii) Number of Answers:
Total number of answers produced during the execution of a query.

3.8.2. Efficiency of the nLDE Optimizer

The goal of this study is determining the efficiency (in terms of time) of the nLDE
engine when devising query plans (cf. Section 3.5).

With the proof of Theorem 2, we theoretically demonstrated that the number
of triple patterns in SPARQL queries impacts on the performance (in terms of
time) of the nLDE optimizer. Therefore, in this experiment, besides the queries
from Benchmarks 1 and 2, we designed additional 70 queries varying the number
of triple patterns. Recall from Algorithm 1 that the nLDE optimizer retrieves
fragment metadata online, which may be expensive in comparison to the other
optimizer stages. Therefore, in this study, we distinguish between the time spent
by the nLDE optimizer retrieving metadata and the time computing the plan.

Figure 3.13 reports the time spent by the nLDE optimizer in function of the
number of triple patterns in SPARQL queries. The first observation is rather
evident: the more triple patterns in a SPARQL query, the longer it takes the
optimizer to devise a query plan. Furthermore, when comparing Figures 3.13a
and 3.13b, we observe that dereferencing metadata is one to two orders of magni-

64

3. Adaptive Query Processing over Linked Data

Table 3.2: Regression models for the time spent by the nLDE optimizer when retrieving
metadata and computing the plan. RSE = Residual Standard Error. R2 =
Coefficient of Determination. Values marked with ∗∗∗ indicate a significance
at 0.01. Indicators that suggest a better regression are highlighted.

Regression Fitting RSE R2 Significance of

ith coefficient

Metadata retrieval

Linear (i = 1) y = 20.337x− 6.990 7.900 0.985 < 2e− 16∗∗∗

Quadratic (i = 2) y = −0.085x2 + 21.722x− 11.756 7.899 0.985 0.3118

Plan computation (stages 1-3)

Linear (i = 1) y = 0.256x+ 0.309 0.308 0.876 < 2e− 16∗∗∗

Quadratic (i = 2) y = 0.014x2 + 0.037x+ 1.063 0.285 0.895 1.97e− 05∗∗∗

tude more expensive (in terms of time) than computing the plan (optimizer stages
1-3). For instance, for a SPARQL query with 14 triple patterns, the optimizer
retrieves the corresponding metadata in 270 ms. (milliseconds) approximately,
while the time for computing the plan for the same query is around 4.6 ms.

In addition to measuring the optimization time, we compute regression models
to describe the performance of the nLDE optimizer when varying the number of
triple patterns in SPARQL queries. Theorem 2 indicates that the behavior of the
optimizer is quadratic with respect to the number of triple patterns. Therefore, we
compute linear and quadratic regressions using the method Iteratively Reweighted
Least Squares (IRLS) [71] implemented in the function lm provided in the stats

R package [131]. The resulting regressions are plotted in Figure 3.13 and further
details of the regressions are presented in Table 3.2. In Figure 3.13a, we observe
that the time spent by the nLDE optimizer for retrieving metadata is clearly linear
with respect to the number of triple patterns. Regarding stages 1-3 of the nLDE
optimizer, from the two regressions plotted in Figure 3.13b, it appears that the
quadratic regression model explains better the observed behavior.

Table 3.2 contains further details about the obtained regression models. The
column ‘fitting’ corresponds to the polynomial regressions we obtained. For each
regression, we report on the Residual Standard Error (RSE), the Coefficient of
Determination (R2), and the significance of the ith coefficient in the obtained
polynomials. In combination, these indicators allow for determining the quality
of the regressions. RSE and R2 values are defined as follows:

RSE :=

√√√√ 1

n

n∑
i

(ŷi − yi)2 R2 := 1−
∑n

i (yi − ŷi)2∑n
i (yi − y)2

where y is the vector of n observations (measured time) and ŷ the vector with
predicted values. y is the mean of the observed data, i.e., y = 1

n

∑n
i yi.

65

3. Adaptive Query Processing over Linked Data

−2 −1 0 1 2

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(a) Linear regression

−2 −1 0 1 2

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(b) Quadratic regression

Figure 3.14: Normal Q-Q plots for the residuals obtained in linear and quadratic regres-
sions of the time spent by the optimizer when computing the query plan
(cf. Table 3.2). Residuals are nearly normally distributed.

Regarding the retrieval of metadata, Table 3.2 reports that the values of RSE
and R2 are very similar for both regressions. Nonetheless, the significance of
the ith coefficient confirms that the linear regression describes the observed data
better than the quadratic regression. This result is consistent with our theoretical
results presented in the proof of Theorem 2: the time of retrieving metadata is
linear with respect to the number of triple patterns.

Regarding the computation of the plan (stages 1-3), we can observe in Table 3.2
that all the reported metrics indicate that the quadratic regression describes the
relation of the variables better than the linear regression: (i) the RSE (error)
value is lower with the quadratic regression, (ii) the R2 value confirms that the
quadratic regression explains a larger portion of the observed data, and (iii) the
impact of the quadratic component in the obtained polynomial is significant (p-
value < 0.001). Lastly, we performed an analysis of variance (ANOVA) using
the function anova provided in the stats R package [131]. We verified that the
residuals of both regressions follow a normal distribution (cf. Figure 3.14). The
results of the ANOVA confirms a significant difference (p-value < 0.001) between
the two regressions. We can then conclude that the time spent by the nLDE opti-
mizer computing the query plan is quadratic with respect to the number of triple
patterns in the query, as demonstrated in our theoretical results in Theorem 2.

The results of this study empirically answer our research question i.1.

3.8.3. Effectiveness of the nLDE Optimizer

The goal of this experiment is to determine the effectiveness of the query plans
executed against TPF servers. To do so, we study the impact that query selectiv-
ity and size of intermediate results have on the performance of client-side query
engines in networks with no delays. We compare the nLDE engine with the TPF
client on queries of Benchmark 1 and Benchmark 2. To compare the query op-

66

3. Adaptive Query Processing over Linked Data

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Query

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
 L

og
 S

ca
le

nLDE Engine
TPF Client

(a) Execution time in seconds (log. scale).

1e+01

1e+03

1e+05

1e+07

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Query

N
um

be
r

of
 A

ns
w

er
s

 L
og

 S
ca

le

nLDE Engine
TPF Client

(b) Number of answers (log. scale)

1e+01

1e+03

1e+05

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Query

N
um

be
r

of
 R

eq
ue

st
s

 L
og

 S
ca

le

nLDE Engine
TPF Client

(c) Number of requests (log. scale)

Figure 3.15: Performance of the nLDE engine and the TPF client when executing
Benchmark 1: 20 non-selective queries against TPFs of DBpedia. No de-
lays in data transfer. 95% confidence interval (CI) is plotted.

timization and execution techniques of both engines under the same conditions,
the nLDE engine does not follow any routing policy, i.e., intermediate tuples are
processed following the plan produced by the nLDE optimizer (cf. Algorithm 1).
We executed each benchmark query 30 times and report on the average of the

67

3. Adaptive Query Processing over Linked Data

metrics. In addition, we plot the 95% confidence interval (CI) for each metric. In
this study, we set the query evaluation timeout to 1, 800 secs.

Figure 3.15 reports the results obtained when executing the queries in Bench-
mark 1. Recall that Benchmark 1 contains non-selective queries that produce a
large number of results (see Figure 3.15a). Given the selectivity of these queries,
the timeout is reached by both approaches in several queries. Overall, we can
observe in Figure 3.15a that the nLDE engine is significantly (95% CI) faster –
from one to two orders of magnitude – than the TPF client in 14 out of the 20
benchmark queries. On the other hand, the nLDE engine only consumes more
time than the TPF client in queries Q5, Q8, and Q11. All the triple patterns in
these queries are non-selective with the particularity that one of the triple patterns
selects a predicate with low selectivity (foaf:name or foaf:givenName). In cases like
this, the cardinality estimations of the nLDE optimizer are far from the actual
values, which hinders the generation of better plans.

We then inspect the number of answers produced by both approaches for
Benchmark 1, reported in Figure 3.15b. We observe that the TPF client produces
more answer than the nLDE engine in two queries Q5 and Q8 (in which the nLDE
engine also spent more time). On the contrary, nLDE produces more answers
than the TPF client in five queries: Q11, Q13, Q14, Q16, and Q18. For the rest
of the queries, there is no significant difference between nLDE and the TPF client
regarding the number of answers produced.

Lastly, for Benchmark 1, we report on the number of requests submitted to
the server in Figure 3.15c. In the vast majority of the queries, nLDE is able to
reduce the number of requests posed to the source: except for Q8 where nLDE
produces more requests, and Q11 where there is no significant difference between
the two approaches. Regarding Q8, the query is composed of two non-selective
Star-Shaped Groups (SSGs), and the selectivity of the join between the SSGs is
0.14. In this particular case, a left-linear plan leads to a more efficient execution.
However, the overall results for Benchmark 1 suggest that nLDE produces plans
that not only speed up the query execution, but they are able to significantly
reduce the number of requests posed to the source while producing the same
amount of answers (or more) than the state-of-the-art in non-selective queries.

The next step in this experiment is to evaluate the performance of the engine
when executing Benchmark 2. In contrast to Benchmark 1, Benchmark 2 com-
prises highly selective queries that produce a small number of results. We report
the results of the execution of Benchmark 2 queries with the nLDE engine and
the TPF client in Figure 3.16. In terms of execution time, in Figure 3.16a we can
observe that the nLDE engine is able to reduce execution time for 24 out of the 25
benchmark queries. Only in the query Q5-Music, nLDE spends more time than
TPF client – although the execution time of both approaches is still in the same
order of magnitude. Note that none of the approaches reached the timeout when
executing Benchmark 2. Regarding the number of answers produced, both nLDE
and the TPF client produce the same number of results in all queries except in
Q5-History. In Q5-History, the TPF client produces no results.13 However, we ex-

13The TPF client terminates without errors when executing Q5-History.

68

3. Adaptive Query Processing over Linked Data

History Life Science Movies Music Sports

1

10

100

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5
Query

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
 L

og
 S

ca
le

nLDE Engine
TPF Client

(a) Execution time in seconds (log. scale)

History Life Science Movies Music Sports

1

10

100

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5
Query

N
um

be
r

of
 A

ns
w

er
s

 L
og

 S
ca

le

nLDE Engine
TPF Client

(b) Number of answers (log. scale)

History LifeScience Movies Music Sports

1

10

100

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5
Query

N
um

be
r

of
 R

eq
ue

st
s

 L
og

 S
ca

le

nLDE Engine
TPF Client

(c) Number of requests (log. scale)

Figure 3.16: Performance of the nLDE engine and the TPF client when executing
Benchmark 2: 25 selective queries against TPFs for the English DBpe-
dia. No delays in data transfer. 95% confidence interval is plotted.

ecuted this query against a centralized triple store and confirm that the result set
of Q5-History is not empty. Lastly, Figure 3.16c reports the number of requests
submitted to the TPF server. The nLDE engine consistently and significantly
(95% CI) reduces the number of requests with respect to the TPF client.

69

3. Adaptive Query Processing over Linked Data

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Query

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
 L

og
 S

ca
le

nLDE (Not Adaptive)
nLDE (Adaptive)

Figure 3.17: Performance of two variants of nLDE (Not Adaptive, Adaptive) when ex-
ecuting Benchmark 1. No delays in data transfer. Significant difference
(95% confidence interval) observed in Q6, Q9, Q14, Q15, Q16, and Q17.

In summary, nLDE bushy plans speed up query schedulers by up to one order
of magnitude, while they submit fewer requests to the TPF servers in the majority
of the queries. The reason for this is that left-linear plans – as the ones generated
by the TPF client – in conjunction with Nested Loop Join operators may produce
a large number of intermediate results that conduce to a large number of requests
to the TPF servers. In contrast, bushy plans composed of Star-Shaped Groups
minimize the number of intermediate results and, in consequence, minimize the
number of requests sent to the TPF servers. Thus, the nLDE engine is able to
retrieve data from the TPF servers in a more efficient fashion than the state-of-
the-art, providing in this way, an efficient approach for Linked Data management
even in ideal scenarios of networks with no delays. The results of this evaluation
empirically answer our research question i.3 regarding the impact of the type of
plan (bushy vs. left-linear) on query performance.

3.8.4. Impact of the nLDE Routing-based Adaptivity on Execution
Time in Perfect Networks

In this study, the goal is to determine the cost of performing adaptivity when the
conditions of the network do not change, i.e., no data transfer delays occur in the
network. To do so, we measure the execution time of two variants of nLDE:

• nLDE (Not Adaptive): The intermediate results follow the operator order
induced by the plan obtained with the nLDE optimizer (cf. Algorithm 1).

• nLDE (Adaptive): nLDE eddies adapt execution schedulers according to
the proposed routing policy (cf. Section 3.7).

We executed each benchmark query 30 times with the two nLDE variants and
report on the average execution time. We also plot the 95% confidence interval
(CI). In this study, we set the query evaluation timeout to 1, 800 secs.

Figure 3.17 reports the execution time of nLDE (Not Adaptive) and nLDE
(Adaptive) when evaluating Benchmark 1. On the one hand, we can observe that

70

3. Adaptive Query Processing over Linked Data

Table 3.3: Number of answers produced by nLDE (Not Adaptive) and nLDE (Adaptive)
in Benchmark 1 queries that timed out. No delays in data transfer. Mean
and confidence interval (CI) values are reported. The performance of nLDE
(Adaptive) is negatively impacted in non-selective queries, e.g., Q11 and Q18.

Query
nLDE (Not Adaptive) nLDE (Adaptive)

Mean 95% CI Mean 95% CI

Q5 324.0 – 324.0 –

Q8 802.0 – 6180.0 –

Q11 4288.0 [4284.61, 4291.39] 4278.6 [4275.21, 4281.99]

Q18 2.37e+ 07 [2.21e+ 07, 2.52e+ 07] 3.66e+ 06 [2.92e+ 06, 4.40e+ 06]

in 14 out of the 20 queries, there is no significant difference (95% CI) between the
performance of the two approaches. This behavior is observed because: (i) the
plans generated on-the-fly by nLDE (Adaptive) are as effective as the fixed plans
devised by the nLDE optimizer, or (ii) nLDE (Adaptive) did not adjust the plan
and, in consequence, query execution is the same as with nLDE (Not Adaptive).
The latter case confirms that the selectivity estimation performed by the eddies
(Section 3.7) and the cardinality estimation of the nLDE optimizer (Definition 10)
are consistent and accurate in practice for most of the queries. On the other hand,
the performance of nLDE (Not Adaptive) and nLDE (Adaptive) is significantly
different in queries Q6, Q9, Q14, Q15, Q16, and Q17. We observe in Figure 3.17
that nLDE (Adaptive) achieves a better performance than nLDE (Not Adaptive)
only in queries Q9 and Q14, where the number of answers produced is less than
1e + 02. Nonetheless, in Q9, Q15, Q16, and Q17, nLDE (Not Adaptive) reduces
the execution time with respect to the adaptive variant. The number of answers
of these queries is over 1e + 03 (cf. Figure 3.15b), which indicates that nLDE
(Adaptive) introduces overhead when executing non-selective queries.

We then further inspect the number of answers produced by nLDE (Not Adap-
tive) and nLDE (Adaptive) for the Benchmark 1 queries in which the approaches
timed out. Table 3.3 reports the mean values of the number of answers produced
and the 95% confidence interval for each approach. For the highly non-selective
queries (Q11 and Q18), we observe that nLDE (Adaptive) produces fewer answers
than the non-adaptive variant. Furthermore, in Q18, the number of answers pro-
duced with nLDE (Adaptive) is one order of magnitude less than the outcome of
nLDE (Not Adaptive). There is a negative impact on throughput – number of
answers produced per unit time – when our routing policy is executed in cases of
non-selective queries and perfect networks.

We then report the execution time when evaluating Benchmark 2 in Fig-
ure 3.18. On average, nLDE (Not Adaptive) is faster than nLDE (Adaptive).
However, when we take into consideration the confidence intervals (95%), we ob-
serve that the performance of the two nLDE variants is not significantly different
– for highly selective queries in perfect networks. This indicates that even when
the size of intermediate results is small, nLDE (Adaptive) is still able to compute

71

3. Adaptive Query Processing over Linked Data

History Life Science Movies Music Sports

1

10

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5
Query

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
 L

og
 S

ca
le

nLDE (Not Adaptive)
nLDE (Adaptive)

Figure 3.18: Execution time of two variants of nLDE – Not Adaptive and Adaptive –
when executing Benchmark 2. No delays in data transfer. No significant
difference (95% confidence interval) among the two approaches is observed.

accurate selectivity estimations leading to efficient query processing.
From this study, we determine that on average the non-adaptive variant of

nLDE produces results faster than adaptive techniques in a network with no de-
lays. From the results of Benchmark 1, we conclude that fine-grained adaptivity
introduces significant (95% CI) overhead in non-selective queries; in these cases,
adaptivity either increases the execution time or decreases the overall through-
put during query evaluation. Furthermore, we conclude that the overhead of our
proposed routing policy is not significant (95% CI) for selective queries. These
empirical results answer our research question i.4 regarding the impact of routing-
based adaptivity on query performance (in perfect networks).

3.8.5. Effectiveness of the nLDE Routing-based Adaptivity Under the
Presence of Network Delays

The goal of this experiment is to evaluate the performance of the nLDE routing
adaptivity in networks with delays. We implemented a simulator that randomly
introduces transfer delays between the client and the server following a given dis-
tribution. We simulated a fast remote network that exhibits an average delay of 30
milliseconds (0.03 seconds) [2]. The study by Bovy et al. [32] indicates that delays
on the Internet follow a gamma distribution. Therefore, we configure the simula-
tor to introduce delays between the client and the server with a Gamma(α = 0.03,
β = 1.0) distribution (cf. Figure 3.19).

Further, we compare the performance of the nLDE engine when intermediate
tuples are executed following the original plan and when execution schedulers are
adapted to the data transfer rates according to a routing policy. Therefore, we
study the following variants of nLDE:

72

3. Adaptive Query Processing over Linked Data

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Delay (seconds)

P
ro

ba
bi

lit
y

D
en

si
ty

Gamma (α=0.03, β=1.0)

Figure 3.19: Gamma distribution of simulated network delays.

• nLDE (Not Adaptive): The intermediate results follow the operator order
induced by the plan obtained with the nLDE optimizer (cf. Algorithm 1).

• nLDE (Selectivity): nLDE eddies adapt execution schedulers according
to the proposed routing policy (cf. Section 3.7).

• nLDE (Random): As a baseline, we implemented a light-weight routing
policy that routes intermediate results by randomly selecting an operator
from eligible operators following a uniform distribution.

We measure the performance of the nLDE variants in terms of the number of
answers produced over time continuously. To do so, we analyze the trace curve
of answers in function of time. To illustrate, consider Figure 3.20a that plots the
trace curves of answers of nLDE variants when executing Q16 of Benchmark 1.
We can observe that nLDE (Random) exhibits the best performance among the
nLDE variants, by continuously producing more answers faster. Then, we measure
the area under the curve (AUC) of the answer trace. In this experiment, AUC
allows for capturing the fluctuating behavior of answer traces. Note that we do
not use throughput14 as metric in this experiment since throughput assumes that
answers are produced uniformly over time, which is rarely the case in adaptive
systems. We then propose a definition for the AUC metric as follows:

AUCρ :=

∫ tρ

0

Xρ(t)dt

where ρ is the variant of nLDE (ρ = Not Adaptive, Selectivity, Random), Xρ is
the number of answers produced over time by ρ (Xρ : R 7→ N), and tρ is the
point in time where the approach ρ produced j tuples, i.e., Xρ(tρ) = j.

14Throughput defined as the average number of answers produced per time unit.

73

3. Adaptive Query Processing over Linked Data

0

5000

10000

15000

20000

0 50 100 150 200 250 300
Time

A

ns
w

er
s

P
ro

du
ce

d

nLDE(Not Adaptive)
nLDE(Selectivity)
nLDE(Random)

Q16.sparql

(a) Answer traces:
XNot Adaptive, XSelectivity, XRandom

0

5000

10000

15000

20000

0 50 100 150 200 250 300
Time

A

ns
w

er
s

P
ro

du
ce

d

nLDE(Not Adaptive)
nLDE(Selectivity)
nLDE(Random)

Q16.sparql

(b) AUCNot Adaptive =
∫ 161.85

0
XNot Adaptive(t)dt

0

5000

10000

15000

20000

0 50 100 150 200 250 300
Time

A

ns
w

er
s

P
ro

du
ce

d

nLDE(Not Adaptive)
nLDE(Selectivity)
nLDE(Random)

Q16.sparql

(c) AUCSelectivity =
∫ 298.98

0
XSelectivity(t)dt

0

5000

10000

15000

20000

0 50 100 150 200 250 300
Time

A

ns
w

er
s

P
ro

du
ce

d

nLDE(Not Adaptive)
nLDE(Selectivity)
nLDE(Random)

Q16.sparql

(d) AUCRandom =
∫ 63.88

0
XRandom(t)dt

Figure 3.20: Trace curve of answers: number of answers produced (y-axis) in function of
time (x-axis). AUC measures the approach’s performance when producing
the first j tuples. The lower the value of AUC the better the performance.
In this example, nLDE (Random) exhibits the best performance.

To compare all the approaches under the same conditions, we set j to the min-
imum amount of answers produced among all the nLDE variants in each query.
For example, in Figure 3.20a we can observe that nLDE (Selectivity) produced
the least amount of answers (j = 7310). Therefore, in Figures 3.20b to 3.20d,
the metric AUC integrates over the interval [0, X−1

ρ (7310)] in each approach. The
lower the value of AUC the better the performance of the approach when produc-
ing the first j answers. In our example, the smallest AUC is achieved by nLDE
(Random) (cf. Figure 3.20d). We compute AUCρ using the function auc provided
in the flux R package [89].15 In this study, we execute each query 5 times and
report on the mean AUC. We set the query evaluation timeout to 300 secs.

Table 3.4 reports the mean AUC for the studied variants of nLDE when execut-
ing Benchmark 1. We can observe that, in general, the behavior of the approaches
is rather heterogeneous throughout the queries.

15auc can be computed for functions with at least two data points.

74

3. Adaptive Query Processing over Linked Data

Table 3.4: Mean values of the area under the curve AUC for answer traces when exe-
cuting Benchmark 1 with nLDE: Not Adaptive (NA), Selectivity (Sel), and
Random (Ran). Highlighted cells correspond to the best performant ap-
proach per query.

Not Adaptive Adaptive

Query AUCNA AUCSel AUCRan

Q1 0.506 1.554 1.605

Q2 7.516 9.014 4.335

Q3 5.166e+ 01 3.409e+ 01 3.996e+ 01

Q4 9.448e+ 01 5.197e+ 01 3.670e+ 01

Q5 1.583e+ 03 2.086e+ 03 2.052e+ 03

Q6 1.311e+ 03 6.568e+ 02 7.721e+ 02

Q7 5.388e+ 02 8.044e+ 02 3.927e+ 02

Q8 4.719e+ 04 3.999e+ 04 3.691e+ 04

Q9 1.737e+ 04 1.643e+ 04 1.687e+ 04

Q10 n/a n/a n/a

Q11 1.601e+ 05 1.706e+ 05 1.770e+ 05

Q12 9.564e+ 04 1.526e+ 05 1.480e+ 05

Q13 1.505e+ 06 1.354e+ 06 1.274e+ 06

Q14 1.900e+ 02 4.397e+ 01 5.878e+ 01

Q15 3.544e+ 05 4.171e+ 05 4.637e+ 05

Q16 4.954e+ 05 2.592e+ 05 1.026e+ 06

Q17 7.075e+ 04 8.380e+ 04 4.368e+ 05

Q18 1.517e+ 07 5.762e+ 07 5.056e+ 07

Q19 6.457e+ 03 6.730e+ 03 6.451e+ 03

Q20 1.052e+ 05 1.095e+ 05 1.047e+ 05

We now inspect the Benchmark 1 queries for which we observe a significant
difference in the performance of the approaches in a perfect network (cf. results
presented in Section 3.8.4): Q6, Q8, Q11, Q14, Q15, Q16, Q17, and Q18. The
behavior observed in this study for queries Q6, Q8, Q14 is consistent with the
results obtained in a perfect network (cf. Section 3.8.4): adaptive nLDE produces
results faster. Regarding Q9, Q15, Q16, and Q17, adaptive techniques introduced
certain overhead in a perfect network. Nonetheless, Table 3.4 reports that nLDE
(Selectivity) is now able to mitigate the impact of network delays in Q9 and Q16.
Lastly, in queries Q11 and Q18, the non-adaptive version still exhibits a better
performance. Particularly, the AUC values for query Q18 confirm that nLDE
(Not Adaptive) clearly outperforms the variants nLDE (Selectivity) and nLDE
(Random). Recall that Q18 is a highly non-selective query – that produces over
2.7e + 07 answers – and, in this case, processing large volumes of intermediate
results becomes the bottleneck during query execution and not the network delays.

In summary, the results from Table 3.4 show that the adaptive nLDE vari-
ants achieve a better performance in 12 out of 19 queries – with respect to the

75

3. Adaptive Query Processing over Linked Data

Table 3.5: Mean values of the area under the curve AUC for answer traces when exe-
cuting Benchmark 2 with nLDE: Not Adaptive (NA), Selectivity (Sel), and
Random (Ran). Highlighted cells correspond to the best performant ap-
proach per query.

Not Adaptive Adaptive

Query AUCNA AUCSel AUCRan

Q1-History n/a n/a n/a

Q2-History n/a n/a n/a

Q3-History 5.498 4.4199 4.119

Q4-History 881.840 837.777 886.639

Q5-History 374.190 372.767 533.446

Q1-Life Science 2.124 2.129 2.076

Q2-Life Science 6.851 5.097 7.008

Q3-Life Science 2.664 2.787 2.635

Q4-Life Science 3.463 1.760 2.847

Q5-Life Science 238.575 283.534 450.228

Q1-Movies 4574.980 4364.700 4696.362

Q2-Movies 164.387 150.349 174.099

Q3-Movies 95.911 117.495 127.071

Q4-Movies 114.418 155.972 129.722

Q5-Movies 165.241 153.496 204.733

Q1-Music 2.294e− 04 4.017e− 04 3.552e− 04

Q2-Music 2.055 1.309 3.833

Q3-Music 145.482 90.565 126.154

Q4-Music 192.177 181.760 233.356

Q5-Music 101705.000 95046.400 105494.700

Q1-Sports 0.563 0.459 0.538

Q2-Sports 22.850 17.104 25.780

Q3-Sports 24.958 24.111 27.677

Q4-Sports 0.597 0.406 0.548

Q5-Sports 59.370 56.047 59.743

non-adaptive version. However, there are still cases in which the overhead of
fine-grained adaptivity is notably in non-selective queries. Furthermore, among
the studied routing policies, Table 3.4 evidences the tradeoff of a light-weight
policy (Random) with respect to a more computationally expensive policy (Se-
lectivity). Our observations suggest that nLDE(Random) is able to spread the
tuples among the adaptive operators, thus distributing the workload throughout
the plan. Therefore, light-weight routing policies are more suitable for queries
with medium to large size of intermediate results.

Regarding Benchmark 2, Table 3.5 reports the mean values of AUC achieved by
the three approaches when executing selective queries. It is important to highlight
that this scenario (selective queries and small network delays) is quite troublesome

76

3. Adaptive Query Processing over Linked Data

for a routing policy. When queries produce a small number of intermediate re-
sults, the policy might not have enough information to devise an efficient routing.
Additionally, when the network is fast with a relatively low latency, the policy
has to be lightweight enough to process tuples arriving with fast rates.

We can observe in Table 3.5 that nLDE (Selectivity) and nLDE (Random) ex-
hibit better performance than nLDE (Not Adaptive) in 19 out of the 23 queries.
This result indicates that, on average, routing-based adaptivity is able to contin-
uously produce results faster under the presence of network delays. When com-
paring nLDE (Not Adaptive) and the nLDE adaptive variants, we can confirm
that routing operators mitigate the negative effect of network delays in selective
queries in comparison to executing fixed plans.

From the two adaptive nLDE variants, the results in Table 3.5 confirm that, on
average, nLDE (Selectivity) outperforms nLDE (Random) in 15 out of 19 queries
where adaptivity is best. In this context, nLDE (Random) is simply spreading
the workload among the adaptive operators. However, given that Benchmark 2
comprises selective queries, the workload is rather low. In consequence, we do
not observe a notable gain when executing the random policy in selective queries.
In contrast, the behavior of nLDE (Selectivity) suggests that our routing policy
effectively re-shapes the plan on-the-fly leading to efficient query processing.

From this study, we conclude that routing adaptivity is (on average) able to
continuously produce results faster in the presence of network delays. In the case
of non-selective queries (Benchmark 1), light-weight routing policies should be
preferred over computationally expensive policies. Furthermore, in highly non-
selective queries, fine-grained adaptivity is not convenient due to the overhead
introduced while performing tuple-by-tuple routing. For selective queries (Bench-
mark 2), routing policies that re-estimates operators’ selectivity on-the-fly effec-
tively mitigate the negative impact of delays and produce answers faster. These
empirical results answer our research question i.4 regarding the impact of routing-
based adaptivity on query performance (in networks with delays).

3.9. Summary and Future Work

This chapter presents the nLDE engine, a query processing engine to efficiently
execute SPARQL queries over Triple Pattern Fragments (TPFs). nLDE is tai-
lored to minimize the number of requests the engine submits to the data source.
In addition, the nLDE query engine achieves two types of adaptivity during execu-
tion time: intra-operator and routing-based adaptivity. Intra-operator adaptivity
enables the nLDE engine to produce query answers as the data arrives from the
source. Routing-based adaptivity allows for coping with unpredictable changes
during runtime and continuously adjusts execution schedulers to current condi-
tions such that running time is not highly affected by these changes.

The nLDE engine implements novel query optimization and execution tech-
niques. The nLDE optimizer generates effective physical plans against TPFs:
bushy tree plans where the leaves correspond to triple patterns and the interme-
diate nodes are adaptive physical operators. The optimizer groups triple patterns

77

3. Adaptive Query Processing over Linked Data

into Star-Shaped Groups which generate sub-plans that minimize the size of in-
termediate results and, in consequence, the number of requests sent to the TPF
server. Furthermore, the optimizer exploits TPF metadata to determine the shape
of the tree and to properly place either Symmetric Hash or Nested Loop joins.
The nLDE query engine implements a network of autonomous eddies. Eddies
achieve fine-grained adaptivity by routing tuples through the adaptive operators
which in turn generates different plans tuple by tuple. In our approach, we restrict
the space of plans that can be explored by the eddies. Our eddies are designed to
devise plans that can be derived from the optimized plan by applying commuta-
tive or associative transformations of join operators. To effectively route tuples,
we propose a novel routing policy for eddies. Our routing policy estimates opera-
tors’ selectivity taking into consideration the join properties of SPARQL queries
encoded in the Triple Pattern Descriptor.

Among the contributions presented in this chapter, we provide formal defi-
nitions and proofs of the theoretical properties of the proposed approach. We
formally demonstrate that the time complexity of the nLDE optimizer is O(n2)
with n being the number of triple patterns in the query (cf. Theorem 2). This
answers our first research question i.1 regarding the efficiency of the nLDE opti-
mization techniques. We also state and prove that nLDE terminates when execut-
ing SPARQL queries over finite datasets (cf. Theorem 3). Lastly, we demonstrate
that nLDE produces correct answers for BGP queries (cf. Theorem 4 and The-
orem 5) as defined in the SPARQL semantics. This theoretical result addresses
our research question i.2 about nLDE correctness for SPARQL BGP queries.

We conduct an empirical study to measure the performance of the nLDE
engine. First, we analyze the behavior of the nLDE optimizer in practice. Our
experiment on over 100 SPARQL queries corroborate our theoretical findings: i)
the running time of the nLDE optimizer depends on the number of triple patterns
in a query, and ii) the nLDE optimizer generates plans in quadratic time. These
results provide now empirical evidence to answer research question i.1.

Within our experiments, we compare the performance of the nLDE engine
and the state-of-the-art approach. Recall that the state of the art produces left-
linear plans with Nested Loop joins. Empirical results confirm that the bushy
plans devised by nLDE are more successful than the ones from the state of the
art. The nLDE engine speeds up query execution up to one order of magnitude
while reducing the number of requests sent over the network up to two orders of
magnitude – in both selective and non-selective queries. With this experiment, we
validate that the type of plans affects the size of intermediate results thus directly
impacting on the number of requests and query runtime. This answers our research
question i.3 to conclude that bushy plans in combination with appropriate physical
operators enable efficient query processing over TPFs.

Lastly, we investigate the impact of routing-based adaptivity on query pro-
cessing performance, as stated in our research question i.4. We first assess the
performance of the nLDE engine when the source is contacted via a network
with no delays (a perfect network). We observe that the fine-grained adaptiv-
ity achieved by nLDE eddies introduce certain overhead in terms of runtime and
throughput in highly non-selective queries. Nonetheless, in selective queries, we

78

3. Adaptive Query Processing over Linked Data

determine that there is no significant difference in runtime between carrying out
or not routing-based adaptivity in perfect networks. Furthermore, we analyze the
performance of nLDE eddies when delays occur in the network. We compare our
proposed routing policy against a random (baseline) policy and fixed plans. We
define a metric to measure the continuous performance of the studied approaches
by computing the area under the curve (AUC) of query answer traces. Experi-
mental results suggest that routing-based adaptivity re-adjusts query execution
continuously and produces results faster on average. In particular, we observe
that eddies with our routing policy exhibit a better performance when processing
selective queries over networks with delays.

Future work may extend the optimization and routing techniques presented
in this chapter. Our research demonstrates how a greedy algorithm can quickly
traverse a sub-space of plans and devise an effective optimized plan against TPFs.
Building on these results, further query optimizers may implement other strategies
to explore the space of plans to find even better plans.

Future work may also investigate novel cost models to estimate the selectivity
of Linked Data Fragments or the selection of different physical join operators,
for example, Merge Join. Merge join operators have proven to speed up query
execution when the incoming data is sorted. In particular, one of the practical
properties of TPFs over the structure Header Dictionary Triple (HDT) is that the
data retrieved from the sources is ordered by subject, predicate, object. Therefore,
the optimizer could place Merge Join operators to join triple patterns that share
a variable in the subject position.

Regarding routing techniques, in this chapter we empirically observed how
different routing policies can be more favorable in certain scenarios. The next
immediate step is then to explore the effect of other routing policies on the per-
formance. Considering that our empirical observation indicates that there is no
one-size-fits-all routing policy, we foresee the necessity of studying a new type
of meta-adaptivity where different routing policies are executed and adjusted ac-
cording to the feedback collected by the engine during runtime.

79

Chapter 4

Foundations of Crowdsourcing

4.1. Overview

In previous chapters, we tackled an instance of SPARQL query processing with
fully automatic solutions. However, there are data management tasks that require
the execution of processes which are intrinsically better performed by humans
than by machines. In particular, considering the limitations of machines when
the meaning of the data is highly contextual, approaches that rely on human
contribution become more apparent for tackling certain Linked Data management
tasks. Human contribution can be achieved via different problem-solving models,
being crowdsourcing one of the most popular nowadays. The term crowdsourcing
was coined by Howe [83] and derives from outsourcing1:

Crowdsourcing [83]. A process of solving a given problem formulated as a task by
reaching out to a large network of (unknown) people in the form of an open call.

Crowdsourcing can be applied to solve different types of problems, including
creative and computational tasks. In this thesis, we focus on reaching to crowd
contributors to tackle computational problems that currently cannot be solved
by machines in an effective way, i.e., we apply crowdsourcing to perform human
computation [130]. Human computation and, in particular, crowdsourcing have
been used in the context of the Semantic Web to support different tasks such as
ontology development, entity linking, semantic data annotation, and data quality
assessment [52, 145]. In Chapter 5 and Chapter 6 we explore novel applications
of crowdsourcing in Linked Data management to increase the answer quality of
query processing approaches over RDF graphs on the Web.

In this chapter, we introduce the crowdsourcing concepts and terminology that
are used in the remainder of this thesis. In Section 4.2 we briefly describe types of
crowdsourcing that can be applied to implement human computation solutions.
In Section 4.3 we introduce crowdsourcing workflows proposed in the literature,
which are tailored to enable the crowd to successfully tackle difficult or large tasks
while producing high-quality results.

1Outsourcing refers to the action of obtaining goods or a service via a contract with an
outside supplier.

81

4. Foundations of Crowdsourcing

Workers

Microtasks

Microtask
Platform

Crowd Answers

✓

✓
✓

Submit microtasks Workers
accept task

Workers solve
microtasks

Requester

Retrieve answers

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	

Data

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	
✓

Processed Data

Break into
small tasks

Question 1

Question 2
…

Figure 4.1: Microtask crowdsourcing. Requesters create microtasks from raw data; mi-
crotasks contain questions that should be assessed by humans. The micro-
tasks are then submitted to the platform, where workers select tasks to solve.
Crowd answers are retrieved from the platform to obtain final results.2

4.2. Types of Crowdsourcing

With the rise of the Web, several types of crowdsourcing have emerged that har-
ness human intervention to assess a wide range of tasks, including microtasks,
contests, macrotasks, and games with a purpose. Microtasks are tailored for solv-
ing small simple tasks that can be independently solved, do not require specialized
skills, and human contributors are remunerated with low amounts of money. Con-
tests facilitate the mobilization of knowledge experts to solve difficult tasks and
usually reward the contributor who provided the best solution. Macrotasks are
tailored for tasks that cannot be decomposed in simpler sub-tasks and require
particular abilities. Games with a purpose are designed to tackle tasks that are
easy to solve by humans, exploiting intrinsic motivations like learning or enter-
tainment and rewarding participants with leaderboard schemes as in traditional
games. Each form of crowdsourcing is designed to target particular types of prob-
lems and reaching out to different crowds. In the following, we describe the forms
of crowdsourcing that are applied in this work: microtasks (Chapter 5 and Chap-
ter 6) and contests (Chapter 6).

4.2.1. Microtasks

This form of crowdsourcing is applied to problems which can be broken down into
smaller units of work called ‘microtasks’ [83]. Microtask crowdsourcing works
best for tasks that rely primarily on basic human abilities, such as audio or visual
cognition, or natural language understanding and communication (sometimes in
different languages). As such, a great share of the tasks addressed via microtask
platforms like Amazon Mechanical Turk (MTurk) [1] or CrowdFlower [3] could be
referred to as routine tasks – recognizing objects in images, transcribing audio
and video material and text editing [51].

2Figure adapted from “MTurk: How it Works” available at https://requester.mturk.

com/tour/how_it_works

82

https://requester.mturk.com/tour/how_it_works
https://requester.mturk.com/tour/how_it_works

4. Foundations of Crowdsourcing

The general process of executing microtasks is depicted in Figure 4.1. Re-
questers can create microtasks to process raw data by creating questions to assess
the data; microtasks typically include instructions to explain the crowd how to
solve the task correctly. To be more efficient than traditional outsourcing (or
even in-house resources), microtasks need to be highly parallelized. This means
that the actual work is executed by a high number of contributors or workers
in a decentralized fashion. This not only leads to significant improvements in
terms of time of delivery but also offers a means to cross-check the accuracy of
the crowd answers (as each task is typically assigned to more than one person).
Collecting answers from different contributors allows for automatically identify-
ing accurate responses with aggregation techniques such as majority voting. The
reward model in microtask crowdsourcing implies small monetary payments for
each worker who has successfully solved a task. In the following, we present a
summary of microtask crowdsourcing terms that are relevant for this thesis.

Requester: A requester is a user that creates tasks to process data and
submits them to the microtask platform.

Microtask: A microtask corresponds to a work unit. A microtask is a self-
contained piece of work submitted by a requester. For example, assuming that
the requester has a set of photos that should be tagged or annotated, a microtask
could be: “Provide tags that describe the following set of photos”.

Question: A task can be composed of one or more questions. Following the
previous example of microtasks, instead of enquiring the crowd to assess one
photo per task, a microtask may group several photos in a single task. This
reduces the amount of microtasks that are submitted to the platform. We refer
to task granularity as the number of questions contained within a task.

Worker: A human contributor who solves microtasks is known as a worker.

Redundancy: Number of different workers to solve each task. Assigning
several workers to assess a task allows for collecting multiple answers for each
question. Redundancy is specified by requesters depending on the task. The
work by Snow et al. [150] and Hare et al. [75] explored redundancy levels for
different tasks. Snow et al. [150] show that after assigning 3 workers per task,
the gain in accuracy is not very high (less than 0.02) in Natural Language
Processing tasks. Nonetheless, Hare et al. [75] show that higher redundancy (5
workers) can increase the accuracy of crowd answers when labeling images. It
is important to mention that a worker can solve a task only once, guaranteeing
that answers for a task are collected from different workers.

Crowd Answers: Crowd answers are the responses provided by workers to
the questions within a microtask.

Payment: A payment is the monetary reward granted to workers for success-
fully completing a microtask. Requesters specify task payments, taking into
consideration the difficulty of the task as well as the time that workers have to

83

4. Foundations of Crowdsourcing

Table 4.1: Correspondence of microtask concepts used in this work to terms used in the
CrowdFlower and Amazon Mechanical Turk platforms.

Term CrowdFlower Amazon Mechanical Turk

Requester Requester / Customer Requester

Microtask Page Human Intelligence Task (HIT)

Question Row Question

Worker Contributor Worker / Turker

Redundancy Judgments per Row Assignments

Crowd Answers Judgments Responses

Payment Payment Reward

Quality Control Quality Control Qualification Types

spend to solve a task. In microtask platforms, payments may vary from a few
cents to a couple of dollars depending on the task. Recent work by Difallah et
al. [51] indicates that the majority of the task payments in MTurk range from
0.01 to 0.08 US dollars from 2009 to 2013, being 0.04 and 0.05 US dollars the
most common rewards in 2012 and 2013, respectively.

Quality Control: Requesters may specify parameters to prohibit certain
workers to solve tasks. Quality control mechanisms vary from platform to
platform. In the following, we briefly explain the most used control mecha-
nisms supported in CrowdFlower and MTurk to filter low-quality workers. In
CrowdFlower, test questions can be created from Gold Units (or gold standard
question-answer pairs) to detect spammers. Also, requesters can set up the min-
imum time it should take a worker to complete a task. In MTurk, requesters
may specify ‘qualification types’ which include: “Number of HITs approved”
which quantifies the number of tasks that a worker has solved in the past, and
“Approval Rate” defined as the percentage of tasks successfully solved by a
worker. In MTurk, requesters can also create customized qualification types.

Table 4.1 presents the correspondence of the concepts previously defined with
the terms used in CrowdFlower3 and Amazon Mechanical Turk (MTurk)4.

4.2.2. Contests

A contest reaches out to an expert crowd to solve a domain-specific problem and
rewards the best ideas. In a crowdsourcing setting, contests exploit competition
and intellectual challenge as main drivers for participation. The idea, originating
from open innovation, has been employed in many domains, from creative indus-
tries to sciences, for tasks of varying complexity (from designing logos to building

3https://success.crowdflower.com/hc/en-us/articles/202703305-Getting-

Started-Glossary-of-Terms
4http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/mechanical-turk-

concepts.html

84

https://success.crowdflower.com/hc/en-us/articles/202703305-Getting-Started-Glossary-of-Terms
https://success.crowdflower.com/hc/en-us/articles/202703305-Getting-Started-Glossary-of-Terms
http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/mechanical-turk-concepts.html
http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/mechanical-turk-concepts.html

4. Foundations of Crowdsourcing

sophisticated algorithms) [103, 152]. In particular, contests involving experts in
advancing science have a long-standing tradition in research, e.g., the DARPA5

and Netflix6 challenges. Furthermore, web-based platforms like Taskcn [177] and
TopCoder7 allow users to post different types of tasks (e.g., software development,
data science, and design), gather submissions provided by several contributors,
and pay for the best submission. Usually, contests as crowdsourcing mechanisms
are open for medium to long periods of time in order to attract high-quality con-
tributions. Contests may apply different reward models but, in contest platforms
on the Web, a common modality is to reward only the winner of the contest.

4.3. Crowdsourcing Workflows

Crowdsourcing workflows consist on dividing a problem or task into multiple steps
that are pipelined to provide a solution to the original task [42]. Instead of im-
plementing single-step solutions, data can be processed in multiple stages where
human contributors and even machines can be combined to produce results collab-
oratively. In crowdsourcing workflows, the outcome of a previous task corresponds
to the input of a subsequent task.

The main goal when implementing crowdsourcing workflows is to achieve high-
quality results in difficult or large tasks, i.e., tasks that require specific domain
knowledge or a long time to be solved. Therefore, instead of enquiring the crowd
to solve a single complex task, workers are able to focus at one portion of the task
at the time. In addition, crowdsourcing workflows may include sequential human
tasks which also serve as validation steps where workers improve or corroborate
the answers of other workers produced in previous steps.

Recent works have proposed several crowdsourcing workflows [27, 28, 39, 43,
105, 106], which are tailored for different types of problems. In this thesis, we first
study the application of hybrid workflows (cf. Chapter 5) by combining query
processing techniques with crowdsourcing. Section 4.3.1 provides more details
about hybrid workflows. Then, we study crowdsourcing workflows that solely rely
on human contribution (cf. Chapter 6) to allow laymen to solve tasks that require
high domain knowledge specifically in the context of Linked Data. For instance,
Find-Fix-Verify [27, 28] is a workflow tailored for solving complex tasks by crowd
workers who have little domain knowledge [42]. In Section 4.3.2 we present the
Find-Fix-Verify workflow, where the main idea is to divide a task into several
different sequential tasks that are simple to solve by laymen.

5http://www.darpa.mil/About/History/Archives.aspx
6http://www.netflixprize.com/
7https://www.topcoder.com/

85

http://www.darpa.mil/About/History/Archives.aspx
http://www.netflixprize.com/
https://www.topcoder.com/

4. Foundations of Crowdsourcing

Overlapping
portions

Find Stage

Soylent is a prototype…!

Soylent is, a prototype…!

Soylent is a prototypes…!

Soylent is, a prototype…!

Soylent is a prototypes…!

✓

Soylent is, a prototype…!

Soylent is a prototypes…!

✓

Soylent is, a prototype…!

Soylent is a prototypes…!✓

-‐-‐-‐-‐-‐-‐-‐-‐-‐	
-‐-‐-‐-‐-‐-‐-‐-‐-‐	
-‐-‐-‐-‐-‐-‐-‐-‐-‐	

Fix Stage Verify Stage

-‐-‐-‐-‐-‐-‐-‐-‐-‐	 Suggested
changes

Figure 4.2: Find-Fix-Verify workflow implemented in Soylent [28] to shorten text doc-
uments. The crowd identifies portions of a document that can be reduced
in the Find stage. Then, in the Fix stage, the crowd proposes changes to
shorten the overlapping portions. In the Verify stage, workers vote for the
most appropriate changes. Figure adapted from Bernstein et al. [28].

4.3.1. Hybrid Crowdsourcing Workflows

Hybrid crowdsourcing workflows (also called ‘hybridized workflows’ [42]) are tai-
lored to leverage human and computer capabilities to solve tasks where solely
machine- or human-driven solutions do not exhibit good performance.

Hybrid workflows are composed of several processes which are executed by
humans or automatic approaches. The role of human intervention in this type
of crowdsourcing workflows depends on each use case. Crowdsourcing can be ap-
plied to validate intermediary outcomes of automated approaches. For example,
CrowdTruth [85] implements a human-machine framework in which the results of
machine learning approaches are then assessed by crowd workers. Another strat-
egy would be to apply crowdsourcing to generate input data that is later consumed
by algorithms. For instance, CrowdTruth also harnesses crowd contributions via
microtasks to generate ground truth annotated data, which is later used by the
IBM Watson [56] to extract information from medical texts.

Hybridized workflows allow for cross-validating intermediate results as well as
applying human intervention (which is usually the most demanding resource in
terms of time and cost) on difficult computational tasks [42].

4.3.2. Human-based Workflow: Find-Fix-Verify

Find-Fix-Verify [27, 28] consists in decomposing a complex task into a series of
smaller and simpler tasks that are carried out in a three-stage process. Each
stage in the Find-Fix-Verify workflow or pattern corresponds to a verification
step over the outcome produced in the immediate previous stage. The first stage
of this pattern, Find, asks the crowd to identify portions of the input that require
attention depending on the task to be solved. In the second stage, Fix, the crowd
corrects the elements identified in the previous stage. Lastly, the outcome of
the previous stage is assessed in the Verify stage; this step corresponds to a final
quality control iteration. With the Find-Fix-Verify workflow, workers concentrate
on specific aspects of the tasks while the results are incrementally improved.

86

4. Foundations of Crowdsourcing

The Find-Fix-Verify workflow was introduced in Soylent [27], a human-enabled
word processing system that contacts microtask workers to edit and improve parts
of a document. The tasks studied in Soylent include text shortening, grammar
check, and unifying citation formatting. For example (cf. Figure 4.2), in the
Soylent text shortening task, workers in the Find stage are asked to identify
portions of text that can be reduced in each paragraph. Candidate portions of
the document that meet certain consensus degree among workers, i.e., overlapping
portions, are then assessed in the next step. In the Fix stage, workers must shorten
the previously identified portions of paragraphs; shortening text might require
changes and rewrites in the paragraphs. The shortened text is then assessed
by workers in the Verify stage to select the most appropriate changes without
changing the meaning of the original text.

The Find-Fix-Verify pattern has proven to produce reliable results since each
stage exploits independent agreement to filter out potential low-quality answers
from the crowd. Find-Fix-Very is also a highly flexible workflow, since each stage
can employ different crowds, as they require different skills and expertise [28].

87

Chapter 5

Crowdsourcing Query Answer
Completeness over Linked Data

5.1. Introduction

As in traditional semi-structured data models, RDF allows for creating datasets
that result from integrating multiple, and typically heterogeneous and unstruc-
tured data sources. In RDF datasets, triples represent positive statements, i.e.,
negative statements cannot be modeled. Further, the Open World Assumption
(OWA) is assumed for RDF triples, e.g., because RDF datasets may be incom-
plete, a movie can be associated with producers even if no triples represent this
statement in an RDF dataset. Additionally, class hierarchies in ontologies can
be used to describe the types of the resources, and resources of the same class
can be characterized by different sets of properties. For example, in the DB-
pedia dataset [102], the resource dbr:The Interpreter is typed as schema.org:Movie

and linked to three producers via the dbp:producer property, while the resource
dbr:Tower Heist also typed as schema.org:Movie has no values for dbp:producer.

In previous chapters, we assume that RDF datasets are complete. In practice,
however, a large number of missing values may occur, negatively impacting thus
the completeness of approaches that rely on consuming Linked Data for query
processing. To illustrate, let us consider a query that selects movies, including their

producers, that have been filmed by Universal Pictures. The execution of this query over
the DBpedia dataset returns no producers for 239 out of the 1, 461 movies filmed
by Universal Pictures. An inspection of the query results reveals that DBpedia
has no producers for the movie dbr:Tower Heist, however, this movie has actually
three producers. This is an example of missing values. With cases like this being
a common occurrence in RDF datasets, further techniques are needed to improve
data quality in terms of completeness and subsequent query processing results.
Therefore, in this chapter, we tackle the problem of resolving missing values in
RDF datasets during query processing.

The Database and Semantic Web communities have extensively studied method-
ologies and methods for assuring data quality in traditional databases [120] as
well as on web data [5, 53, 180]. Existing techniques range from statistical meth-
ods [29, 44, 45, 46, 132, 133, 176] to machine learning techniques for detecting

89

5. Crowdsourcing Query Answer Completeness over Linked Data

erroneous and incomplete data [5, 53, 68]. Despite all these developments, human
common sense and knowledge may be required for improving the effectiveness
of automatic methods of data quality assessment [53]. In this direction, recent
research suggests that microtask crowdsourcing can provide a platform for imple-
menting effective hybrid human-machine approaches for assessing the quality of
the data. For instance, Kontokostas et al. [94] propose a crowdsourcing tool for
Linked Data experts to annotate incorrect RDF triples with a hierarchy of qual-
ity issues. Similarly, Chu et al. [40] and Park and Widom [124] propose hybrid
approaches that resort to the crowd for repairing data from Web tables.

In the context of data management, hybrid human-machine approaches have
been also used to design advanced query processing systems [63, 112, 123]. Mainly,
these approaches focus on how to manually specify those parts of the query that
should rely on human input, typically devising bespoke query languages and ex-
tensions on top of established database technology. Albeit effective for relational
databases, such approaches are less feasible for a Linked Data scenario, which is
confronted with autonomous RDF datasets. We aim at overcoming the limitations
of crowd-based solutions for relational query processing, and tackle the problem
of automatically identifying portions of a query against an RDF dataset that yield
incomplete results while missing values are resolved via microtask crowdsourcing.
Tackling this problem requires query evaluation techniques able to preserve the
formal properties of SPARQL query execution as established in the Evaluation
problem [127]. In addition, resorting to the crowd to assess RDF data demands
strategies to collect reliable answers from human contributors efficiently.

5.1.1. Research Questions

ii.1 What is the computational complexity of identifying portions of SPARQL
queries that yield missing values and integrating human input during query
processing?

ii.2 Is it feasible to augment the answer completeness of SPARQL queries via
microtask crowdsourcing?

ii.3 What is the impact of exploiting the semantics of RDF resources on crowd
effectiveness and efficiency when solving missing values?

To answer these research questions, we propose a Hybrid Query Answering
Engine (HARE) [8, 9]. HARE combines human and computer capabilities to run
queries against RDF datasets. HARE aims at enhancing answer completeness of
SPARQL queries by resolving missing values in the dataset via microtask crowd-
sourcing and provides a highly flexible crowdsourcing-enabled SPARQL query ex-
ecution: No extensions to SPARQL or RDF are required, and users can configure
the level of expected answer completeness in each query execution.

In HARE, we develop an RDF completeness model able to estimate the com-
pleteness of the RDF descriptions of resources. For example, consider the produc-
ers of the movie The Interpreter, which are objects in DBpedia RDF triples with
property dbp:producer and subject dbr:The Interpreter; our RDF completeness model

90

5. Crowdsourcing Query Answer Completeness over Linked Data

is able to estimate the completeness of producers based on estimations about the
aggregated number of objects for resources of the class schema.org:Movie associ-
ated with the property dbp:producer in the DBpedia dataset. These estimates are
combined with the human input via microtasks to enhance the completeness of
answers of SPARQL queries that access objects in RDF triples, e.g., in the query,
the producers of the movies that have been filmed in New York City by Universal Pictures,
the producers of the movies correspond to RDF triple objects; HARE is able to
detect that the sub-query asking for movie producers should resort to the crowd
in order to collect the missing data in DBpedia. Following this intuition, our
proposed model allows for computing answer completeness estimates of SPARQL
queries that produce RDF resources that appear as either subjects or objects in
the RDF data set, e.g., in the query, the movies that have been filmed in New York City

by Universal Pictures and produced by Brian Grazer, the movies correspond to subjects
in the DBpedia triples; HARE may decide to submit to the crowd a sub-query
asking for the movies based on the estimates of the subject completeness provided
by the RDF completeness model.

Furthermore, HARE maintains a Crowd Knowledge Base (CKB) that captures
the knowledge collected from the crowd. In CKB, the knowledge is modeled as
fuzzy sets of RDF triples, where the membership degree represents the confidence
of the crowd. HARE relies on CKB to discern at query runtime whether the crowd
is likely to solve a question accurately.

During query processing, crowd knowledge is collected by the HARE microtask
manager which is composed of the user interface (UI) generator and the micro-
task executor. The UI generator is able to exploit the semantics encoded in the
RDF descriptions of resources to build interfaces that facilitate the collection of
right answers from the crowd. The microtask executor submits human tasks to a
crowdsourcing platform and processes the crowd answers that are stored in CKB.

Finally, we propose a query engine to combine crowd answers from the Crowd
Knowledge Base (CKB) and intermediate SPARQL results obtained from the
dataset. To query the fuzzy RDF triples from CKB, we propose a fuzzy set se-
mantics for SPARQL. The definition and demonstrations of the formal properties
of the proposed semantics are part of the contributions of this work.

The quality of the HARE hybrid query processing techniques has been empir-
ically evaluated with a crafted collection of 50 SPARQL queries against DBpedia.
The goal of the experiments is to analyze the behavior of HARE when queries
are executed against an RDF dataset and the CrowdFlower platform [3]; effec-
tiveness of the detailed interfaces produced by the HARE microtask manager is
also studied. Empirical results clearly show that HARE can reliably augment
response completeness while crowd answers achieved accuracy values from 0.84
to 0.96. Furthermore, the interfaces produced by HARE by exploiting RDF de-
scriptions are able to provide assistance to the crowd, and speed up the process of
crowd answering by at least one order of magnitude. The majority of the query
answers are produced in reasonable time via crowdsourcing, i.e., when interfaces
are semantically enriched, at least 75% of the answers are collected 12 minutes
after the first task was submitted to the crowd. These empirical results confirm
that combining crowd knowledge and computational query processing methods

91

5. Crowdsourcing Query Answer Completeness over Linked Data

can effectively enhance the completeness of SPARQL query answers.

5.1.2. Contributions

The main contribution presented in this chapter is a hybrid query engine to en-
hance answers of SPARQL queries that exploits crowd knowledge. Furthermore,
we make the following research contributions to the problem of enhancing answer
completeness of SPARQL queries via crowdsourcing:

• An RDF completeness model able to estimate missing resources in RDF
datasets by exploiting the topology of RDF graphs.

• A crowd knowledge bases (CKB) that represents the knowledge collected
from the crowd using a fuzzy extension of RDF. In contrast to RDF which
models only positive facts, CKB allows for modeling positive and negative
statements as well as contradicting crowd answers or statements where the
crowd declared to be unknowledgeable.

• A formal definition of a fuzzy set semantics of the SPARQL query language,
and a query engine able to evaluate BGPs of SPARQL queries respecting
the proposed SPARQL fuzzy set semantics.

• A formal analysis of the time complexity of the proposed query processing
techniques; particularly, we formally prove that HARE query evaluation
comes for free in terms of time complexity.

• A microtask manager that exploits the semantics encoded in RDF descrip-
tions to generate detailed interfaces which facilitate the collection of accurate
answers from the crowd.

• An extensive empirical evaluation that demonstrates the crowdsourcing ca-
pabilities of our approach as well as its quality in terms of answer complete-
ness, effectiveness, and efficiency.

5.1.3. Structure of the Chapter

The rest of this chapter is structured as follows. In Section 5.2 we present a mo-
tivating example, and in Section 5.3 we summarize the related work. Section 5.4
formalizes the problem solved by HARE and describes the main components of
the HARE architecture. We define the HARE completeness model in Section 5.5,
and in Section 5.6 we define the representation of the crowd knowledge. Sec-
tion 5.7 describes the HARE microtask manager, and Section 5.8 presents the
query optimizer. Our proposed fuzzy semantics of SPARQL and the query engine
are defined in Section 5.9. We report the experimental results in Section 5.10, and
we conclude in Section 5.11 with an outlook to future work.

92

5. Crowdsourcing Query Answer Completeness over Linked Data

rdf:type

dbr:Germany

yago:
CapitalsIn
Europe

dbr:Berlin

rdf:type
rdf:type

dbo:country

dbr:Rome

dbr:Italy

dbr:Madrid

?

dbo:country dbo:country

dbo:Country
rdf:type

rdf:type

(a) The cities dbr:Berlin and dbr:Rome are
linked to a country, contrary to dbr:Madrid
whose country value is missing.

rdf:type

dbr:Germany

yago:
CapitalsIn
Europe

dbr:Berlin

rdf:type
rdf:type

dbo:country

dbr:Rome

dbr:Italy

dbr:Madrid

dbo:country dbo:country

dbo:Country
rdf:type

rdf:type
rdf:type

dbr:Spain

(b) The crowd stated that Spain is the coun-
try of Madrid, hence, the value for the
property dbo:country of db:Madrid is
dbr:Spain.

Figure 5.1: Motivating example: Missing values in RDF datasets. (a) Portion of the
DBpedia dataset for cities and countries. Missing values in the RDF graph
are highlighted. (b) Crowd answers for the SPARQL query from Listing 5.1
are used to complete missing values in the RDF dataset.

5.2. Motivating Example

Consider DBpedia, an RDF dataset that contains semi-structured information
extracted from Wikipedia. Among other domains, DBpedia contains information
about cities and countries. A portion of DBpedia is depicted in Figure 5.1a.
The cities dbr:Berlin, dbr:Rome, and dbr:Madrid are classified as Capitals in Europe.
Moreover, dbr:Berlin and dbr:Rome are associated via the predicate dbo:country with
their corresponding countries. However, the value of the property dbo:country for
dbr:Madrid is missing, as shown in Figure 5.1a.

Consider the SPARQL query presented in Listing 5.1 to retrieve data from
DBpedia. This query selects cities and countries such that cities are capitals in Eu-

rope and are located in a country. When executing this query over the dataset, the
total number of answers is 47: DBpedia contains 47 entities that are classified
as European capitals (line 6) and that are linked to their corresponding country
(line 7). However, when executing only the triple pattern on line 6, it is revealed
that DBpedia contains 56 bindings for European capitals. This means that, with
the information available in the dataset, it is not possible to produce a complete
answer for the given query. In general, this problem arises when parts of SPARQL
queries are matched against portions of the RDF dataset with missing or incom-
plete values. Therefore, the first goal of our work is identifying parts of SPARQL
queries that are affected by incomplete portions of RDF datasets.

93

5. Crowdsourcing Query Answer Completeness over Linked Data

Listing 5.1: Query to select cities and countries such that cities are capitals in Europe and
are located in a country . Highlighted portion of the query indicates that 47
out of 56 European capitals are associated with a country (e.g., dbr:Berlin).

1 PREFIX yago: <http://dbpedia.org/class/yago/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
4

5 SELECT ?city ?country WHERE {
6 ? city rdf :type yago:CapitalsInEurope . # (56 results)
7 ? city dbo:country ?country . # (47 results)
8 }

In order to find the 9 missing values of countries in our example, we resorted
to the crowd reached via the CrowdFlower platform, i.e., we crowdsourced the
bindings for (?city, dbo:country, ?country) in the SPARQL query from Listing 5.1.
The crowd affirmed that 8 out of the 9 cities are located in a country, therefore
the result set for the query was augmented from 47 to 55 answers.1 For instance,
the crowd determined that the country of dbr:Madrid is dbr:Spain, as depicted in
Figure 5.1b. The second goal of our work is crowdsourcing potential missing values
and efficiently combining crowd answers with results from the dataset during
query execution. Finally, to facilitate the collection of right answers from the
crowd, our third goal is to develop a microtask manager able to generate interfaces
that describe RDF resources in terms of their properties. For example, knowing
that dbr:Madrid is the capital of an European country and depicting the map
and the geo location of Madrid can provide assistance to the crowd workers,
and improve thus their performance. Our system HARE implements human and
machine computational techniques to achieve these three goals.

5.3. Related Work

5.3.1. Hybrid Query Processing for Relational Data

The Database community has proposed several human-computer query processing
architectures for relational data. Approaches such as CrowdDB [63], Deco [122,
123], Qurk [110], and CrowdIP [54] target scenarios in which existing microtask
platforms are directly embedded in query processing systems. These systems pro-
vide declarative languages, e.g., extensions to SQL, tailored to facilitate a highly
adaptive design of hybrid query execution pipelines. CrowdDB [63] provides SQL-
like data definition and query languages to specify tables, columns or operators
that are subject to crowdsourcing. Similarly, Deco [122, 123] is a declarative ap-
proach that allows for the specification of fetch rules to indicate how data can
be obtained from humans, and resolution rules to specify how conflicts in crowd-
sourced data are solved. Qurk [112] provides a specification language to describe
microtasks in terms of the type of question, input, and output. Furthermore, Qurk

1For the city dbr:Monaco, the crowd did not provide a country.

94

5. Crowdsourcing Query Answer Completeness over Linked Data

is able to generate query plans that combine both relational tables and crowd tasks
to reduce the number of tasks submitted to the crowd [111]. CrowdOp [54] relies
on cost-based query optimization to generate query plans that gather unknown
values in relational tables from the crowd.

The previously described hybrid relational engines require database adminis-
trators or crowd-based workflow designers to specify what to crowdsource during
query execution. The focus is mainly on the architectural and formalism design,
as well as on the efficient implementation of the actual crowdsourcing compo-
nents, assuming that specific classes of queries will always be outsourced to the
crowd (e.g., subjective comparisons). Additionally, the problem of reducing the
number of concurrent tasks to a microtask platform has been addressed, because
the total delivery time increases, whenever tasks compete for the attention of the
same workers. Approaches such as Deco [122] have tackled this issue by proposing
caching strategies, while CrowdDB [63] attempt to reduce the number of crowd-
sourced tasks by considering structural properties of relational data.

To conclude, the studies of crowdsourcing-enabled relational databases pro-
vide evidence about how specific design parameters of microtasks influence the
performance of queries executed with hybrid systems. However, these techniques
and insights cannot be directly transferred to the Web of Data due to several
reasons: i) SPARQL queries may span over a large number of statements (or
triples) and even several datasets. It is therefore unrealistic to expect a SPARQL
engine designer to specify rules for queries that would trigger a crowdsourcing
task. ii) The semi-structured nature of web data makes it very hard to assess
the quality of datasets upfront and to identify subgraphs which should be sub-
ject to crowdsourced curation (e.g., missing or incorrect values). iii) Queries over
web-accessible RDF datasets (e.g., via SPARQL endpoints or TPF servers) are
typically posed by users autonomously and – contrary to relational crowdsourcing
scenarios – precisely determining at design time the attributes that required to
be crowdsourced is not possible.

HARE takes the lessons learned in crowd-based relational databases and ap-
plies them to a scenario that exhibits formally different characteristics regarding
the ways data is produced and consumed. First, Linked Data sets are assumed
to be correct but potentially incomplete, and crowd knowledge is exploited to
enhance query completeness and enrich Linked Data sets. In HARE, crowd an-
swers are captured in crowd knowledge bases and the RDF completeness model
is used to devise optimization strategies for effective query execution. HARE
optimization techniques make sure that human contributions are sought only in
those cases in which it will most likely lead to result improvements, hence, reduc-
ing both the overall costs and the average time needed to collect crowd answers.
Additionally, HARE leverages the semantics encoded in RDF datasets and their
ontologies to generate microtask interfaces tailored for types or classes of the data
that will be collected from the crowd. Overall, although HARE implements a hy-
brid human/computer query processing architecture, it differs from crowd-based
relational databases in the ability to exploit the RDF model, the semantics of the
data, and the wisdom of the crowd to acquire the microtasks that will allow for
augmenting query answer and enriching Linked Data.

95

5. Crowdsourcing Query Answer Completeness over Linked Data

5.3.2. Crowd-based Linked Data Management Applications

Crowdsourcing has also been applied in other contexts of data management. De-
martini et al. [48, 49] propose ZenCrowd, a hybrid approach that relies on paid
crowdsourcing for matching linked datasets and linking collections of web pages
to the LOD cloud. ZenCrowd implements a probabilistic framework to identify
candidate matches and suitable crowd workers and applies crowdsourcing to a
corpus of news articles to suggest new links. Additionally, ZenCrowd is able to
link two instances of different schemas or ontologies; thus, automatic entity ex-
traction and linking are enhanced with crowd knowledge. ZenCrowd probabilistic
model takes advantage of probabilistic networks to gather evidence collected from
algorithmic linkers and the crowd and produce confidence scores of the predicted
matches. CrowdMap [137] tackles the ontology matching problem, and reports on
the evaluation of existing alignment algorithms and how precision and recall can
be enhanced using crowd labor. HARE also resorts to microtask crowdsourcing for
hybrid computation but with a different purpose. Instead of matching instances
and combining matching evidence from linking algorithms and the crowd, HARE
depends on estimates from the RDF completeness model and crowd knowledge to
decide completeness of RDF datasets. HARE solves this decision problem during
query processing time, and at the level of RDF triples that correspond to the
evaluation of SPARQL query triple patterns.

OASSIS [17] is a recommendation system that mines frequent patterns from
personal data collected via crowdsourcing. Patterns to mine are specified in
OASSIS-QL, a SPARQL-like language. OASSIS exploits general knowledge from
ontological concepts to reason over the data from the crowd in order to reduce the
number of subsequent crowdsourced questions to mine a pattern. The problem
of deciding the number of questions posed to the crowd has been also studied
by Mozafari et al. [119] and Trushkowsky et al. [157]. Mozafari et al. propose
machine learning algorithms that rely on the bootstrap theory to precisely esti-
mate uncertainty scores of labels that will be requested from the crowd in one or
different batches. The approach is general enough to be treated as a black-box
and adapted to solve the optimization task of deciding when to stop asking in
different crowd-based problems, e.g., entity resolution, image search, or sentiment
analysis. Trushkowsky et al. present a statistical model that implements sam-
pling techniques to estimate the cardinality of crowd answers. Both solutions are
tailored to decide when to stop the execution of microtasks with a large number of
answers; however, appropriate training datasets or sample populations have to be
crafted to generate robust estimates. Similarly, HARE also tackles this decision
problem but implements a simple and light-weight model that does not require
training data or sample populations. In contrast to approaches by Mozafari et
al. and Trushkowsky et al., HARE takes advantage of knowledge collected from
the crowd and the RDF completeness model to estimate an upper bound on the
number of iterations the same question will be sent to the crowd.

96

5. Crowdsourcing Query Answer Completeness over Linked Data

5.3.3. Web Data Quality Assessment

Crowdsourcing techniques have been also applied to judge data quality issues
such as completeness and correctness. KATARA [40] is a system to cleanse tabu-
lar data by exploiting knowledge collected from RDF knowledge bases (KBs) and
the crowd; tabular data may be incorrect while KBs are assumed to be correct but
may be incomplete. KATARA discovers patterns that align table columns with
ontological definitions in KBs, identifying types and relationships of the columns.
Patterns are then validated via crowdsourcing; correct patterns are used to gener-
ate possible repairs for data entries in the tables and to potentially complete data
in the KBs. HARE also assumes KBs are correct but potentially incomplete and
implements query processing strategies that take advantage of crowd knowledge
and the RDF completeness model to enhance query completeness. HARE makes
use of the enhanced answers to enrich the KBs; any type of RDF triples can be
added to the KBs. Contrary, KATARA is limited to the data stored in the tabu-
lar datasets, and RDF triples of the form (s, p, o) can only be added to the KBs,
whenever s and o appear in the tabular dataset.

Zaveri et al. [179] also tackle the data quality assessment problem and pro-
pose a methodology to detect quality issues in RDF knowledge bases (KBs). The
proposed methodology by Zaveri et al. relies on expert knowledge; experts an-
notate existing triples with a taxonomy of Linked Data quality issues via the
TripleCheckMate tool [94]; incomplete RDF triples cannot be detected with this
methodology. HARE also resorts to crowd knowledge to identify quality issues in
KBs. However, HARE assumes that KBs are correct but potentially incomplete,
and exploits an RDF completeness model and crowd knowledge bases not only to
decide incompleteness but also to acquire a hybrid query processing task able to
enhance query answer and KB completeness.

Finally, the problem of automatically constructing knowledge bases has been
addressed by Dong et al. [53], and unsupervised strategies have been proposed
for both resolving conflicts from knowledge extracted from different data sources
and finding the correct values. Knowledge in the integrated knowledge base is
represented as RDF triples (s, p, o); the approach works under the assumption
that values of s, p are already known in a gold standard knowledge base, e.g.,
Freebase, and the goal is to identify correct values of o. If (s, p, o) occurs in the
gold standard, then the triple is correct. However, the decision of incorrectness is
made based on the LCWA which assumes that the gold standard knowledge base
is locally complete. If (s, p, o) does not occur in the gold standard, but there is at
least one triple (s, p, o1) with o1 6= o, then (s, p, o) is assumed incorrect. Contrary,
if such triple (s, p, o1) does not occur in the gold standard, the triple is excluded
and not classified. HARE assumes that the knowledge base is correct but may be
incomplete, and applies LCWA differently. For example, the number of different
values of o in triples (s, p, o) and the types of the resource s in the knowledge
base, are used to estimate the completeness of an RDF resource with respect to
p. Estimates of completeness are exploited by the HARE query engine to decide
if the answer of a triple pattern will be incomplete. Thus, crowd knowledge is
acquired to enhance query completeness, as well as to potentially enrich the KB.

97

5. Crowdsourcing Query Answer Completeness over Linked Data

SPARQL Query Q, τ

RDF
Completeness
Model

Tasks

Human
input

Crowd Knowledge

Query Engine

CKB+ CKB- CKB~
Query
Optimizer

LOD Cloud

Query plan

Crowdsourcing
triple patterns

RDF
Data Set

Input

Results for Q

Bindings from
the crowd

RDF
data

Output

Aggregated
Human Input

Crowd

Microtask Manager
UI

Generator
Microtask
Executor

Query
execution

Figure 5.2: The HARE architecture. HARE receives as input a SPARQL query Q and a
quality threshold τ . The query optimizer and query engine detects portions
of Q that yield incomplete results using the RDF completeness model. The
HARE query engine combines intermediate results from the dataset with
values provided by the crowd to augment the answer of Q. Potential missing
values are crowdsourced by the microtask manager. Human input is stored
as RDF data in the crowd knowledge bases.

5.4. The HARE Approach

In the following we formalize the problem tackled in this chapter and present the
architecture of our proposed solution.

5.4.1. Problem Definition

Given an RDF data set D and a SPARQL query Q to be evaluated over D.
Consider D∗ the virtual dataset that contains all the triples that should be in D,
i.e., D∗ is complete with respect to D. The problem of identifying portions of Q
that yield missing values is defined as follows. For all BGP B = {t1, t2, ..., tn} in
Q, identify the subset P ∈ 2B such that:

[[P]]D ⊂ [[P]]D∗ (5.1)

Once P has been identified, the problem of resolving the missing values to
enhance the final answer of Q consists on creating mappings µ such that:

µ /∈ [[P]]D ∧ µ ∈ [[P]]D∗ (5.2)

5.4.2. Proposed Solution

We propose HARE, a query engine that automatically identifies portions of a
SPARQL query that might yield incomplete results and resolves them via crowd-
sourcing. Figure 5.2 depicts the components of HARE, which receives as input a

98

5. Crowdsourcing Query Answer Completeness over Linked Data

SPARQL query Q and a quality threshold τ . The RDF completeness model esti-
mates the completeness of portions of a dataset. The query optimizer generates a
plan from Q, executed by the query engine. The engine takes into consideration
τ , the completeness model, and RDF triples collected from the crowd to tackle
the first problem presented in Equation (1). Potential missing values are passed
to the microtask manager, which contacts the crowd to generate the mappings
µ to tackle the second problem presented in Equation (2). The HARE engine
efficiently combines results retrieved from the dataset with human input stored in
the crowd knowledge base to produce the final results for Q.

5.5. RDF Completeness Model

We propose a model to estimate the completeness of portions of RDF datasets.
Our model is based on the LCWA and estimates completeness based on the knowl-
edge that is currently encoded in the dataset. The intuition behind our model
is to capture the number of different subjects, predicates, and objects in RDF
triples, i.e., the multiplicity of RDF resources.2 Then, we capture the aggregated
multiplicity of classes in the dataset, i.e., the multiplicity of all resources that
belong to the same class is compared. In the following, we define the multiplicity
of RDF resources. We say that a resource r occurs in dataset D if there exists an
RDF triple in D where r is either the subject, predicate, or object.

Definition 21 (Multiplicity of RDF Resources) Let s, p, o be RDF resources.
The multiplicity of RDF resources in a dataset D is defined as the number of sub-
jects (MSD(o|p)), objects (MOD(s|p)), and predicates (MPD(s|o)) that appear in
RDF triples (s, p, o) in D as follows:

MSD(o|p) := |{s | (s, p, o) ∈ D}|
MOD(s|p) := |{o | (s, p, o) ∈ D}|
MPD(s|o) := |{p | (s, p, o) ∈ D}|

Example 13 Consider the RDF graph D depicted in Figure 5.3 which contains
four nodes of type schema.org:Movie. In this figure, movies are linked to their pro-
ducers via the dbp:producer predicate. In this example, the multiplicity is computed
for all the nodes of type movies and their producers. For instance, the resource
s = dbr:Legal Eagles has two values for the predicate p = dbp:producer, therefore,
MOD(s|p) is 2 in this case. The non-zero values for MSD, MOD, and MPD for
movies and producers in the dataset D are as follows:

2In the remainder of this work, we use the term ‘RDF resource’ to refer to a resource that is
described with the RDF data model.

99

5. Crowdsourcing Query Answer Completeness over Linked Data

rdf:type

“Ivan
Reitmann”

dbr:
Eric_Fellner

dbr:
Tim_Bevan

dbr:
Kevin_Misher

dbr:
Sheldon_Kahn

CompOD(dbr:Legal_Eagles |
 db-prop:producer) = 2/3

schema.org:
Movie

CompOD(dbr:Tower_Heist |
 dbp:producer) = 0/3

CompOD(dbr:The_Interpreter |
 dbp:producer) = 3/3

dbr:
Legal_Eagles

dbr:
Tower_Heist

dbr:
The_Interpreter

rdf:type

rdf:type

dbp:producer dbp:producer

dbp:producer

dbp:producer
dbp:producer

rdf:type

dbr:
Trash_(2014_film)

“Kris
Thykier”

dbp:producer

CompOD(dbr:Trash_(2014_film) |
 dbp:producer) = 3/3

dbp:producer

dbo:
Person

rdf:type

rdf:type

rdf:type

rdf:type

Figure 5.3: Portion of the DBpedia dataset for movies. schema.org:Movie and
dbo:Person are classes. The resources dbr:Legal Eagles, dbr:Tower Heist,
dbr:Trash (2014 film), and dbr:The Interpreter are instances of the
schema.org:Movie class. Movies are linked to producers via the dbp:producer
predicate. Each movie is annotated with the object completeness CompOD

value for the dbp:producer predicate, e.g., CompOD for db:Legal Eagles
is 2/3 since this movie has two producers, and AMOD for the class
schema.org:Movie is three. Analogously, the object completeness of pro-
ducers for the resources dbr:Trash (2014 film) and dbr:The Interpreter is 3/3.
The movie dbr:Tower Heist has no producers, then CompOD = 0.

MSD(dbr:Sheldon Kahn | dbp:producer) = 1

MSD(“Ivan Reitmann” | dbp:producer) = 1

MSD(“Kris Thykier” | dbp:producer) = 1

MSD(dbr:Eric Fellner | dbp:producer) = 2

MSD(dbr:Tim Bevan | dbp:producer) = 2

MSD(dbr:Kevin Misher | dbp:producer) = 1

MOD(dbr:Legal Eagles | dbp:producer) = 2

MOD(dbr:Trash (2014 film) | dbp:producer) = 3

MOD(dbr:The Interpreter | dbp:producer) = 3

For all s, o that occur in D, MPD(s|o) = 1

Following the intuition of our model, we now look at the multiplicity of all re-
sources that belong to the same class. Next, we define the aggregated multiplicity
per subject, predicate, and object of resources that belong to a given class. We
assume that sub-class relationships (specified via the rdfs:subClassOf) are materi-
alized in D.

100

5. Crowdsourcing Query Answer Completeness over Linked Data

Definition 22 (Aggregated Multiplicity of Classes) Let C, C1, and C2 be
classes in a dataset D. The aggregated multiplicity of a class is given by the mul-
tiplicity of its RDF resources: AMSD(C|p) denotes the aggregate multiplicity of
subjects of class C for predicate p; AMOD(C|p) denotes the aggregate multiplicity
of objects of class C for predicate p; and AMPD(C1|C2) denotes the aggregate
multiplicity of predicates between subjects of class C1 and objects of class C2. The
aggregated multiplicity of classes in a dataset D is defined as follows:

AMSD(C|p) :=

f({MSD(o|p) | (s, p, o) ∈ D ∧ (o, a, C) ∈ D})
AMOD(C|p) :=

f({MOD(s|p) | (s, p, o) ∈ D ∧ (s, a, C) ∈ D})
AMPD(C1|C2) :=

f({MPD(s|o) | (s, p, o) ∈ D ∧ (s, a, C1) ∈ D ∧
(o, a, C2) ∈ D})

Where:

• (r, a, C) corresponds to the triple (r, rdf:type, C), which means that the re-
source r belongs to the class C,

• f(.) is an aggregation function.

The aggregation function f in Definition 22 determines how the multiplicity of
individual RDF resources is combined. Given that the multiplicity of resources in
RDF datasets may exhibit a skewed distribution, in our approach, f corresponds
to the median. By choosing the median in order to compute f , outliers do not
affect the estimation of the aggregated multiplicity of classes.

Example 14 Suppose the class schema.org:Movie comprises only the four movies
in Figure 5.3, and the aggregation function f is the median. The aggregated object
multiplicity of the class schema.org:Movie with respect to the predicate dbp:producer,
i.e., AMOD(schema.org:Movie | dbp:producer), is computed over the values of MOD

from Example 13 as median({2, 3, 3}), which results in 3. The non-zero values
for AMSD, AMOD, and AMPD for the classes schema.org:Movie and dbo:People

in the dataset D from Figure 5.3 are as follows:

AMSD(dbo:Person | dbp:producer) = 1

AMOD(schema.org:Movie | dbp:producer) = 3

AMPD(schema.org:Movie | dbo:Person) = 1

Finally, the completeness of an RDF resource is given by the multiplicity of the
resource and the aggregated multiplicity of all classes where the resource belongs
to. In this case, the class with the highest multiplicity determines how complete
the resource is.

101

5. Crowdsourcing Query Answer Completeness over Linked Data

Definition 23 (Completeness of RDF Resources) Let s, p, o be RDF re-
sources with (s, a, Cs1) ∈ D, ..., (s, a, Csn) ∈ D and (o, a, Co1) ∈ D, ..., (o, a, Com) ∈
D. The completeness of RDF resources is given by the multiplicity of RDF re-
sources and the classes that they belong to. CompSD(o|p) denotes the completeness
of subjects in D for resource o via the predicate p; CompOD(s|p) denotes the com-
pleteness of objects in D for resource s via the predicate p; and CompPD(s|o)
denotes the completeness of predicates in D that link resources s and o. The
completeness of RDF resources ([0.0; 1.0]) in a dataset D is defined as follows:

CompSD(o|p) :=

{
MSD(o|p)
AMS′D

if AMS ′D 6= 0 ∧ MSD < AMS ′D

1 otherwise

CompOD(s|p) :=

{
MOD(s|p)
AMO′D

if AMO′D 6= 0 ∧ MOD < AMO′D

1 otherwise

CompPD(s|o) :=

{
MPD(s|o)
AMP ′D

if AMP ′D 6= 0 ∧ MPD < AMP ′D

1 otherwise

Where:

• AMS ′D = max(AMSD(Co1|p), ..., AMSD(Com|p)),

• AMO′D = max(AMOD(Cs1|p), ..., AMOD(Csn|p)),

• AMP ′D = max(AMPD(Cs1|Co1), ..., AMPD(Csn|Com)).

Example 15 Consider the RDF graph D from Figure 5.3. According to Def-
inition 23, the object completeness (CompOD) of the resource dbr:Legal Eagles

for the predicate dbp:producer is computed as MOD(dbr:Legal Eagles | dbp:producer)
(cf. Example 13) divided by AMOD(schema.org:Movie | dbp:producer) (cf. Exam-
ple 14), i.e., 2

3
= 0.667. Analogously, the object completeness for the resources

dbr:Trash (film 2014) and dbr:The Interpreter for the predicate dbp:producer is 3
3
, as

depicted in Figure 5.3. Furthermore, consider that the movie db:The Interpreter

also belongs to the class dbo:Film, and the aggregated multiplicity of this class
is AMOD(dbo:Film | dbp:producer) = 5. Then, the object completeness, denoted
CompOD(db:The Interpreter | dbp:producer), is 3

5
= 0.6, estimating that two out of

five producers of this movie are not represented in the dataset.

In general, completeness values CompSD, CompOD, and CompPD close to 0.0
estimate that there is a large number of missing subjects, objects, and predicates
– respectively – for RDF resources in the dataset D.

Note that the proposed completeness model estimates the local completeness
of a given resource with respect to other resources in the RDF graph. In this way,
the completeness model must consider the conjunction of triples in the graph,
which is analogous to evaluate BGP queries over an RDF graph. Therefore, we
can affirm that the time complexity of estimating completeness with the proposed
model is polynomial with respect to the number of triples in the graph.

102

5. Crowdsourcing Query Answer Completeness over Linked Data

Property 3 The local completeness of a resource in an RDF graph can be com-
puted with the proposed completeness model in polynomial time with respect to the
size of the graph.

5.6. Representation of the Crowd Knowledge

RDF triples allow for representing positive facts, i.e., negative triples cannot be
modeled. However, considering negative knowledge is crucial to model the local
closed world assumption which, in turn, allows for avoiding redundant questions
to the crowd. For example, if the crowd has stated that a given movie has no
producers, the crowd will not be asked again about the producers for that movie.
Moreover, using crowd knowledge effectively demands the representation of neg-
ative or even unknown statements: in some cases, human contributors establish
or confirm facts, while in others they might assert that a statement cannot hold
or that they do not know the answer to a question. Therefore, in HARE, the
knowledge from the crowd is captured in three knowledge bases modeled as fuzzy
sets to store positive, negative, and unknown facts: CKB+, CKB−, and CKB∼.
CKB+ comprises RDF triples that should belong to the dataset (positive facts).
CKB− lists all triples that should not exist (negative facts) according to the
crowd. Finally, CKB∼ contains the associations that the crowd could not con-
firm or deny (unknown facts). In all crowd knowledge bases, triples are annotated
with a membership degree m, which is computed by the microtask manager (cf.
Section 5.7); m (≥ 0) is a score of the reliability of the crowd answer.

Definition 24 (Representation of the Crowd Knowledge) Given an RDF
dataset D and CROWD a pool of human resources. Let D∗ be a virtual finite
RDF dataset such that it is composed of all the triples that ‘should’ be in D.
The representation of the knowledge of CROWD, denoted CKB, is defined as a
3-tuple:

CKB = (CKB+, CKB−, CKB∼)

where CKB+, CKB−, CKB∼ are fuzzy RDF datasets of the form (T,m)
where T is a generalized RDF dataset and:

• m : T → (0.0; 1.0], where m((s, p, o)) is the membership degree of the triple
(s, p, o) ∈ T to the corresponding fuzzy set, and states the reliability of the
crowd answer,

• (s, p, o) ∈ T+ with CKB+ = (T+,m) iff (s, p, o) ∈ U × U × (U ∪ L) and,
according to CROWD, (s, p, o) belongs to D∗,

• (s, p, o) ∈ T− with CKB− = (T−,m) iff (s, p, o) ∈ (U ∪ B ∪ L)× (U ∪ B ∪
L)× (U ∪B∪L) and, according to CROWD, (s, p, o) does not belong to D∗;
and for all (s, p, o) ∈ T− it holds that (s, p, o) /∈ D∗,
• (s, p, o) ∈ T∼ with CKB∼ = (T∼,m) iff (s, p, o) ∈ (U ∪ B ∪ L)× (U ∪ B ∪
L)× (U ∪B ∪ L) and, according to CROWD, the membership of (s, p, o) to
D∗ is unknown.

103

5. Crowdsourcing Query Answer Completeness over Linked Data

Example 16 CROWD is enquired to provide values of the predicate dbp:producer

for the movie dbr:Tower Heist, and links between dbr:Tower Heist and the person
dbr:Brian Grazer. Suppose that the crowdsourced answers are as follows:

(i) “Brian Grazer is a producer of Tower Heist”, with confidence 0.9,

(ii) “There is no relationship between Tower Heist and Brian Grazer”, with
confidence equal to 0.04,

(iii) “Tower Heist has no producers”, with confidence equal to 0.06,

(iv) “I do not know the relationship between Tower Heist and Brian Grazer”,
with confidence equal to 0.01.

The previous CROWD answers are then stored in the corresponding CKB. For
the sake of readability, in the following examples, a triple (s, p, o) stored in CKB
is represented as (s, p, o,m(s, p, o)). For instance, answer (i) asserts a fact that
should be in D, therefore it is stored in CKB+ as follows:

CKB+:
(dbr:Tower Heist, dbp:producer, dbr:Brian Grazer, 0.9)

Answers (ii) and (iii) correspond to negative facts, i.e., facts that should not be
in the dataset D, therefore:

CKB−:
(dbr:Tower Heist, :p1, dbr:Brian Grazer, 0.04)

(dbr:Tower Heist, dbp:producer, :o, 0.06)

Lastly, in answer (iv) CROWD has declared that the vetted fact is unknown:

CKB∼:
(dbr:Tower Heist, :p2, dbr:Brian Grazer, 0.01)

Given that CKB contains triples that are not in D, it is important to consider
the information stored in CKB when determining the completeness of resources.
We therefore take into account the answers previously retrieved from CROWD.
Analogous to Definition 23, we define the completeness of a resource considering
the knowledge captured in CKB.

Definition 25 (Completeness of RDF Resources in the Crowd Knowl-
edge Base) Let s, p, and o be RDF resources, with (s, a, Cs1) ∈ D, ..., (s, a, Csn) ∈
D and (o, a, Co1) ∈ D, ..., (o, a, Com) ∈ D. The completeness of RDF resources
with respect to the crowd knowledge base CKB is given by the multiplicity of
RDF resources in CKB and the classes that they belong to in the dataset D.
CompSD(o|p) denotes the completeness of subjects in CKB for resource o via the
predicate p; CompOD(s|p) denotes the completeness of objects in CKB for re-
source s via the predicate p; and CompPD(s|o) denotes the completeness of pred-
icates in CKB that link resources s and o. The completeness of RDF resources

104

5. Crowdsourcing Query Answer Completeness over Linked Data

([0.0; 1.0]) with respect to CKB is defined as follows:

CompSCKB(o|p) :=

MSCKB(o|p)

AMS′D

if AMS ′D 6= 0 ∧
MSCKB < AMS ′D

1 otherwise

CompOCKB(s|p) :=

MOCKB(s|p)

AMO′D

if AMO′CKB 6= 0 ∧
MOCKB < AMO′D

1 otherwise

CompPCKB(s|o) :=

MPCKB(s|o)

AMP ′D

if AMP ′D 6= 0 ∧
MPCKB < AMP ′D

1 otherwise

Where MSCKB, MOCKB, and MPCKB are defined as follows:

MSCKB(o|p) := |{s | (s, p, o) ∈ T+ ∧ (s, p, o) /∈ D}|

MOCKB(s|p) := |{o | (s, p, o) ∈ T+ ∧ (s, p, o) /∈ D}|

MPCKB(s|o) := |{p | (s, p, o) ∈ T+ ∧ (s, p, o) /∈ D}|

and:

• AMS ′D = max(AMSD(Co1|p), ..., AMSD(Com|p)),

• AMO′D = max(AMOD(Cs1|p), ..., AMOD(Csn|p)),

• AMP ′D = max(AMPD(Cs1|Co1), ..., AMPD(Csn|Com)).

Although the crowd knowledge bases may contain rdf:type or rdfs:subClassOf

statements, Definition 25 only takes into consideration the class and sub-class
annotations that are specified in the dataset D. In this way, the estimation of
completeness exploits the information encoded in the ontological definitions in D
which are assumed to be correct.

Example 17 Consider the state of the crowd knowledge base CKB+ given in Ex-
ample 16, and the aggregated multiplicity for classes in D shown in Example 14.
According to CKB+, the object multiplicity of the resource dbr:Tower Heist for
the predicate dbp:producer is 1. In this case, the object completeness in CKB
(CompOCKB) is computed as MOCKB(dbr:Tower Heist | dbp:producer) divided by
AMOD(schema.org:Movie | dbp:producer), i.e., 1

3
= 0.33.

Analogous to Property 3, the following property estates the complexity of
estimating the local completeness of a resource in an RDF graph and in CKB.

Property 4 The local completeness of a resource that occurs in an RDF graph
and CKB can be computed with the proposed completeness model in polynomial
time with respect to the size of the graph and CKB.

The representation of crowd knowledge as CKB+, CKB−, and CKB∼ allows
for easily modeling contradictions or unknownness in CROWD.

105

5. Crowdsourcing Query Answer Completeness over Linked Data

5.6.1. Crowd Contradiction

A contradiction arises when CROWD asserts that a certain value exists and does
not exist. An example of contradiction is given in Example 16, where the crowd
confirms that Tower Heist has a producer and is Brian Grazer (in CKB+) but
also states that the movie Tower Heist has no producers (in CKB−). In order to
detect correspondences like these among triples in CKB+ and CKB, we introduce
the relation of subsumption for generalized RDF triples.

Definition 26 (Generalized RDF Triple Subsumption) Given an RDF triple
(s, p, o) ∈ U ×U × (U ∪L). Let :bs, :bp, :bo be RDF blank nodes. The relation
of subsumption of generalized RDF triples is defined as follows:

(s, p, o) v (s, p, o)

(s, p, o) v (:bs, p, o)

(s, p, o) v (s, :bp, o)

(s, p, o) v (s, p, :bo)

Example 18 The RDF triple t1 = (dbr:Tower Heist, dbp:producer, dbr:Brian Grazer)

is subsumed by the generalized RDF triples t2 = (dbr:Tower Heist, dbp:producer, :o)

and t3 = (dbr:Tower Heist, :p1, dbr:Brian Grazer), i.e., t1 v t2 and t1 v t3.

Property 5 Given a dataset D and an RDF generalized triple (s, p, o) ∈ D, the
set of triples (s′, p′, o′) ∈ D subsumed by (s, p, o), i.e., (s′, p′, o′) v (s, p, o), can be
computed in O(D).

In HARE, contradictions can be detected by computing subsumption relations
between triples in CKB+ and CKB−. Formally, a CROWD contradiction occurs
when there exists triples (s1, p1, o1) ∈ T+ and (s2, p2, o2) ∈ T− such that:

(s1, p1, o1) v (s2, p2, o2)

Example 19 To illustrate CROWD contradictions, consider the triples stored in
CKB+ and CKB− in Example 16. The first contradiction in CKB corresponds
to the existence of producers of the movie dbr:Tower Heist. In CKB+ it is confirmed
that Tower Heist has a producer and is Brian Grazer, i.e., t1 =(dbr:Tower Heist,

dbp:producer, dbr:Brian Grazer). However, according to CKB−, the movie Tower
Heist has no producers, i.e., t2 =(dbr:Tower Heist, dbp:producer, :o). Therefore,
given that t1 v t2, this is considered a contradiction. Another contradiction that
occurs in the CKB from Example 16 corresponds to the relationship between
dbr:Tower Heist and dbr:Brian Grazer. According to t1, these resources are related
via the dbp:producer predicate. Nonetheless, as stated in CKB−, there is no re-
lationship between dbr:Tower Heist and dbr:Brian Grazer, i.e., t3 =(dbr:Tower Heist,

:p1, dbr:Brian Grazer). This is another contradiction since t1 v t3.

When querying the crowd knowledge, the contradiction degree about state-
ments in CKB+ and CKB− are measured by considering the membership degree

106

5. Crowdsourcing Query Answer Completeness over Linked Data

of the contradicted triples. Given a triple pattern t evaluated against CKB, we
denote m+(t) the average membership degree of triples in CKB+ that match t
(under the SPARQL definition of match). Analogously, we denote m−(t) the av-
erage membership degree of triples in CKB− that contradict triples that match t
in CKB+. Finally, the contradiction degree C(t) for triple pattern t is computed
as the harmonic mean between m+(t) and m−(t); the selection of the harmonic
mean allows for comparing the rate to which triples are contradicted in CKB+

and CKB−. Formally, C(t) ([0.0; 1.0]) is computed as follows:

C(t) =

{
2 · m

+(t)·m−(t)
m+(t)+m−(t)

if m+(t) +m−(t) 6= 0

1 otherwise
(5.3)

With:
m+(t) = avg({{m(µ(t)) | µ ∈ [[t]]T+}}),
m−(t) = avg({{m(s, p, o) | (s, p, o) ∈ T−,

µ ∈ [[t]]T− with µ(t) = (s, p, o) ∨
∃µ ∈ [[t]]T+ , µ(t) v (s, p, o)}}).

(5.4)

We assume by default that human knowledge captured in the CKB is con-
tradictory. Therefore, when there is no information about the crowd performance
regarding t, both m+(t) and m−(t) are equal to zero. In this case, C(t) is 1
indicating high contradiction, as specified in Equation (5.3).

Example 20 Assume that the triple pattern t = (dbr:Tower Heist, dbp:producer,

?producer) is executed against the CKB from Example 16. When t is executed
against CKB+, only the triple t1 = (dbr:Tower Heist, dbp:producer, dbr:Brian Grazer,

0.9) matches t, i.e., t1 = µ(t) and µ ∈ [[t]]CKB+. Therefore, m+(t) is equal to
avg({{0.9}}), i.e., m+(t) = 0.90. To compute m−(t) it is necessary to obtain
the triples in CKB− that contradict the triples that match t in CKB+. In Ex-
ample 16, it is shown that t2 = (dbr:Tower Heist, dbp:producer, :o, 0.06) and t3 =
(dbr:Tower Heist, :p1, dbr:Brian Grazer, 0.04) contradict t1. Then, m−(t) is computed
as avg({{0.06, 0.04}}), i.e., m−(t) = 0.05. Finally, the contradiction degree about
the producer of the movie dbr:Tower Heist is 2 · 0.90·0.05

0.90+0.05
, i.e., C(t) = 0.094.

Contradiction values close to 0.0 indicate high consensus on the existence or
non-existence of triples in the virtual dataset D∗.

5.6.2. Crowd Unknownness

Statements for which CROWD has declared to be unknowledgeable about are
stored in CKB∼. Given a triple pattern t, the unknownness degree U(t) of t is
computed as the average membership degree of triples that match t in CKB∼.
Formally, U(t) ([0.0; 1.0]) is computed as follows:

U(t) = m∼(t) (5.5)

With: m∼(t) = avg({{m(µ(t)) | µ ∈ [[t]]T∼}}) and CKB∼ = (T∼,m).

107

5. Crowdsourcing Query Answer Completeness over Linked Data

When no triples in CKB∼ match a given triple pattern t, i.e., [[t]]T∼ = ∅, then
U(t) = 0, which means that CROWD is not unknowledgeable with respect to t.

Example 21 Suppose that the triple pattern t = (dbr:Tower Heist, dbp:producer,

?producer) is executed against the CKB from Example 16. Therefore, the triple
(dbr:Tower Heist, dbp:producer, :o, 0.01) in CKB∼ matches t. The crowd unknown-
ness about the producers of the movie dbr:Tower Heist is m∼(t) = avg({{0.01}}).
Therefore, the crowd unknownness concerning t is U(t) = 0.01.

In general, unknownness values close to 1.0 indicate that CROWD has shown
to be unknowledgeable about the vetted fact. High uncertainty values evince that
CROWD does not have the knowledge to answer this question, and hence it is not
useful to further assessing this fact with the crowd.

5.7. HARE Microtask Manager

The microtask manager creates human tasks from triple patterns and submits
them to the crowdsourcing platform. The HARE microtask manager is composed
of the user interface generator and the microtask executor.

5.7.1. User Interface Generator

The user interface (UI) generator receives as input the triple patterns to be crowd-
sourced. This component exploits the semantics of RDF resources in the triple
patterns to build rich user interfaces. Formally, a microtask created by the HARE
user interface generator is defined as follows.

Definition 27 (HARE Microtask) A microtask MT is a set of 2-tuples (t, ht)
where t is a triple pattern and ht corresponds to human readable information
related to t. The granularity of a microtask MT is denoted by |MT |, i.e., the
number of triple patterns crowdsourced in a single task.

The human-readable information ht is obtained by the user interface generator
by dereferencing URIs in the triple pattern t. For example, a HARE microtask dis-
plays “Tower Heist” obtained via the rdfs:label, instead of showing the resource URI
http://dbpedia.org/resource/Tower Heist. However, displaying only the labels of re-
sources when generating user interfaces might be ambiguous and, in consequence,
incorrect answers may be retrieved from the crowd. To illustrate, assume that the
films dbr:Beauty and the Beast (1991 film) and dbr:Beauty and the Beast (2017 film) have
the label “The Beauty and the Beast”.3 Consider now that the triple pattern
(dbr:Beauty and the Beast (2017 film), dbp:producer, ?o) is crowdsourced. Then, the
user interface generator would create a microtask that asks “What is the producer of

3The values of rdfs:label of the resources in DBpedia are directly extracted from the URIs
(which unequivocally identifies a resource), therefore cases like the one in the example are rare
in DBpedia. This particularity, however, does not necessarily hold for all datasets, making
the values of rdfs:label ambiguous. Furthermore, ambiguity may still arise in DBpedia if the
property foaf:name is used instead.

108

5. Crowdsourcing Query Answer Completeness over Linked Data

What is the country of Madrid?
Search in Google: Madrid

Short description: "Madrid (English /məˈdrɪd/, Spanish: [maˈðɾið]) is the capital of Spain and its largest
city. The population of the city is roughly 3.3 million and the entire population of the Madrid metropolitan
area is calculated to be around 6.5 million. It is the third-largest city in the European Union, after London
and Berlin, and its metropolitan area is the third-largest in the European Union after London and Paris."

Wikipedia page: http://en.wikipedia.org/wiki/Madrid

Map:

Does Madrid have a country?
Choose one answer

 Yes
 No
 I don't know

rdfs:label rdfs:label

rdfs:comment

foaf:isPrimaryTopicOf

geo:lat

geo:long

rdfs:label

rdfs:label

What is Madrid the capital of?
What is the country of Madrid?

Search in Google: Madrid (https://www.google.com/webhp?

sourceid=chrome-instant&ion=1&espv=2&es_th=1&ie=UTF-

8#q=Madrid%20country)

Short description: "Madrid (English /məˈdrɪd/, Spanish: [maˈðɾið]) is the capital of Spain and

its largest city. The population of the city is roughly 3.3 million and the entire population of

the Madrid metropolitan area is calculated to be around 6.5 million. It is the third-largest

city in the European Union, after London and Berlin, and its metropolitan area is the third-

largest in the European Union after London and Paris."

Wikipedia page: http://en.wikipedia.org/wiki/Madrid

(http://en.wikipedia.org/wiki/Madrid)

Map:

Does Madrid have a country?

Map data ©2015 GeoBasis-DE/BKG (©2009),

Google, Inst. Geogr. Nacional

View larger map Sign in

Choose one answer

 Yes

 No

 I don't know

Familiarity with the topic

1 2 3 4 5 6 7

Not familiar Very familiar

Choose one answer

 Yes

 No

(a) Microtask generated for triple pattern
(?s, dbo:capital, dbr:Madrid).

What is the producer of Tower Heist?
Search in Google: Tower Heist

Short description: Tower Heist is a 2011 heist comedy film directed by Brett Ratner and written by Ted

Griffin and Jeff Nathanson, based on a story by Bill Collage, Adam Cooper and Griffin. It was released on

November 2, 2011, in the United Kingdom, with a United States release following two days later.

Wikipedia page: http://en.wikipedia.org/wiki/Tower_Heist

Picture:

Does Tower Heist have a producer?

Choose one answer

 Yes

 No

 I don't know

rdfs:label rdfs:label

rdfs:comment
foaf:isPrimaryTopicOf

foaf:depiction

rdfs:label

rdfs:label

(b) Microtask generated for triple pattern
(dbr:Tower Heist, dbp:producer, ?o).

What is the ICD of Carotid artery
dissection?
Search in Google: Carotid artery dissection

Short description: Carotid artery dissection is a separation of the layers of the artery wall supplying
oxygen-bearing blood to the head and brain, and is the most common cause of stroke in young adults. (In
vascular medicine, dissection is a blister-like de-lamination between the outer and inner walls of a vessel,
generally originating with a partial leak in the inner lining.)

Wikipedia page: http://en.wikipedia.org/wiki/Carotid_artery_dissection

Picture:

Does Carotid artery dissection have a ICD?
Choose one answer

 Yes
 No
 I don't know

rdfs:label
rdfs:label

rdfs:comment

foaf:isPrimaryTopicOf

foaf:depiction

rdfs:label

rdfs:label

(c) Microtask generated for triple pattern
(dbr:Carotid artery dissection, dbp:icd, ?o).

Figure 5.4: HARE microtasks. The HARE UI generator exploits the semantics of RDF
resources to build microtasks. The depicted interfaces in (a), (b), and (c) are
built for RDF resources from different domains: (a) Geography, (b) Movies,
and (c) Life Sciences. Predicates used to build interfaces are highlighted.
The crowd selects “Yes” when the requested value exists, “No” when it does
not exist, and “I don’t know” when the existence of the value is unknown.

The Beauty and the Beast?”. In this case, the crowd could interpret that the question
is referring to the film of 1991, which would be incorrect. This simple example
illustrates how using the value of only one property to describe the resource may
generate ambiguity in the crowd. In order to avoid this, HARE exploits the se-
mantic descriptions of resources and includes further properties in the microtasks.
The more properties to describe the resources are included in the microtasks, the
smaller the probability that all the values of those properties are ambiguous.

109

5. Crowdsourcing Query Answer Completeness over Linked Data

Table 5.1: Predicates dereferenced by the UI generator in order to build the HARE
microtasks. The RDF resource type of the object of each predicate are shown.
Predicate objects are displayed using appropriate HTML tags.

Predicate Object Type HTML Tag

rdfs:label (Language-tagged) Literal <p>%?o%</p>

rdfs:comment (Language-tagged) Literal <p>%?o%</p>

foaf:depiction URI

foaf:homepage URI %?o%

foaf:isPrimaryTopicOf URI %?o%

geo:lat (Typed) Literal
Map API

geo:long (Typed) Literal

The user interface generator displays the values (if available) of properties of
resources such as short description (rdfs:comment), picture (foaf:depiction), geo-
location depicted in a map (geo:lat and geo:long), and links to the homepage
(foaf:homepage) and Wikipedia article (foaf:isPrimaryTopicOf). Providing details like
these in microtasks has proven to assist the crowd in providing right answers [14].
The objects of the different predicates are displayed using HTML tags according
to the object type. For instance, a picture obtained via the foaf:depiction predi-
cate is rendered using the img HTML tag. Figure 5.4 depicts microtask interfaces
generated for three triple patterns. Table 5.1 summarizes the RDF predicates
that are dereferenced in order to build the HARE microtask interfaces.

The HARE microtasks first enquire the crowd about the existence of values
for a triple pattern. For instance, for the triple pattern t =(dbr:Madrid, dbo:country,

?country) the task displays: “Does Madrid have a country?”. We provide three
possible answers to this question: “Yes”, “No”, and “Unknown”. Following the
motivating example, the answer “Yes” states that there exists a value for the vari-
able ?country; the answer “No” states that Madrid has no country; and “Unknown”
indicates that the crowd does not know the answer. When the answer is “Yes”,
a second question requires the crowd to provide a specific value, e.g., “What is
the country of Madrid?”. The provided value corresponds to instantiations of the
pattern variables – in our example, instantiations of the variable ?country – which
are used to complete missing values in RDF datasets.

5.7.2. Microtask Executor

The microtask executor submits the human tasks created by the user interface
generator to the crowdsourcing platform. Answers provided by CROWD in each
task are retrieved by the microtask executor and processed in order to update the
crowd knowledge bases (cf. Section 5.6) accordingly.

110

5. Crowdsourcing Query Answer Completeness over Linked Data

Definition 28 (HARE Crowd Answer) Let t be a triple pattern crowdsourced
in a microtask MT . The crowd answer of MT for t is represented as a 3-tuple
of the form (at, µt, Mt), where at ∈ {“Yes”, “No”, “Unknown”} indicates the
existence of the value crowdsourced in t, µt is the mapping of variables in t to
RDF terms, and Mt corresponds to metadata about the performance of the crowd
when assessing t. When at = “Yes”, then µt(x) ∈ (U ∪ L), otherwise µt(x) ∈ B,
for all x ∈ vars(t). µt(t) is the triple obtained when replacing all x ∈ dom(µt) in
t by µt(x).

Example 22 Consider that the triple pattern t =(dbr:Tower Heist, dbp:producer,

?producer) is crowdsourced, where CROWD is enquired to provide producers for
the movie dbr:Tower Heist. The crowd answer (i) “Brian Grazer is a producer of
Tower Heist” with confidence 0.9 from Example 16 is retrieved by the microtask
executor as (“Yes”, {producer → dbr:Brian Grazer}, 0.9). Analogously, the crowd
answer (iii) “Tower Heist has no producers” with confidence 0.06 is obtained by
the microtask executor as (“No”, {producer → :o}, 0.06).

In the HARE crowd answers for a triple pattern t, at indicates whether µt(t)
provided by CROWD is stored, i.e., either in CKB+, CKB−, or CKB∼. The
metadata Mt about the performance of the crowd is used to compute the member-
ship degree of the answer in the crowd knowledge base. In this work, we utilized
the worker’s trust value provided by the chosen microtask platform as the mem-
bership degree m of a mapping µt(t). The microtask executor processes the crowd
answers and updates CKB as follows.

Definition 29 (Update of the Crowd Knowledge) Given a HARE crowd an-
swer (at, µt,Mt) of a microtask where a triple pattern t is crowdsourced. Let
CKB = (CKB+, CKB−, CKB∼) be the crowd knowledge. The value of at deter-
mines the crowd knowledge base to be updated: “Yes” CKB+, “No” CKB−,
and “Unknown” CKB∼. Let (T,m) be the crowd knowledge base selected ac-
cording to at. Consider t′ the triple pattern obtained by replacing all blank nodes
in µt(t) by fresh variables. The update of (T,m) considers the following cases:

• If there are triples in T that match t′ ([[t′]]T 6= ∅), then the membership
degree of each solution of [[t′]]T is updated as follows:

∀µ ∈ [[t′]]T ,m(µ(t)) := max(m(µ(t)),Mt)

• Otherwise, if there are no matches ([[t′]]T = ∅), then µt(t) is added to T and
annotated with the membership degree m as follows:

T := T ∪ {µt(t)}, m(µt(t)) := Mt

Example 23 Assume that CKB contains the triples shown in Example 16. Con-
sider that the triple pattern t =(dbr:Tower Heist, dbp:producer, ?producer) is crowd-
sourced and one of the answers provided by CROWD is (“Yes”, {producer →
dbr:Kim Roth}, 0.85). Then, the triple pattern t′ = (dbr:Tower Heist, dbp:producer,

111

5. Crowdsourcing Query Answer Completeness over Linked Data

dbr:Kim Roth) is evaluated against CKB+. Since no triples in CKB+ match t′,
the triple (dbr:Tower Heist, dbp:producer, dbr:Kim Roth) provided by CROWD is con-
sidered new and added to CKB+ with membership degree equal to 0.85. Now con-
sider that another answer (“No”, {producer→ :o1}, 0.05) is provided by CROWD,
i.e., µt(t) = (dbr:Tower Heist, dbp:producer, :o1). Therefore, the triple pattern t′ =
(dbr:Tower Heist, dbp:producer, ?o) is built by replacing the blank node :o1 by the
variable ?o and executed against the triples stored in CKB−. Given that CKB−

contains (dbr:Tower Heist, dbp:producer, :o, 0.06) whose triple matches t′, the triple
is not added to CKB− and its membership is updated to max(0.05, 0.06) = 0.06.

5.8. HARE Query Optimizer

The HARE optimizer devises physical plans that can be executed efficiently. Given
a SPARQL query Q, the HARE optimizer reorders the triple patterns within
BGPs, respecting the ordering of Union, Optional, and Filter operators spec-
ified in Q. Triple patterns from Q are grouped into hybrid Star-Shaped Groups;
Star-Shaped Groups (SSGs) share exactly one variable [168] and contain triple
patterns that are executed against the dataset D and against CROWD. Then,
hybrid stars are combined in a bushy tree plan. Both star-shaped queries and
bushy plans have proven to reduce the size of intermediate results [168], which
reduces the number of questions posed to CROWD.

The proposed HARE optimizer (cf. Algorithm 1) extends the optimization
techniques of nLDE presented in Chapter 3, by generating hybrid SSGs and group-
ing them in bushy trees instead of left-linear plans. Given a SPARQL query Q,
the HARE optimizer processes each BGP B contained in Q in four phases:

• Phase 1 decomposes each BGP B into two partitions: SBD comprises triple
patterns executed against the dataset D, and SBCROWD contains triple pat-
terns that may be posed against the crowd.

• Phase 2 builds SSGs with the triples patterns in SBD.

• Phase 3 adds triple patterns from SBCROWD to the SSGs obtained in Phase
2 to create hybrid SSGs.

• Phase 4 combines hybrid SSGs into bushy plans.

• Phase 5 places the necessary Cartesian products. This stage is only carried
out in the case that the query B originally contains Cartesian products.

In Phase 1, to build SBD and SBCROWD , the optimizer considers the vari-
ables of each triple pattern. The goal of the heuristics of the HARE optimizer is
to generate a decomposition that increases the chances of completing the query
answers when contacting the crowd. Although it is true that triple patterns with
several bound arguments might still yield missing values, the more variables in the
triple pattern the higher the number of possible instantiations that will be gener-
ated during query execution and might yield missing values. Thus, triple patterns

112

5. Crowdsourcing Query Answer Completeness over Linked Data

Algorithm 3: HARE BGP Optimizer
Input: A BGP B of a SPARQL query Q with n triple patterns.
Output: A plan query TQ, a decomposition (SBD, SBCROWD).

1 SBD, SBCROWD ← ∅
// Phase 1: Partition triple patterns and get multiplicity

2 for tpi ∈ B do
3 if |vars(tpi)| > 1 // Triple patterns with one constant

4 then
5 SBCROWD ← SBCROWD ∪ {tpi}
6 else
7 SBD ← SBD ∪ {tpi}
8 tpi.m←MD(tpi)

// Phase 2: Order patterns in SBD such that tp′i.m ≤ tp′i+1.m
9 S ← 〈tp′1, tp′2, ..., tp′k〉
// Build bushy star-shaped groups (SSGs)

10 while exists si, sj in S such that |vars(si) ∩ vars(sj)| = 1 do
11 Select si, sj in S with lowest values i, j
12 S ← append((si onSHJ sj))
13 S.remove(si)
14 S.remove(sj)

// Phase 3: Build hybrid SSGs adding triples from SBCROWD

15 for tpi ∈ SBCROWD do
16 Select s from S such that |vars(s) ∩ vars(tpi)| = 1
17 S.append((s onNL tpi))
18 S.remove(tpi)

// Phase 4: Join hybrid SSGs in bushy trees

19 TB ← set(S)
20 do
21 T ′B ← TB
22 Select si, sj from TB such that vars(si) ∩ vars(sj) 6= ∅
23 TB ← TB ∪ {(si onSHJ sj)} − {si, sj}
24 while T ′B 6= TB

// Phase 5: Place Cartesian products among hybrid SSGs

25 do
26 Select si, sj from TB
27 TB ← TB ∪ {(si onSHJ sj)} − {si, sj}
28 while |TB | > 1
29 return TB , (SBD, SBCROWD)

where only the subject, predicate, or object is bound are added to SBCROWD and
might be crowdsourced during query execution. The other triple patterns are
annotated with the corresponding multiplicity MD and added to SBD. Given a
triple pattern t = (s, p, o), MD is obtained as follows:

• if vars(t) = {s}, then MSD(o|p),

• if vars(t) = {o}, then MOD(s|p),

• if vars(t) = {p}, then MPD(s|o).

113

5. Crowdsourcing Query Answer Completeness over Linked Data

hs3	

hs1	
 hs2	

hs4	
 hs3	
hs1	
 hs2	
 hs4	

Symmetric Hash Join

Nested Loop Join

Figure 5.5: HARE optimizer: Phases 4 and 5. Example of bushy tree plan built with
four hybrid SSGs hs1, hs2, hs3, hs4.

For example, consider the query from Listing 5.2, composed of one BGP B
with five triple patterns t1, t2, t3, t4, and t5. The optimizer starts by comput-
ing MD for each triple pattern and building the partitions SBD and SBCROWD

(lines 2-8, Algorithm 3). For instance, t1 = (?movie, rdf:type, schema.org:Movie) is
added to SBD and annotated with its multiplicity. Analogously, the triple pattern
t2 = (?movie, dbp:producer, ?producer) is added to SBCROWD. After all patterns are
processed, it is obtained that SBD = {t1, t3, t4, t5} and SBCROWD = {t2}. Then,
triple patterns in SBD are ordered (line 9) according to their multiplicity val-
ues; in our example, the result is S = 〈t3, t4, t5, t1〉. Ordering triple patterns
by their multiplicity allows for grouping in stars the most selective patterns, and
consequentially, evaluating selective patterns first during query execution time.

In Phase 2, Algorithm 3 proceeds to build SSGs with patterns in S (lines
10-14); patterns are combined using Symmetric Hash Join operators (onSHJ), to
evaluate them against the dataset D simultaneously. Following our running ex-
ample, the optimizer first joins t3 and t4 since they share exactly one variable
(?movie) and add this sub-plan to S, i.e., S = 〈t5, t1, (t3 onSHJ t4)〉. In a second
iteration, the algorithm joins t5 and t1, hence, S = 〈(t3 onSHJ t4), (t5 onSHJ t1)〉.
Sub-plans (t3 onSHJ t4) and (t5 onSHJ t1) in S are joined in a subsequent iteration,
since triple patterns t3, t4, t5, and t1 share the variable ?movie.4 At this point, S
contains one SSG combined in the bushy tree ((t3 onSHJ t4) onSHJ (t5 onSHJ t1)).

Listing 5.2: Query to select movies and producers of movies filmed in New York City by
Universal Pictures. Prefixes are used as in http://prefix.cc.

1 PREFIX dbc: <http://dbpedia.org/category/>
2 PREFIX dbp: <http://dbpedia.org/property/>
3 PREFIX dct: <http://purl.org/dc/terms/>
4 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
5 PREFIX schema.org: <http://schema.org/>
6

4In Algorithm 3, the variables of a sub-plan si, i.e., vars(si), are defined as the union of the
variables of triple patterns contained in si.

114

http://prefix.cc

5. Crowdsourcing Query Answer Completeness over Linked Data

?movie

?producer

schema.org:
Movie

dbc:Universal
_Pictures_film

dbc:Films_shot_in_
New_York_City

rdf:type

dct:subject dc
t:s

ub
jec

t
db

p:
pr

od
uc

er

“United
States”@en

dbp:country

(a) Hybrid SSG for BGP B around ?movie.
Nodes correspond to terms in subject or
object position. Filled nodes are constants.

{ ({movie à dbr:Tower_Heist}, 1.0),
 ({movie à dbr_The_Wolf_of_Wall_Street}, 1.0),
 ({movie à The_Sleeping_City}, 1.0),
 ({movie à dbr:The_Interpreter}, 1.0),
 ({movie à dbr:Legal_Eagles}, 1.0), …}

t2	

SBD	

SBCROWD	

t3	
 t4	
 t5	
 t1	

(Ω̂, m̂) =

Symmetric Hash Join

Nested Loop Join

(b) A physical plan TB , partitions SBD and
SBCROWD for B. Results (Ω̂, m̂) obtained
when executing sub-plan against D.

Figure 5.6: Example of query optimization with HARE. (a) Hybrid Star-Shaped Group
(SSG) built for the BGP contained in the running example query from
Listing 5.2 . (b) Query plan against DBpedia and CROWD .

7 SELECT ?movie ?producer WHERE {
8 ?movie rdf :type schema.org:Movie . # t1
9 ?movie dbp:producer ?producer . # t2

10 ?movie dct: subject dbc: Universal Pictures film . # t3
11 ?movie dct: subject dbc: Films shot in New York City . # t4
12 ?movie dbp:country ”United States”@en . # t5
13 }

In Phase 3, Algorithm 3 builds hybrid SSGs by combining bushy trees in S
with triple patterns in SBCROWD (lines 15-18). In this phase, the optimizer places
Nested Loop Join operators (onNL) such that intermediate results produced by
bushy tree plans are used to instantiate triple patterns in SBCROWD. In our
example, the bushy tree sub-plan ((t3 onSHJ t4) onSHJ (t5 onSHJ t1)) is joined
with the triple pattern t2 in SBCROWD, producing the hybrid SSG around the
variable ?movie (which is the variable in all the triple subjects) (cf. Figure 5.6a).
The resulting bushy tree in this phase is depicted in Figure 5.6b.

In Phase 4 and Phase 5 of Algorithm 3, the optimizer combines the hybrid
SSGs built in the previous phase in bushy trees using Symmetric Hash Join op-
erators. Figure 5.5 depicts four hybrid SSGs which are combined in a bushy tree
plan in phases 4 and 5. In our running example, these phases are not executed
since the query from Listing 5.2 only comprises one hybrid SSG.

Finally, the outcome of Algorithm 3 for the BGP in the SPARQL query from
Listing 5.2 is the plan TB and partition (SBD, SBCROWD) depicted in Figure 5.6b.

115

5. Crowdsourcing Query Answer Completeness over Linked Data

5.8.1. Complexity of the HARE Query Optimizer

The following theorem states the time complexity of the HARE optimizer.

Theorem 6 Let n be the number of triple patterns contained in a BGP B.
The time complexity of the HARE optimizer to devise a hybrid plan for B is
O(n2).

Proof We show that all the phases of the HARE optimizer can be carried out in
at most n2 steps. We assume that the multiplicity of triple patterns can be obtained
in O(1). In Phase 1, the partitioning of triple patterns is carried out in O(n). In
Phase 2, ordering the triple patterns takes O(n·log(n)) using an ordering algorithm
such as Mergesort [91]. In the worst case, S contains the n triple patterns of B,
therefore, the Phase 2 loop is carried out at most O(n2) times. Regarding Phase
3, SBCROWD and SBD are partitions of B, i.e., |SBCROWD| + |SBD| = n; then,
the time complexity of executing the Phase 3 is also O(n2). In Phase 4, selecting
si and sj from TB can be carried out in O(n) and the loop is also executed at most
n times, then, the time complexity is O(n2) (analogous for Phase 5). �

5.9. HARE Query Engine

The HARE query engine gathers RDF data from LOD datasets and the crowd
knowledge base. Because RDF data collected from the crowd knowledge base
is not precise, answers produced after merging RDF data from these hetero-
geneous sources during SPARQL query processing should represent degrees of
vagueness and imprecision, i.e., fuzzy RDF. Thus, we have extended the seman-
tics of SPARQL queries in a way that precise data from LOD datasets and vague
data from the crowd knowledge base can be merged during query execution.

5.9.1. A SPARQL Fuzzy Set Semantics

We propose a SPARQL fuzzy set semantics that extends the set-based SPARQL
semantics to model degrees of membership of a mapping to the result of evaluating
a SPARQL operator. It is important to highlight that our approach differs from
existing approaches [37, 77, 151, 181] which, in addition to providing a new fuzzy
semantics for SPARQL, extend the language to represent fuzzy queries. In HARE,
users do not need to be aware of vagueness, and will just use SPARQL to write
their queries. In the case that data from the crowd knowledge base is required to
complete the answer, the proposed SPARQL semantics will allow for representing
the degree of imprecision that the corresponding mappings belong to the answer.

Definition 30 (Mapping Fuzzy Set) Let M be the universe of all SPARQL
mappings (Definition 6, Chapter 2). A mapping fuzzy set is a tuple (Ω̂, m̂), where
Ω̂ is a mapping set and m̂ : M → (0.0; 1.0] is a partial function with respect to
M such that m̂(µ) is defined for all µ ∈ Ω̂. Given µ ∈ Ω̂, we refer to m̂(µ) as the
membership degree of µ to Ω̂.

116

5. Crowdsourcing Query Answer Completeness over Linked Data

The solution of a SPARQL expression under fuzzy set semantics is obtained
by combining mapping fuzzy sets using the operators of the following algebra.

Definition 31 (SPARQL Fuzzy Set Algebra) Let F := (Ω, m̂), Fl := (Ωl, m̂l),
Fr := (Ωr, m̂r) be mapping fuzzy sets, S ⊂ V a finite set of variables, and R be a
filter condition. SPARQL fuzzy algebraic operations are defined as follows:

Fl on Fr := (Ω̂, m̂′), where

Ω̂ := {µl ∪ µr | µl ∈ Ωl, µr ∈ Ωr : µl ∼ µr},
m̂′(µ) :=

⊕
(µl,µr)∈{(µ∗l ,µ∗r)∈Ωl×Ωr|µ∗l ∪µ∗r=µ}

(m̂l(µl)⊗ m̂r(µr)) for all µ ∈ Ω̂.

Fl ∪ Fr := (Ω̂, m̂′), where

Ω̂ := {µlr | µlr ∈ Ωl or µlr ∈ Ωr},
m̂′(µ) := m̂l(µ)⊕ m̂r(µ) for all µ ∈ Ω̂.

Fl \ Fr := (Ω̂, m̂′), where

Ω̂ := {µl ∈ Ωl | for all µr ∈ Ωr : µl � µr},
m̂′(µ) := m̂l(µ) for all µ ∈ Ω̂.

Fl on Fr := (Fl on Fr) ∪ (Fl \ Fr)
πS(F) := (Ω̂, m̂′), where

Ω̂ := {µ1 | ∃µ2 : µ1 ∪ µ2 ∈ Ω ∧ dom(µ1) ⊆ S ∧
dom(µ2) ∩ S = ∅},

m̂′(µ) :=
⊕

u+∈{u∗+∈Ω|πS({µ∗+})={µ}}
m̂(µ+)

for all µ ∈ Ω̂.

σR(F) := (Ω̂,m′), where

Ω̂ := {µ ∈ Ω | µ |= R}, and

m̂′(µ) := m̂(µ) for all µ ∈ Ω̂.

Where |= refers to built-in boolean functions defined in [127], and the operators
⊗ and ⊕ correspond to t-norms and t-conorms, respectively, such that a ⊗ b 6= 0
and a⊕ b 6= 0, for a 6= 0 and b 6= 0. The quantifier

⊕
is defined as:⊕

0≤i≤n ai := a0 ⊕ (
⊕

0<i≤n ai)

In HARE, ⊗ and ⊕ correspond to the conjunction and disjunction operators
from Gödel logic, defined as follows:

a⊗ b := min(a, b)
a⊕ b := max(a, b)

Note that min and max satisfy the restrictions specified in Definition 31 since
min(a, b) 6= 0 and max(a, b) 6= 0, for any a 6= 0 and b 6= 0.

In the following, we define the proposed fuzzy set semantics of SPARQL. We
make use of the algebra operators previously introduced in Definition 31.

117

5. Crowdsourcing Query Answer Completeness over Linked Data

Definition 32 (SPARQL Fuzzy Set Semantics) Let D = (T,m) be a fuzzy
RDF dataset with m(·) > 0, tp a triple pattern, and Q, Q1, Q2 SPARQL ex-
pressions, R a filter condition, and S ⊂ V a finite set of variables. Let [[·]]FD be
a function that translates SPARQL expressions into SPARQL fuzzy set algebra
operators as follows:

[[tp]]FD := (Ω̂, m̂), where :

Ω̂ := {µ | dom(µ) = vars(tp) and µ(tp) ∈ T},
m̂(µ) := m(µ(tp)), for all µ ∈ Ω̂.

[[Q1 And Q2]]FD := [[Q1]]FD on [[Q2]]FD
[[Q1 Opt Q2]]FD := [[Q1]]FD on [[Q2]]FD
[[Q1 Union Q2]]FD := [[Q1]]FD ∪ [[Q2]]FD
[[Q Filter R]]FD := σR([[Q]]FD)

[[SelectS(Q)]]FD := πS([[Q]]FD)

Example 24 Let D = (T,m) be a fuzzy RDF dataset. Consider a SPARQL ex-
pression Q that retrieves from D resources with producers or directors, which are
annotated with both DBpedia and Schema.org properties, as follows:

Q = (t1 Union t2) And (t3 Union t4), where:
t1 = (?r, dbp:producer, ?p)

t2 = (?r, dbp:director, ?d)

t3 = (?r, schema.org:producer, ?p)

t4 = (?r, schema.org:director, ?d)

Note that in SPARQL algebra, the expressions involved in union operators are
not necessarily union-compatible, e.g., t1 and t2 can be combined with a Union
operator although these patterns do not have the exact same variables. The ex-
pression Q is then evaluated against D using fuzzy set semantics and, according
to Definition 32, we obtain that:

[[Q]]FD = ([[t1]]FD ∪ [[t2]]FD) on ([[t3]]FD ∪ [[t4]]FD)

Lets assume that [[t1]]FD, [[t2]]FD, [[t3]]FD, and [[t4]]FD generate the following mapping-
fuzzy sets (Ω̂1, m̂1), (Ω̂2, m̂2), (Ω̂3, m̂3), and (Ω̂4, m̂4), respectively:5

(Ω̂1, m̂1) = { µ1 = {r → dbr:Six Weeks, p → dbr:Jon Peters, m̂1 = 0.80} }
(Ω̂2, m̂2) = { µ2 = {r → dbr:Six Weeks, d → dbr:Toni Bill, m̂2 = 0.90} }
(Ω̂3, m̂3) = { µ3 = {r → dbr:The Jetsons, p → dbr:William Hanna, m̂3 = 0.79},

µ4 = {r → dbr:Six Weeks, p → dbr:Jon Peters, m̂3 = 0.50} }
(Ω̂4, m̂4) = { µ5 = {r → dbr:Six Weeks, d → dbr:Toni Bill, m̂2 = 0.60} }

5For the sake of readability, the values of m̂1 and m̂2 are presented inside of each solution
mapping.

118

5. Crowdsourcing Query Answer Completeness over Linked Data

Let (Ω̂l, m̂l) = [[t1]]FD ∪ [[t2]]FD and (Ω̂r, m̂r) = [[t3]]FD ∪ [[t4]]FD. Since the triple
patterns t1 and t2 are not union-compatible, mappings µ ∈ Ω̂1 do not belong
to Ω̂2 (and vice versa); then, in the evaluation of the ∪ operator according to
Definition 31, m̂l corresponds to either m̂1 or m̂2. Analogously, m̂r corresponds
to either m̂3 or m̂4, as follows:

(Ω̂l, m̂l) = { µl1 = {r → dbr:Six Weeks, p → dbr:Jon Peters, m̂1 = 0.80},
µl2 = {r → dbr:Six Weeks, d → dbr:Toni Bill, m̂2 = 0.90} }

(Ω̂r, m̂r) = { µr1 = {r → dbr:The Jetsons, p → dbr:William Hanna, m̂r = 0.79},
µr2 = {r → dbr:Six Weeks, p → dbr:Jon Peters, m̂r = 0.50},
µr3 = {r → dbr:Six Weeks, d → dbr:Toni Bill, m̂r = 0.60} }

We denote (Ω̂, m̂) the result of combining (Ω̂l, m̂l) and (Ω̂r, m̂r) with the on
operator according to Definition 31. To illustrate the evaluation of the on operator,
first, we look at the compatible mappings from Ω̂l and Ω̂r. For instance, the
mappings µl1 and µr3 are compatible, since µl1(r) = µr3(r) which is dbr:Six Weeks,
and r is the only variable they share. From Ω̂l and Ω̂r we obtain that: µl1 ∼ µr2,
µl1 ∼ µr3, µl2 ∼ µr1, and µl2 ∼ µr2. The compatible mappings are then combined:

µ6 = µl1 ∪ µr2
= {r → dbr:Six Weeks, p → dbr:Jon Peters}

µ7 = µl1 ∪ µr3
= {r → dbr:Six Weeks, p → dbr:Jon Peters, d → dbr:Toni Bill}

µ8 = µl2 ∪ µr2
= {r → dbr:Six Weeks, p → dbr:Jon Peters, d → dbr:Toni Bill}

µ9 = µl2 ∪ µr3
= {r → dbr:Six Weeks, d → dbr:Toni Bill}

Then, following Definition 31, m̂ is computed for the combined mappings. In
the case of µ6, µ∗l = µl1, µ∗r = µr2 are the only mappings such that µ∗l ∈ Ω̂l,
µ∗r ∈ Ω̂r, and µ6 = µ∗l ∪ µ∗r. Analogous for µ9. Therefore, m̂(µ6) and m̂(µ9) are
simply computed as shown in the following:

m̂(µ6) = m̂l(µl1)⊗ m̂r(µr2) = min(0.80, 0.50) = 0.50
m̂(µ9) = m̂l(µl2)⊗ m̂r(µr3) = min(0.90, 0.60) = 0.60

Note that µ7 = µ8, i.e., the result of µl1 ∪ µr3 and µl2 ∪ µr2 is the same. In
cases like these, m̂ takes into consideration the membership degree of the mappings
that generate the same result applying the quantifier

⊕
. Then, m̂(µ7) = m̂(µ8) is

obtained as follows:

m̂(µ7) = (m̂l(µl1)⊗ m̂l(µr3))⊕ (m̂l(µl2)⊗ m̂l(µr2))

= max(min(0.80, 0.60),min(0.90, 0.50))

= max(0.60, 0.50) = 0.60

Lastly, the mapping-fuzzy set (Ω̂, m̂) := [[Q]]FD is:

119

5. Crowdsourcing Query Answer Completeness over Linked Data

(Ω̂, m̂) = { {r → dbr:Six Weeks, p → dbr:Jon Peters, m̂ = 0.50},
{r → dbr:Six Weeks, p → dbr:Jon Peters, d → dbr:Toni Bill m̂ = 0.60},
{r → dbr:Six Weeks, d dbr:Toni Bill m̂ = 0.60} }

Theorem 7 Given Q a SPARQL expression, D an RDF dataset, and D̂ =
(D,m) a fuzzy RDF dataset with m(·) > 0. Let Ω := [[Q]]D and (Ω̂, m̂) :=
[[Q]]F

D̂
. Then, Ω̂ = Ω.

Proof Let Ω := [[Q]]D and (Ω̂, m̂) := [[Q]]F
D̂

. We demonstrate that Ω̂ = Ω
by induction on the structure of Q. For the sake of readability, we denote µ ∈
[[Q]]F

D̂
⇔ µ ∈ Ω̂. It is important to highlight that for all µ ∈ Ω̂ it holds that

m̂(µ) > 0. This is guaranteed by the definition of D̂, and the definition of operators
⊗ and ⊕ in Definition 31.

In the base case, Q is composed of a triple pattern tp. From Definition 32, it
is obtained that Ω̂ and Ω are constructed in the same way, i.e., Ω̂ = Ω.

The induction hypothesis is µ ∈ [[Q′]]F
D̂
⇔ µ ∈ [[Q′]]D. We assume that the

induction hypothesis holds for all SPARQL expression Q′. In the inductive case, Q
is an expression composed of And, Union, Opt, Select, or Filter operators.

1 Case Q := Q1 And Q2.
We prove that µ ∈ [[Q1 And Q2]]F

D̂
⇔ µ ∈ [[Q1 And Q2]]D. By Definition 32,

we obtain that µ ∈ [[Q1 And Q2]]F
D̂
⇔ µ ∈ ([[Q1]]F

D̂
on [[Q2]]F

D̂
). According to the

definition of on under fuzzy set semantics (Definition 31), µ ∈ [[Q1]]F
D̂
on [[Q2]]F

D̂

iff µ1 ∈ [[Q1]]F
D̂

and µ2 ∈ [[Q2]]F
D̂

for some µ1, µ2 such that µ1 ∼ µ2 and µ =

µ1 ∪ µ2. By induction hypothesis, it holds that µ1 ∈ [[Q1]]F
D̂
⇔ µ1 ∈ [[Q1]]D and

µ2 ∈ [[Q2]]F
D̂
⇔ µ2 ∈ [[Q2]]D. Since µ1 ∼ µ2 and by definition of on under set

semantics, we have that µ ∈ ([[Q1]]D on [[Q2]]D). With the definition of And
under set semantics we have that µ ∈ [[Q1 And Q2]]D. We conclude that Ω̂ = Ω,
for this case.

2 Case Q := Q1 Union Q2.
We prove that µ ∈ [[Q1 Union Q2]]F

D̂
⇔ µ ∈ [[Q1 Union Q2]]D. In this case,

we obtain that µ ∈ [[Q1 Union Q2]]F
D̂
⇔ µ ∈ ([[Q1]]F

D̂
∪ [[Q2]]F

D̂
), applying Defini-

tion 32. According to the definition of ∪ in Definition 31, µ ∈ ([[Q1]]F
D̂
∪[[Q2]]F

D̂
) iff

µ ∈ [[Q1]]F
D̂

or µ ∈ [[Q2]]F
D̂

. By induction hypothesis, it holds that µ ∈ [[Q1]]F
D̂
⇔

µ ∈ [[Q1]]D or µ ∈ [[Q2]]F
D̂
⇔ µ ∈ [[Q2]]D. Applying the definition of ∪ under

set semantics, we obtain µ ∈ ([[Q1]]D ∪ [[Q2]]D). With the definition of the Or
operator under set semantics it holds that µ ∈ [[Q1 Union Q2]]. We obtain that
Ω̂ = Ω, for this case.

3 Case Q := Q1Opt Q2.
We prove that µ ∈ [[Q1Opt Q2]]F

D̂
⇔ µ ∈ [[Q1Opt Q2]]D. With Definition 32, it

holds that µ ∈ [[Q1Opt Q2]]F
D̂
⇔ µ ∈ ([[Q1]]F

D̂
on [[Q2]]F

D̂
). Applying Definition 31,

we obtain µ ∈ ([[Q1]]F
D̂
on [[Q2]]F

D̂
∪ ([[Q1]]F

D̂
\ [[Q2]]F

D̂
)). Here, we distinguish

120

5. Crowdsourcing Query Answer Completeness over Linked Data

two sub-cases, where µ is generated by [[Q1]]F
D̂
on [[Q2]]F

D̂
or by [[Q1]]F

D̂
\ [[Q2]]F

D̂
.

In the first sub-case, the proof is the same as in case 1 . We conclude that
µ ∈ [[Q1Opt Q2]]D, for the first sub-case. Lets now consider the second sub-case,
i.e., µ ∈ [[Q1]]F

D̂
\ [[Q2]]F

D̂
. With Definition 31, it follows that µ ∈ [[Q1]]F

D̂
and

there is no mapping µ2 ∈ [[Q2]]F
D̂

such that µ1 ∼ µ2. By induction hypothesis,

µ ∈ [[Q1]]F
D̂
⇔ µ ∈ [[Q1]]D. Lets assume by contradiction that µ2 ∈ [[Q2]]D with

µ1 ∼ µ2. Applying the induction hypothesis again we obtain that µ2 ∈ [[Q2]]F
D̂

;
this contradicts our initial assumption about µ2. By definition of \ under set
semantics, µ ∈ [[Q1]]D \ [[Q2]]D. This demonstrates that µ ∈ [[Q1 Opt Q2]]D, for
the second sub-case. Finally, it is proved that Ω̂ = Ω, for this case.

4 Case Q := SelectS(Q1).
We prove that µ ∈ [[SelectS(Q1)]]F

D̂
⇔ µ ∈ [[SelectS(Q1)]]D. By defini-

tion of Select under fuzzy set semantics (Definition 32) we obtain that µ ∈
[[SelectS(Q1)]]F

D̂
⇔ µ ∈ πS([[Q1]]F

D̂
). With Definition 31, it holds that µ ∪ µ′ ∈

[[Q1]]F
D̂

and dom(µ) ⊆ S and dom(µ′) ∩ S = ∅. By induction hypothesis, µ ∪ µ′ ∈
[[Q1]]F

D̂
⇔ µ∪µ′ ∈ [[Q1]]D. Given the characteristics of µ and µ′ and by definition

of π under set semantics, µ ∈ πS([[Q1]]D). With the definition of Select under
set semantics, we conclude that µ ∈ [[SelectS(Q1)]]D and Ω̂ = Ω, for this case.

5 Case Q := Q1 Filter R.
We prove that µ ∈ [[Q1 Filter R]]F

D̂
⇔ µ ∈ [[Q1 Filter R]]D In this case,

[[Q1 Filter R]]F
D̂

:= σR([[Q1]]F
D̂

) according to Definition 32. From Definition 31,

it follows that µ ∈ σR([[Q1]]F
D̂

) ⇔ µ ∈ [[Q1]]F
D̂

and µ |= R. By induction hy-

pothesis, it holds that µ ∈ [[Q1]]F
D̂
⇔ µ ∈ [[Q]]D. Since µ |= R, following the

definition of σR under set semantics, we obtain that µ ∈ σR([[Q1]]D). Finally,
µ ∈ [[Q1 Filter R]]D and Ω̂ = Ω, in this case. �

Theorem 7 states that the mapping set obtained when evaluating queries un-
der set semantics is the same as when the evaluation is carried under fuzzy set
semantics. Therefore, we can confirm that the same complexity results of Eval-
uation [127, 140] apply when computing the solution mappings of queries under
the proposed fuzzy set semantics.

Corollary 1 The complexity of computing the mapping set of a SPARQL
query under fuzzy set semantics is the same as when it is computed under set
semantics.

5.9.2. HARE BGP Executor

For the HARE query engine, we propose an efficient algorithm (Algorithm 4)
that executes BGPs of SPARQL queries under fuzzy set semantics. During query
execution, the algorithm combines data from an RDF dataset D and a crowd
knowledge base CKB that contains fuzzy sets of RDF data. In HARE, all triples
in D are assumed to have membership degree equal to 1.0, since they are assumed
to be correct. Algorithm 4 receives a BGP B and a threshold τ , provided by
the user. Algorithm 4 (line 1) invokes the HARE optimizer to build a plan TB

121

5. Crowdsourcing Query Answer Completeness over Linked Data

Algorithm 4: HARE BGP Executor
Input: A BGP B, an RDF dataset D, a crowd knowledge CKB, and threshold τ .
Output: The fuzzy result set (Ω̂, m̂).
// 1. Get query plan and decomposition (Algorithm 3)

1 TB , (SBD, SBCROWD)← hareOptimizer(B)
// w. Evaluate bushy-tree plan TB |SBD against D

2 (Ω̂, m̂)← [[TB |SBD]]D, with m̂(µ) := 1.00 for all µ ∈ Ω̂
// 2. Evaluate triple patterns in TB |SBCROWD

3 for tCROWD ∈ TB |SBCROWD do

4 for µ ∈ Ω̂ do
5 t← µ(tCROWD)
6 if Comp(t) < 1.0 then
7 if PCROWD(t) > τ then
8 Invoke Microtask Manager with t

9 (Ω̂1, m̂1)← [[t]]D, with m̂1 := 1.00 for all µ ∈ Ω̂1

10 (Ω̂2, m̂2)← [[t]]FT+

11 (Ω̂, m̂)← (Ω̂, m̂) on ((Ω̂1, m̂1) ∪ (Ω̂2, m̂2))

12 return (Ω̂, m̂)

and a decomposition SBD and SBCROWD . The output of Algorithm 4 is a set
of mappings (Ω̂, m̂) that corresponds to the solution of BGP B. HARE physical
join operators are implemented as extensions of the symmetric and dependent
join operators introduced in Chapter 3 in order to process fuzzy RDF data. Sub-
queries in TB that are part of SBD (denoted TB|SBD) are executed against the
dataset (Algorithm 4, line 2). Then, for each triple pattern tCROWD (line 3) in
the plan that belongs to the partition SBCROWD, denoted TB|SBCROWD , the
algorithm checks whether the evaluation of tCROWD instantiated with mappings µ
in Ω̂ (t = µ(tCROWD)) yields incomplete results. To do this, Algorithm 4 considers
the completeness model and knowledge captured from the crowd (line 6). When
the evaluation of t leads to incomplete answers, Algorithm 4 verifies if the crowd
can provide the missing mappings (line 6). The probability of crowdsourcing the
evaluation of t, denoted by PCROWD(t), is computed with the following formula:

PCROWD(t) = α · (1− Comp(t))︸ ︷︷ ︸
Estimated incompleteness

+

(1− α) · ⊥(⊥(m+(t),m−(t))︸ ︷︷ ︸
Crowd confidence

,>(C(t), 1− U(t))︸ ︷︷ ︸
Crowd reliability

) (5.6)

Where:

• α ∈ [0.0, 1.0] is a score to weight the importance of the dataset completeness
versus the crowd knowledge;

• Comp(t) estimates the completeness of resources as of Definition 23 and
Definition 25. Let t = (s, p, o), Comp(t) is computed as follows:
if vars(t) = {s}, then CompSD(o|p) + CompSCKB(o|p); if vars(t) = {o},

122

5. Crowdsourcing Query Answer Completeness over Linked Data

then CompOD(s|p)+CompOCKB(s|p); if vars(t) = {p}, then CompPD(s|o)+
CompPCKB(s|o);

• m+(t) and m−(t) are the average membership degrees of t in CKB+ and
CKB− as defined in Equation (5.4);

• C(t) and U(t) correspond to contradiction (cf. Equation (5.3)) and un-
knownness (cf. Equation (5.5)) levels exhibited by the crowd, respectively;

• > is a T-norm and ⊥ a T-conorm to combine the values of crowd con-
fidence and crowd reliability. We compute > as the Gödel T-norm, also
called Minimum T-norm, which represents a weak conjunction of fuzzy sets.
Analogously, ⊥ is computed with the Maximum T-conorm, which repre-
sents a weak disjunction of fuzzy sets. HARE aims at crowdsourcing triple
patterns where CROWD exhibits: i) high confidence values in positive or
negative facts, i.e., ⊥(m+(t),m−(t)); or ii) high levels of contradiction but
low unknownness, i.e., >(C(t), 1− U(t)).

From Property 3 and Property 4, it immediately follows that computing the
completeness of resources Comp can be done in polynomial time.

Corollary 2 Let t be a triple pattern executed again a dataset D and a crowd
knowledge base CKB. The time complexity of computing Comp(t) is polyno-
mial with respect to the size of D and CKB.

With this corollary, we have answered the first part of research question ii.1,
i.e., portions of SPARQL queries can be detected in polynomial time.

If PCROWD(t) > τ holds, the engine invokes the microtask manager (cf. Sec-
tion 5.7). Algorithm 4 terminates when all intermediate results are processed. We
illustrate the execution of Algorithm 4 by evaluating the BGP B in query from
Listing 5.2 against the DBpedia datasetD (partially depicted in Figure 5.3), where
AMPD(schema.org:Movie | dbp:producer) is 3, τ = 0.60, and α = 0.50. Triples pre-
viously collected from CROWD and intermediate results of evaluating SBD from
the plan TB (cf. Figure 5.6b) are shown below.

CKB+:
(dbr:Tower Heist, dbp:producer, dbr:Brian Grazer, 0.90)

(dbr:The Wolf of Wall Street, dbp:producer, dbr:Leonardo DiCaprio, 0.98)

(dbr:The Sleeping City, dbp:producer, dbr:Brian Grazer, 0.12)

CKB−:
(dbr:Tower Heist, :p1, dbr:Brian Grazer, 0.04)

(dbr:Tower Heist, dbp:producer, :o, 0.06)

CKB∼:
(dbr:Tower Heist, :p2, dbr:Brian Grazer, 0.01)

123

5. Crowdsourcing Query Answer Completeness over Linked Data

(Ω̂, m̂):
({movie → dbr:Tower Heist}, 1.00)

({movie → dbr:Legal Eagles}, 1.00)

({movie → dbr:The Interpreter}, 1.00)

({movie → dbr:The Wolf of Wall Street}, 1.00)

({movie → dbr:The Sleeping City}, 1.00)

For each mapping µ ∈ Ω̂, Algorithm 4 (lines 3-8) proceeds as follows.

Iteration 1: An element of Ω̂ is selected, µ={movie→ dbr:Tower Heist}. The al-
gorithm processes the triple pattern t1 = (dbr:Tower Heist, dbp:producer, ?producer),
which is the result of instantiating µ in t. Given that the D has no producers
of dbr:Tower Heist, MOD(dbr:Tower Heist | dbp:producer) = 0 (see Figure 5.3). How-
ever, CKB+ contains values of producers for this movie, hence the multiplicity
MOCKB(dbr:Tower Heist | dbp:producer) = 1, then Comp(t1) = 0.33. Algorithm 4
computes the probability of evaluating the triple pattern t1 against the crowd (line
7). The crowd knowledge bases CKB+, CKB−, CKB∼ have information about
this triple pattern. As shown in Example 20 and Example 21, C(t1) = 0.094 and
U(t1) = 0.01. The result of applying Equation 5.6 is PCROWD(t1) = 0.78, which is
higher than τ = 0.60, hence the triple pattern t1 is crowdsourced.

Iteration 2: The next element, µ={movie → dbr:Legal Eagles} is processed,
with MOD(dbr:Legal Eagles | dbp:producer) = 2 (see Figure 5.3). Since CKB has no
information about this movie, MOCKB(dbr:Legal Eagles | dbp:producer) = 0. There-
fore, the completeness of dbr:Legal Eagles w.r.t. dbp:producer is 0.667 < 1 (line 6).
CKB does not have information about the triple pattern t2 = (dbr:Legal Eagles,

dbp:producer, ?producer), therefore m+(t2) = 0, m−(t2) = 0, m∼(t2) = 0. The
values of contradiction and unknownness for t2 are C(t2) = 1.0 and U(t2) = 0.0,
respectively. Applying Equation (5.6), it is obtained that PCROWD(t2) = 0.667,
which is higher than τ = 0.60, therefore the pattern t2 is submitted to the crowd.

Iteration 3: The algorithm processes µ={movie → dbr:The Interpreter}. Ac-
cording to Figure 5.3, the multiplicity is MOD(dbr:The Interpreter | dbp:producer)
= 3. In this case, Comp(dbr:The Interpreter | dbp:producer) is 1.0 (line 6, Algo-
rithm 4), therefore this instance is not crowdsourced.

Iteration 4: The next mapping is µ={movie → dbr:The Wolf of Wall Street}.
Assume that D has no producers for dbr:The Wolf of Wall Street. According to
CKB+, the multiplicity value for the property dbp:producer of this RDF resource is
MOCKB(dbr:The Wolf of Wall Street | dbp:producer) = 1. The estimated complete-
ness of this resource is 0.33 < 1 (Algorithm 4, line 6). The probability of posing
t4 =(dbr:The Wolf of Wall Street, dbp:producer, ?producer) to the crowd is computed.
CKB+ contains triples associated with t4, therefore m+(t4) = 0.98, m−(t4) = 0,
m∼(t4) = 0. Values of contradiction and unknownness are both zero for t4. Lastly,
the result of applying Equation (5.6) is PCROWD(t4) = 0.82, which is higher than
τ = 0.60, and t4 is crowdsourced.

124

5. Crowdsourcing Query Answer Completeness over Linked Data

Iteration 5: The next element from Ω̂ is µ={movie → dbr:The Sleeping City}.
Assume that D has no producers for the movie dbr:The Sleeping City, however,
the multiplicity in CKB is MOCKB(dbr:The Sleeping City | dbp:producer) = 1. The
estimated completeness is in this case 0.33, then the algorithm processes the pat-
tern t5=(dbr:The Sleeping City, dbp:producer, ?producer). In this case, m+(t5) = 0.12,
m−(t5) = 0, m∼(t5) = 0. Values of contradiction and unknownness are both zero
for t5. Lastly, Equation (5.6) results in PCROWD(t5) = 0.39, which is lower than
τ = 0.60, then t5 is not crowdsourced.

Note that the triple patterns t4 and t5 – processed in iterations 4 and 5 – share
several commonalities: Comp(t4) = Comp(t5) = 0.33, m−(t4) = m−(t5) = 0,
m∼(t4) = m∼(t5) = 0, C(t4) = C(t5) = 0, and U(t4) = U(t5) = 0. How-
ever, t4 is submitted to the crowd, while t5 is not crowdsourced. The reason for
this is that CROWD exhibited low confidence when assessing dbr:The Sleeping City,
therefore subsequent questions like t5 about this resource are not posed against
the crowd (for τ = 0.60). On the contrary, since CROWD showed high confi-
dence for dbr:The Wolf of Wall Street, then t4 is crowdsourced. This illustrates the
importance of taking into consideration the crowd confidence in Equation (5.6).

The configuration of the parameter τ allows for specifying the estimated com-
pleteness of the query answer. To illustrate this, consider the example shown in
Figure 5.7 and α = 1. Figure 5.7a depicts an RDF graph, where nodes are linked
via the predicate p. Figure 5.7b presents the distribution of the multiplicity MOD

for nodes s1, s2, s3, s4, and s5. Whenever a user specifies τ = 0.80, HARE crowd-
sources triple patterns whose estimated incompleteness is higher than 0.80, i.e.,
only the triple pattern (s5, p, ?o) is posed to the crowd. Furthermore, if τ = 0.60,
then (s3, p, ?o), (s4, p, ?o), and (s5, p, ?o) are crowdsourced, since their estimated
incompleteness are 0.80, 0.80, and 1.0, respectively. The higher the value of τ ,
the lower the number of crowdsourced triple patterns.

Finally, Algorithm 4 combines mappings obtained from D and mappings re-
trieved from the crowd stored in CKB+ (line 9). The outcome of Algorithm 4
corresponds to the set of solutions (Ω̂, m̂) of a BGP in Q, where each solution
mapping is annotated with the membership degree m̂ to Ω̂.

5.9.3. Complexity of HARE Query Evaluation

The HARE engine does not increase the complexity of computing the result set
of a SPARQL query Q. Note that, in comparison with a traditional SPARQL
engine where a query is evaluated against an RDF dataset D, the HARE engine
extends the evaluation of BGPs to incorporate the answers from the crowd, i.e.,
the query is evaluated using D∪CKB. Formally, consider the SPARQL Evalua-
tion problem [127, 140], we define the associated evaluation problem of executing
a query against an RDF dataset D and the crowd knowledge base CKB, denoted
by EvaluationCROWD(µ,D,CKB, Q). EvaluationCROWD is the problem of de-
ciding if a mapping µ ∈ Ω̂, where (Ω̂, m̂) is computed by Algorithm 4 if Q is an
expression composed of a triple pattern or And operators (Q is a BGP); otherwise

125

5. Crowdsourcing Query Answer Completeness over Linked Data

0
1
2
3
4
5

s1 s2 s3 s4 s5

M
O

D
(s

|p
) f

or
 a

 g
iv

en
 p

Values of s

τ=0.80

s1

s2 s4 s5

o1 o2 o3 o4 o5

s3

o6

p p

p p p p

p p p p τ=0.60

(a) (b)

Figure 5.7: Effect of τ on the number of crowdsourced triple patterns. (a) Example of
an RDF graph. (b) Distribution of values MOD(s|p) for each node in (a).
When τ = 0.80, only the pattern (s5,p,?o) is crowdsourced. When τ = 0.60,
patterns with predicate p and subjects s3, s4, s5 are crowdsourced.

(Ω̂, m̂) is the result set of [[Q]]F
D̂

as in Definition 32 with D̂ = (D,m) and m = 1.0
for all t ∈ D.

Theorem 8 The EvaluationCROWD problem is in (1) PTime for expres-
sions constructed using only And and Filter operators; (2) NP-complete
for expressions constructed using And, Filter, and Union operators; (3)
PSpace-complete for graph pattern expressions.

Proof Let Q be a query, D an RDF dataset, and CKB a crowd knowledge base.
Note that to solve the EvaluationCROWD(µ,D,CKB, Q) problem, we just have
to check if µ ∈ Ω̂ where (Ω̂,m) is computed either by Algorithm 4 or Definition
17 depending on the structure of Q. As defined in the EvaluationCROWD prob-
lem, if Q is composed of a triple pattern or And operators, then Q is evaluated
with Algorithm 4. The computation of the result set Ω̂ in Algorithm 4 is done in
four points of Algorithm 4: lines 2, 9, 10, and 11. In line 2, the engine evalu-
ates the sub-query TB|SBD against D as defined in the SPARQL set semantics
(Definition 8). Therefore, the time complexity of computing Ω̂ in line 2 is poly-
nomial (cf. Theorem 1) w.r.t. the size of D and the number of triple patterns
in TB|SBD. Analogously, in line 9, the complexity of computing Ω1 = [[t]]D is
also polynomial; more precisely, since t is a single triple pattern, [[t]]D can be
computed in linear time w.r.t. the size of D. In line 10, Algorithm 4 computes
(Ω2, m̂2) = [[t]]FCKB+. Based on Corollary 1, the time complexity of computing
Ω2 under fuzzy set semantics is the same as when using set semantics, i.e., Ω2

can be computed in linear time w.r.t. the size of D (under the assumption that
|CKB+| � |D|). Lastly, in line 11, a SPARQL Union operator is added to the
query evaluation. Note that the mapping sets Ω1 (line 9) and Ω2 (line 10) are the
result of evaluating a single (and the same) triple pattern in each one. Therefore,

126

5. Crowdsourcing Query Answer Completeness over Linked Data

the problem of deciding whether µ ∈ Ω1 ∪Ω2 in this case is in PTime [140].6 We
conclude that EvaluationCROWD is in PTime for triple patterns or SPARQL
expressions constructed with And operators. Regarding expressions constructed
with other SPARQL operators, the EvaluationCROWD problem specifies that Q
is evaluated using fuzzy set semantics, i.e., [[Q]]F

D̂
with D̂ = (D,m) and m = 1.0

for all t ∈ D. By Corollary 1, the complexity of computing Ω̂ (the result of [[Q]]F
D̂

)
under fuzzy set semantics is the same as when it is computed under set semantics.
Then, the complexity of deciding if µ ∈ Ω̂ is the same as in Evaluation. �

With the demonstration of this theorem, we have formally answered the second
part of research question ii.1, i.e., incorporating human input with our knowledge
representation comes for free w.r.t. Evaluation in terms of time complexity.
For answering research questions ii.2 and ii.3, we have conducted an empirical
study which is presented in the following section.

5.10. Experimental Study

5.10.1. Experimental Settings

Query Benchmark: We extended Benchmark II from Chapter 3 and designed 50
different queries by analyzing triple patterns answerable by the DBpedia SPARQL
endpoint7; we chose queries that do not return all possible results due to incom-
plete portions of DBpedia (version 2014). We chose 10 queries each to belong
in five categories to test the crowd in different domains: Sports, Music, Life Sci-
ences, Movies, and History. Queries have between three and six triple patterns.
The resulting queries are presented in Appendix A. We built a gold standard D∗

of missing answers by removing portions of the dataset. For each query, its gold
standard of missing answers contains from 8% to 97% of the total query answer.

Implementations: HARE is implemented in Python 2.7.6. and CrowdFlower is
used as the crowdsourcing platform. Initially, CKB is empty therefore we con-
figure α = 1.0 to consider only the completeness of the dataset. We implemented
two variants of our approach which generate different microtasks: HARE that
exploits the semantics of resources as described in Section 5.7.1, and HARE-BL
is a baseline that simply substitutes URIs with labels in the microtasks.

Crowdsourcing Configurations: Based on settings reported in the litera-
ture [51, 75, 150], we configure the microtask parameters as follows:

i) Task granularity: We asked workers to solve a maximum of four different
RDF triples per task.

ii) Payments: The monetary reward was 0.07 US dollars per task.

6This is the case of the fragment U defined by Schimdt et al. [140]
7http://dbpedia.org/sparql

127

http://dbpedia.org/sparql

5. Crowdsourcing Query Answer Completeness over Linked Data

0

500

1000

1500

0.00 0.25 0.50 0.75 1.00
τ

C
ro

w
ds

ou
rc

ed
 tr

ip
le

 p
at

te
rn

s
Sports

History

LifeSciences

Music

Movies

(a) Impact of τ on the number of crowd-
sourced triple patterns by HARE.

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00
τ

%
 C

ro
w

ds
ou

rc
ed

 tr
ip

le
 p

at
te

rn
s

Sports

History

LifeSciences

Music

Movies

(b) Crowdsourced triple patterns w.r.t. the
heuristics of the HARE optimizer

Figure 5.8: Crowdsourcing capabilities of HARE. (a) The more incomplete a domain is
according to the completeness model, the higher the number of crowdsourced
patterns. In all domains, the number of crowdsourced triple patterns with
τ = 1.00 is zero; this represents the case of automatic query execution
(without crowdsourcing). (b) Per knowledge domain, effectiveness of the
HARE completeness model with respect to the heuristics of the HARE
optimizer. For τ>0.0, the completeness model is able to reduce the number
of triple patterns to crowdsource in comparison to the optimizer

iii) Redundancy: We collected at least three answers for each task.

iv) Quality control: Gold Units (GU) in CrowdFlower correspond to verification
questions to filter low-quality answers. In this work, the GUs were generated
from the gold standard. The GU distribution was set to 10:90, i.e., for each
100 triples in the gold standard, 10 were GUs.

5.10.2. HARE Crowdsourcing Capabilities

We executed the benchmark queries with HARE to study its crowdsourcing ca-
pabilities. Given that CKB is initially empty, HARE solely relies on the esti-
mated local incompleteness (computed by the completeness model) and the qual-
ity threshold τ (specified by the user) to submit a triple pattern to the crowd.
We, therefore, measure the number of triple patterns that are crowdsourced when
executing the benchmark queries with HARE for different values of the threshold
τ ; Figure 5.8a reports on these results aggregated per knowledge domain. It can
be observed in Figure 5.8a that the number of crowdsourcing triple patterns differ
per knowledge domain. This indicates that completeness in DBpedia is heteroge-
neous among different sub-graphs, in this case, represented by different knowledge
domains. For instance, the History and Movies domains contain a high number
of estimated missing values (for τ = 0.00 and τ = 0.25) in comparison with other
domains. These results support the importance of taking into consideration the

128

5. Crowdsourcing Query Answer Completeness over Linked Data

Table 5.2: Results when executing the benchmark with HARE-BL and HARE. Total
number of crowdsourced triple patterns with each approach and answers
retrieved from the crowd. Average and standard deviation of crowd workers’
confidence as reported by CrowdFlower.

Knowledge # Triples # Crowd HARE-BL Worker HARE Worker

Domain to Crowd Answers Confidence Confidence

Sports 69 376 0.93± 0.06 0.94± 0.06

Music 71 375 0.94± 0.06 0.95± 0.07

Life Sciences 82 460 0.90± 0.09 0.92± 0.07

Movies 120 1, 035 0.88± 0.10 0.94± 0.06

History 160 917 0.90± 0.08 0.93± 0.07

Total 502 3,163 – –

local completeness of resource descriptions and that our model is able to capture
the skew distribution of values in real-world datasets. Moreover, Figure 5.8a also
shows that the value of τ impacts the number of crowdsourced triple patterns.
The higher the value of τ the lower the requested answer completeness is. As
expected, the number of crowdsourced patterns decreases as the values of τ in-
creases. When τ = 1.00, no patterns are crowdsourced; this is the case when query
execution is carried out only against the dataset without invoking the crowd.

We now measure the effectiveness of the HARE completeness model in com-
parison to the simple heuristics of the HARE optimizer to identify missing values.
In HARE, the optimizer considers the number of variables in triple patterns to de-
cide which triple patterns should be crowdsourced during query execution. Since
the optimizer does not take into consideration the completeness of resources, re-
lying only on the optimizer could lead to submiting to the crowd large amount of
unnecessary questions. To overcome this, HARE relies on the completeness model
to decide which of the triple patterns identified by the optimizer are posed to the
crowd. Based on the triple patterns identified by the heuristic of the optimizer, we
measure the percentage of those triple patterns that are crowdsourced by HARE
during query execution. Figure 5.8b presents these results. Note that τ = 0.0
emulates the case in which HARE crowdsources the triple patterns following the
heuristics of the optimizer, without considering the completeness model. For cases
τ > 0.0, the HARE engine relies on both the optimizer and the completeness
model. We can observe in Figure 5.8b that when τ = 0.0, HARE crowdsources
100% of the triple patterns identified by the optimizer, as expected. Furthermore,
for τ ≥ 0.50, the completeness model is able to prune the triple patterns to submit
to the crowd. In particular, in domains where the benchmark queries produce a
large number of intermediate results, the completeness model reduces the number
of crowdsourced triple patterns considerably. This can be observed, for example,
in the domains History and Movies with τ = 0.75, where the completeness model
crowdsources around 52% and 14% (respectively) of the triple patterns.

129

5. Crowdsourcing Query Answer Completeness over Linked Data

5.10.3. Size of Query Answer

In this section, we compare the number of query answers obtained when the query
is executed against the DBpedia dataset (|[[Q]]D|) and with HARE, which com-
bines results from the dataset and CROWD (|[[Q]]CROWD

D |). For each benchmark
query, we crowdsourced a random sample of triple patterns. The size of each sam-
ple is proportional to the percentage of missing values for which the answers exist
in the gold standard D∗. Table 5.2 reports on the number of crowdsourced triple
patterns per knowledge domain. In total, we submitted to the crowd 502 RDF
triple patterns with each HARE and HARE-BL. First, we submitted the micro-
tasks generated by HARE to CrowdFlower; after a certain time, the microtasks
generated by HARE-BL were crowdsourced under similar conditions. In total,
we collected 3,163 crowd answers. Table 5.2 reports on the average and standard
deviation of the crowd’s confidence with each approach. Confidence8 is reported
directly by CrowdFlower and represents the validity of the crowd answer. Ta-
ble 5.2 shows that the crowd’s confidence is very high, indicating that most of the
crowd answers are reliable. It is also important to note that there is no significant
difference between the crowd confidence in both approaches; this indicates that
crowd workers that solved tasks with HARE and HARE-BL are equally reliable.

Figure 5.9 reports on the number of answers obtained per knowledge domain.
In all benchmark queries, HARE is able to consistently produce more answers than
the baseline when queries are executed solely against the dataset D. Furthermore,
Figure 5.9 shows that the number of answers completed by HARE varies among
knowledge domains in the DBpedia dataset.

To measure the effectiveness of HARE, we compute the proportion of com-
pleteness (PC) per query. PC corresponds to the ratio of answers produced by
HARE to the answers when the same query is executed only against the dataset:

PC =
|[[Q]]CROWD

D |
|[[Q]]D|

Figure 5.9f depicts the PC values achieved by HARE per knowledge domain.
In all domains, the minimum PC values are higher than 1.0 indicating that HARE
increased the number of answers in all SPARQL queries. It is important to high-
light that PC values are affected by the estimated completeness of the dataset.
The more complete a dataset is, the smaller the opportunity to enhance query
answer completeness. This is the case, for instance, in DBpedia in the Life Sci-
ences and Movies knowledge domains, which exhibit high levels of completeness.
Therefore, on average the PC values achieved in these domains are not as high
as for other knowledge domains in DBpedia. For example, consider the query
benchmark Q8-Sports where HARE is able to produce 12.00 times more answers
than the DBpedia dataset (see highlighted datapoint in Figure 5.9f), since Q8 only
produces one result when it is executed against DBpedia.

Next, we analyze the number of answers produced with the two variants of
our approach. Figure 5.10 lists the results per knowledge domain for each variant:

8https://success.crowdflower.com/hc/en-us/articles/202703305#confidence_

score

130

https://success.crowdflower.com/hc/en-us/articles/202703305#confidence_score
https://success.crowdflower.com/hc/en-us/articles/202703305#confidence_score

5. Crowdsourcing Query Answer Completeness over Linked Data

10

20

30

40

Q1 Q2 Q8 Q6 Q3 Q4 Q5 Q10 Q9 Q7
Query

A

ns
w

er
s

Dataset Answers
HARE Answers

(a) Sports

0

25

50

75

100

125

Q3 Q5 Q2 Q4 Q1 Q6 Q7 Q8 Q9 Q10
Query

A

ns
w

er
s

Dataset Answers
HARE Answers

(b) Music

20

40

60

80

100

120

140

160

180

Q2 Q4 Q1 Q3 Q5 Q8 Q7 Q6 Q9 Q10
Query

A

ns
w

er
s

Dataset Answers
HARE Answers

(c) Life Sciences

50

100

150

200

250

300

350

Q3 Q7 Q6 Q5 Q4 Q1 Q2 Q9 Q8 Q10
Query

A

ns
w

er
s

Dataset Answers
HARE Answers

(d) Movies

100

200

300

400

500

Q1 Q2 Q3 Q5 Q6 Q4 Q7 Q8 Q10 Q9
Query

A

ns
w

er
s

Dataset Answers
HARE Answers

(e) History

1

2

4

6

8

10

12

Sports Music Life Sciences Movies History
Domain

P
C

(f) Portion of Completeness

Figure 5.9: Size of query answer. (a)-(e) Number of answers (y-axis) obtained with
DBpedia (Dataset Answers) and our approach (HARE Answers) per knowl-
edge domain. In each plot, benchmark queries (x-axis) are ordered by the
number of answers produced when execution is carried over dataset. (f)
Portion of completeness (PC) achieved by HARE per knowledge domain.
In all domains, HARE is able to enhance answer completeness on average.
Highlighted value corresponds to query where HARE produced 12 times
more answers than the dataset.

the first column shows the number of answers obtained with HARE-BL, while the
second column shows the results for HARE. In each query, we distinguish between
the number of answers retrieved from the dataset and the ones obtained from the
crowd. In addition, minimum and maximum values of PC are reported per domain
for HARE-BL and HARE in Figure 5.10. The results indicate that the number
on answers produced by the crowd with HARE is predominantly higher than with
the baseline HARE-BL. Also, as presented earlier, the values of PC achieved
with HARE are always greater than 1.00 indicating that the crowd enhanced the
number of answers of all benchmark queries. In contrast, HARE-BL was not able
to enhance query answers for queries Q5-Music9 and Q7-Music10, and Q1-History11.
Furthermore, for most queries, the values of PC are higher when microtasks were
generated using the HARE approach. This suggests that crowd workers are more

9Q5-Music: Associated bands of Canadian jazz musicians.
10Q7-Music: Associated acts of salsa musicians.
11Q1-History: Places of British military occupations.

131

5. Crowdsourcing Query Answer Completeness over Linked Data

10

20

30

40

Q1 Q2 Q8 Q6 Q3 Q4 Q5 Q10 Q9 Q7
Query

A

ns
w

er
s

Dataset Answers
HARE−BL Crowd Answers

(a) HARE-BL, Sports. PC : (1.38, 10.00)

10

20

30

40

Q1 Q2 Q8 Q6 Q3 Q4 Q5 Q10 Q9 Q7
Query

A

ns
w

er
s

Dataset Answers
HARE Crowd Answers

(b) HARE, Sports. PC : (1.20, 12.00)

0

25

50

75

100

125

Q3 Q5 Q2 Q4 Q1 Q6 Q7 Q8 Q9 Q10
Query

A

ns
w

er
s

Dataset Answers
HARE−BL Crowd Answers

(c) HARE-BL - Music. PC: (1.00, 2.25)

0

25

50

75

100

125

Q3 Q5 Q2 Q4 Q1 Q6 Q7 Q8 Q9 Q10
Query

A

ns
w

er
s

Dataset Answers
HARE Crowd Answers

(d) HARE - Music. PC : (1.5, 4.57)

20

40

60

80

100

120

140

160

180

Q2 Q4 Q1 Q3 Q5 Q8 Q7 Q6 Q9 Q10
Query

A

ns
w

er
s

Dataset Answers
HARE−BL Crowd Answers

(e) HARE-BL - Life Sci. PC : (1.06, 2.25)

20

40

60

80

100

120

140

160

180

Q2 Q4 Q1 Q3 Q5 Q8 Q7 Q6 Q9 Q10
Query

A

ns
w

er
s

Dataset Answers
HARE Crowd Answers

(f) HARE - Life Sci. PC : (1.08, 2.67)

50

100

150

200

250

300

350

Q3 Q7 Q6 Q5 Q4 Q1 Q2 Q9 Q8 Q10
Query

A

ns
w

er
s

Dataset Answers
HARE−BL Crowd Answers

(g) HARE-BL - Movies. PC : (1.02, 2.19)

50

100

150

200

250

300

350

Q3 Q7 Q6 Q5 Q4 Q1 Q2 Q9 Q8 Q10
Query

A

ns
w

er
s

Dataset Answers
HARE Crowd Answers

(h) HARE - Movies. PC : (1.02, 1.65)

100

200

300

400

500

Q1 Q2 Q3 Q5 Q6 Q4 Q7 Q8 Q10 Q9
Query

A

ns
w

er
s

Dataset Answers
HARE−BL Crowd Answers

(i) HARE-BL - History. PC : (1.00, 3.44)

100

200

300

400

500

Q1 Q2 Q3 Q5 Q6 Q4 Q7 Q8 Q10 Q9
Query

A

ns
w

er
s

Dataset Answers
HARE Crowd Answers

(j) HARE - History. PC : (1.10, 3.11)

Figure 5.10: Size of query answer achieved by baseline HARE-BL and HARE per query
and domain. Crowd answers correspond to aggregated responses retrieved
from crowd workers (including true positives and false positives). Minimum
and maximum values of percentage of completeness (PC) are reported.

132

5. Crowdsourcing Query Answer Completeness over Linked Data

0.4

0.6

0.8

1.0

Sports Music Life Sciences Movies History
Domain

M
et

ric
 v

al
ue

Precision

Recall

Figure 5.11: Precision and recall achieved by HARE per domain. Median precision
values is 0.55 in the Music domain and greater than 0.9 for the other
domains. The median achieved in recall is 1.0 for all domains.

engaged to solve microtasks with semantically enriched interfaces; in addition, –
as will be shown in Section 5.10.4 and Section Section 5.10.5 – workers are also
more effective and efficient when solving tasks generated with HARE than with
the baseline. The only domain in which PC is lower in HARE than in HARE-BL
is Movies. However, as discussed next in Section 5.10.4, the quality of the crowd
answers obtained with HARE-BL are not as high as the crowd answer quality
achieved with HARE.

The results of these experiments confirm that HARE is able to correctly iden-
tify sub-queries that produce incomplete results, and that microtask crowdsourc-
ing can resolve missing values when executing SPARQL queries against RDF
datasets. This answers our second research question ii.2.

5.10.4. Quality of Crowd Answers

To measure the quality of crowd answers, we compute precision and recall of the
mappings retrieved from the crowd with respect to the gold standard D∗. For each
query Q and crowdsourced triple pattern t in Q, a true positive corresponds to a
mapping µ(t) provided by the crowd where µ(t) ∈ [[Q]]D∗ . Analogously, a false
positive is a mapping µ(t) from the crowd where µ(t) /∈ [[Q]]D∗ . Crowd answers
equal to “I don’t know” are considered neither true positives nor false positives
since the crowd has explicitly stated to be unknowledgeable about the existence
of values for resolving t.

Figure 5.11 reports on the aggregated results of precision and recall of crowd
answers obtained with HARE. It can be observed that precision values fluctuate
over the knowledge domains. The lowest performance in terms of precision is
obtained in the Music domain, where the median is 0.55. Still, the high value of
the third quartile in the Music domain indicates that most of the precision values
range from 0.55 to 0.90. Overall, the median precision values of HARE in the

133

5. Crowdsourcing Query Answer Completeness over Linked Data

Table 5.3: Quality of crowd answers achieved by HARE and HARE-BL. Precision and
recall values are reported for each query. Highlighted cells represent the
cases where HARE exhibits a similar or better performance than HARE-BL.
Precision equal to n/a corresponds to cases where the crowd answered “I
don’t know” in all query instances.

(a) Precision per query and geometric mean per knowledge domain

Sports Music Life Sciences Movies History

Query HARE-BL HARE HARE-BL HARE HARE-BL HARE HARE-BL HARE HARE-BL HARE

Q1 1.00 1.00 1.00 1.00 1.00 0.50 0.34 1.00 N/A 1.00

Q2 1.00 1.00 1.00 1.00 1.00 1.00 0.64 0.96 1.00 1.00

Q3 0.33 1.00 1.00 1.00 1.00 1.00 0.53 1.00 0.75 0.75

Q4 0.13 0.55 0.50 0.50 0.50 1.00 1.00 1.00 0.63 0.77

Q5 0.80 1.00 N/A 0.57 0.18 1.00 0.50 0.80 0.77 0.95

Q6 0.60 0.69 0.50 0.60 1.00 1.00 1.00 1.00 0.78 0.93

Q7 0.67 1.00 N/A 0.48 0.54 0.75 0.89 1.00 0.71 0.63

Q8 0.50 0.92 0.43 0.39 0.71 0.87 0.87 1.00 0.33 0.93

Q9 0.30 0.50 0.92 0.36 0.54 1.00 0.58 1.00 0.72 0.54

Q10 0.40 0.91 0.39 0.52 0.70 1.00 1.00 1.00 0.48 0.95

Mean 0.49 0.83 0.66† 0.62† 0.65 0.89 0.69 0.97 0.66† 0.81†

(b) Recall per query and geometric mean per knowledge domain

Sports Music Life Sciences Movies History

Query HARE-BL HARE HARE-BL HARE HARE-BL HARE HARE-BL HARE HARE-BL HARE

Q1 1.00 1.00 1.00 1.00 1.00 1.00 0.55 0.41 0.00 1.00

Q2 1.00 1.00 1.00 1.00 1.00 1.00 0.70 1.00 1.00 1.00

Q3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Q4 0.20 0.86 1.00 1.00 0.20 1.00 1.00 1.00 0.28 0.94

Q5 0.80 1.00 0.00 0.80 0.33 1.00 1.00 1.00 0.94 1.00

Q6 0.67 1.00 0.25 0.75 1.00 1.00 0.16 1.00 0.27 0.96

Q7 1.00 1.00 0.00 0.92 0.78 1.00 0.89 1.00 0.24 0.95

Q8 0.55 1.00 0.43 1.00 0.38 1.00 0.87 1.00 0.07 1.00

Q9 0.50 1.00 0.35 1.00 0.58 1.00 0.70 1.00 0.84 1.00

Q10 0.60 1.00 0.20 0.91 0.54 1.00 0.88 1.00 0.98 1.00

Mean 0.67 0.98 0.54† 0.95† 0.60 1.00 0.70 0.92 0.46† 0.98†

† Geometric mean values computed excluding values N/A or 0.00 for HARE-BL and their
corresponding pair for HARE.

other domains are greater than 0.93. In turn, recall values are consistently high
with the median equal to 1.0.

Next, we conduct a fine-grained analysis of the quality of the crowd answers
retrieved with HARE and the baseline HARE-BL. Results of precision and recall
per query are reported in Table 5.3.

134

5. Crowdsourcing Query Answer Completeness over Linked Data

In terms of precision, the mean values reported in Table 5.3 indicate that the
HARE approach led to higher precision than HARE-BL in four domains. With
HARE, the crowd was able to provide fully correct answers (precision equal to
1.00) for 25 out of 50 queries, while with HARE-BL only 13 queries were correctly
answered. Furthermore, HARE achieves precision values from 0.62 up to 0.97,
while HARE-BL precision ranges from 0.49 to 0.69. In 28 out of 50 benchmark
queries, HARE outperforms HARE-BL in terms of precision. In 7 additional
queries, HARE and HARE-BL exhibit the same performance. In the remaining
cases, HARE-BL achieves higher precision than HARE in three queries which
correspond to queries with multivalued attributes.12 Still, in all the queries where
HARE exhibits lower precision than HARE-BL, HARE leads to very high values
of recall (from 0.95 to 1.00), indicating that the crowd is able to correctly identify
true positives. It is important to note that with the HARE-BL approach, the
majority of the crowd workers answered “I don’t know” (n/a values in Table 5.3)
in three benchmark queries. This provides evidence of the importance of our
triple-based approach on the identification of portions of RDF graphs where the
crowd is unknowledgeable. Thus, in subsequent queries, our approach will make
use of this knowledge to avoid crowdsourcing these questions again.

In terms of recall, Table 5.3 shows that on average the quality of HARE is very
high (from 0.92 to 1.00). In 49 out of 50 benchmark queries, HARE exhibits the
same or better performance than HARE-BL; and, in 32 queries, HARE outper-
forms HARE-BL. Overall, the recall obtained with HARE is clearly higher than
with HARE-BL. In particular, in 41 out of 50 queries, the crowd was able to resolve
all missing values (i.e., recall equals to 1.00) with HARE. Only in Q1-Movies13, the
crowd achieved lower recall with HARE (recall 0.41) than HARE-BL (recall 0.55).
Nonetheless, in this case, the precision of HARE (1.00) is higher than HARE-BL
(0.34). It is important to point out that the recall values obtained with HARE-BL
are heterogeneous within the knowledge domains. On the contrary, the HARE
crowd consistently achieves high recall in the studied domains.

In summary, the geometric mean values reported in Table 5.3 indicate that on
average crowd answers exhibit higher quality with HARE than with the baseline
HARE-BL in all studied knowledge domains. HARE microtasks assisted the crowd
in reaching perfect precision and recall scores in 30 out of 50 SPARQL queries (60%
of the benchmark). These experiments confirm that exploiting the semantics of
RDF resources allows the crowd for effectively solving missing RDF values which,
in turn, enhances the answer completeness of SPARQL queries. This answers
research question ii.3 regarding the effectiveness of the crowd.

5.10.5. Crowd Response Time

We analyze the time efficiency of the crowd contacted by our approach when
executing a query. Crowd response time per query corresponds to the elapsed

12This is the case of the following queries: Q8-Music “Associated acts of German pop
singers”, Q9-Music “Associated bands of Canadian jazz musicians”, Q7-History “Combatants
of battles involving Portugal”.

13Q1-Movies: Gross of films shot in Spain.

135

5. Crowdsourcing Query Answer Completeness over Linked Data

0

25

50

75

100

0 20 40 60
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(a) HARE-BL - Sports. 12th min.: 78%

0

25

50

75

100

0 20 40 60
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(b) HARE - Sports. 12th min.: 77%

0

25

50

75

100

0 50 100
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(c) HARE-BL - Music. 12th min.: 79%

0

25

50

75

100

0 50 100
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(d) HARE - Music. 12th min.: 82%

0

25

50

75

100

0 20 40 60
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(e) HARE-BL - Life Sciences. 12th min.: 92%

0

25

50

75

100

0 20 40 60
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(f) HARE - Life Sciences. 12th min.: 97%

0

25

50

75

100

0 20 40 60
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(g) HARE-BL - Movies. 12th min.: 79%

0

25

50

75

100

0 20 40 60
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(h) HARE - Movies. 12th min.: 98%

0

25

50

75

100

0 250 500 750
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(i) HARE-BL - History. 12th min.: 62%

0

25

50

75

100

0 250 500 750
Time (min)

Ju
dg

em
en

ts
 c

om
pl

et
ed

 (
%

)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

(j) HARE - History. 12th min.: 75%

Figure 5.12: Crowd response time with HARE-BL and HARE. The percentage of judge-
ments completed (y-axis) in function of time (x-axis) is plotted per domain.
The percentage of judgements received until the 12th minute (vertical line)
are reported per knowledge domain.

136

5. Crowdsourcing Query Answer Completeness over Linked Data

0

1

2

3

4

2 4 6
Time (min)

Ju

dg
em

en
ts

HARE

HARE−BL

(a) Q2-Music.
p-value : 1.000

0.0

2.5

5.0

7.5

0.5 1.0 1.5 2.0 2.5
Time (min)

Ju

dg
em

en
ts

HARE

HARE−BL

(b) Q3-Life Sciences.
p-value : 0.526

0.0

2.5

5.0

7.5

2 4 6 8
Time (min)

Ju

dg
em

en
ts

HARE

HARE−BL

(c) Q2-Life Sciences.
p-value : 6.621× 10−5

0

10

20

30

40

50

0 10 20 30 40
Time (min)

Ju

dg
em

en
ts

HARE

HARE−BL

(d) Q9-Movies.
p-value :< 2.2× 10−16

0

20

40

60

0 20 40
Time (min)

Ju

dg
em

en
ts

HARE

HARE−BL

(e) Q10-Movies.
p-value :< 2.2× 10−16

0

50

100

150

0 200 400 600 800
Time (min)

Ju

dg
em

en
ts

HARE

HARE−BL

(f) Q10-History.
p-value :< 2.2× 10−16

Figure 5.13: Crowd answer distribution over time with HARE and HARE-BL. Number
of judgements (y-axis) produced by the crowd at different and identically
distributed points in time (x-axis). p-values obtained from the Kolmogorov-
Smirnov test [149] are reported. Answer distributions (a) and (b) are not
significantly different; (c), (d), (e), (f) are significantly different (p < 0.01).

time since the first task is posed to CrowdFlower until the last answer is retrieved
from the crowd. Figure 5.12 lists the fraction of judgements (crowd answers)
that were completed with HARE-BL and HARE as a function of time. For both
studied approaches in all five domains, we observe a similar behavior: A small
portion of judgements are finished much later than the vast majority.

Furthermore, in Figure 5.12 can be observed that, in general, the assignments
are completed faster with the HARE approach. We therefore look at the percent-
age of judgements completed until a certain point in time with both approaches.
For the HARE approach, at least 75% of the judgements are finished for all do-
mains 12 minutes after the first task is released; the Movies domain exhibits the
best observed scenario where 98% of judgements were finalized by this time with
HARE. In the case of the HARE-BL approach, at the 12th minute, at least 62% of
the judgements are finished for all domains. In particular, the crowd exhibits the
best performance (in terms of time) with both approaches in the Life Sciences and
Movies domains, achieving over 97% of the judgements with HARE. The slowest
domain for both approaches is History, achieving 62% and 75% of the judgements
by the 12th minute with HARE-BL and HARE, respectively.

In a subsequent step, we analyze the rate at which query answers are produced

137

5. Crowdsourcing Query Answer Completeness over Linked Data

Table 5.4: Statistical hypothesis test for crowd response time. p-values of applying the
Kolmogorov-Smirnov test [149] to compare crowd answer distributions of
HARE-BL and HARE. ∗∗∗ indicates a difference significant at 0.01.

Knowledge Domain

Query Sports Music Life Sciences Movies History

Q1 0.056 0.054 0.056 < 0.01∗∗∗ 0.056

Q2 < 0.01∗∗∗ 1.000 < 0.01∗∗∗ < 0.01∗∗∗ 0.270

Q3 < 0.01∗∗∗ 0.270 0.526 < 0.01∗∗∗ < 0.01∗∗∗

Q4 < 0.01∗∗∗ 0.336 < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗

Q5 < 0.01∗∗∗ 0.879 < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗

Q6 < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗

Q7 < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗

Q8 < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗

Q9 < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗

Q10 < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗ < 0.01∗∗∗

by the crowd with HARE and HARE-BL. For each query, we compute the crowd
answer distribution over time by sampling the number of judgements produced
with each approach at different and identically distributed points in time. Ex-
amples of the obtained crowd answer distributions are plotted in Figure 5.13. In
Figures 5.13a and 5.13b, the answer distribution is very similar for HARE and
HARE-BL, particularly for query Q2-Music where several sampled points overlap
in both approaches. On the contrary, in Figures 5.13d to 5.13f, the difference
between the answer distribution with HARE and HARE-BL is notable.

In order to compare the answer distribution of both approaches, we conduct a
statistical hypothesis test. The nonparametric Kolmogorov-Smirnov [149] test is
chosen since it is tailored to compare empirical distribution functions, in this case,
of two samples. The null hypothesis H0 in our study is that the answer distribution
produced with HARE-BL and HARE are identical; the alternate hypothesis Ha in
our study states that the answer distribution produced with HARE-BL and HARE
are non-identical. We conduct the test on all query in each knowledge domain
and report on the p-values obtained in Table 5.4. The results of the statistical
test indicate that there is no significant difference among the answer distributions
of HARE and HARE-BL mostly for selective queries, e.g., Q2-Music and Q3-Life
Sciences, as shown in Figures 5.13a and 5.13b. Nonetheless, in certain selective
queries, e.g., Q2-Life Sciences, it can be observed (cf. Figure 5.13c) that the
answer distributions of HARE and HARE-BL are nonidentical (p < 0.01). This
indicates that the crowd answer rate with HARE and HARE-BL is still different
when the number of judgements is low. In the case of non-selective queries, the
crowd answer distribution obtained with the approaches HARE and HARE-BL
are nonidentical (p < 0.01), as observed in Figures 5.13d and 5.13f. In summary,
the outcome of the conducted statistical test confirms that the use of semantics

138

5. Crowdsourcing Query Answer Completeness over Linked Data

for generating microtasks impacts not only on the overall time of crowd response
time but also on the rate at which the answers are produced by the crowd. This
answers our research question ii.2 regarding the efficiency of the crowd.

As a final remark, it is worth mentioning that the crowd response time is not
in the same order of magnitude as when queries are executed against a dataset.
However, these experiments confirm that there is a tradeoff between answer com-
pleteness versus total execution time, whenever the proportion of completeness
achieved by HARE is considered.

5.11. Summary and Future Work

This chapter presents HARE, the first hybrid query engine over RDF to enhance
the completeness of SPARQL query answers. HARE is able to execute SPARQL
queries as a combination of machine and human-driven functionality. Our ap-
proach is tailored for RDF and Linked Data, i.e., data is assumed to be correct
and potentially incomplete. No prior knowledge about the completeness of the
data sources is expected from the users. Users just specify the desired level of
answer completeness and HARE handles the execution of queries and enrichment
of the underlying dataset. No extensions to the SPARQL syntax are required.

HARE implements the following novel features to improve the quality of
SPARQL query answers: i) An RDF completeness model that relies on the
topology of RDF graphs and the Local Closed World Assumption (LCWA) to es-
timate the completeness of RDF resources. ii) Crowd knowledge base (CKB) to
store fuzzy RDF for modeling not only positive facts (CKB+), but also represent-
ing negative (CKB−) and unknown statements (CKB∼). iii) A semantics-based
microtask manager that makes use of Linked Data principles by dereferencing
URIs to build user interfaces; the semantics of dereferenced URIs are exploited
to properly render RDF descriptions in HTML interfaces. iv) A SPARQL fuzzy
set semantics to represent the meaning of queries executed against fuzzy RDF
datasets. v) A SPARQL query optimizer that implements techniques tailored for
the topology of RDF graphs, and that generates hybrid bushy plans based on es-
timates about the completeness of RDF resources. vi) A SPARQL query engine
that utilizes the RDF completeness model and the knowledge in CKB to decide
on-the-fly which parts of a SPARQL query should resort to human computation.

We show that computing the completeness of resources can be carried out
in polynomial time (Corollary 2). Also, we formally demonstrate that the time
complexity of computing query solutions under the proposed fuzzy set semantics
remains the same as under set semantics (Theorem 7). We also proved that the
execution of hybrid plans of SPARQL queries comes for free in terms of time
complexity (Theorem 8). These theoretical results confirm that HARE is able
to solve the decision problem of identifying portions of queries that yield missing
values without adding complexity to the SPARQL Evaluation problem [127,
140]. This answers our first research question ii.1.

We empirically measure the performance of HARE. First, we study the crowd-
sourcing capabilities of HARE and show the impact of varying the quality thresh-
old τ on the number of crowdsourced triple patterns. Results show that the

139

5. Crowdsourcing Query Answer Completeness over Linked Data

higher the estimated incompleteness is, the higher the number of triple patterns
submitted to the crowd. Also, with this experiment, we confirm that our model
is tailored for handling skewed value distributions in real-world datasets.

The experimental results additionally show that the incompleteness degree
varies notably among different sub-graphs (represented by knowledge domains) in
DBpedia. We then measure the number of answers produced by HARE and by the
dataset. Our experiments confirm that HARE is able to increase answer size up
to 12 times. This answers the second research question ii.2. In terms of quality,
crowd answers have shown to be reliable with precision values from 0.62 to 0.97,
while recall ranges from 0.92 to 1.00. Regarding efficiency, we observed that a large
portion (up to 98%) of the human tasks submitted by HARE to the CrowdFlower
platform are finished in less than 12 minutes. We statistically demonstrate that
the distribution of crowd answers over time is significantly different (p < 0.01)
when the interfaces are generated with and without semantics for non-selective
queries. Our results show that exploiting the semantics of RDF resources can
effectively increase the quality and efficiency of crowd answers; this answers our
last research question ii.3. In summary, our empirical study shows that HARE
implements a feasible solution to the studied problem.

In the future, we will concentrate on studying further approaches to accurately
capture crowd answer reliability, i.e., to distinguish low and high-quality workers.
We plan to extend the HARE techniques to pose, instead of triple-based, more
complex microtasks against the crowd. Finally, we will consider other aspects
of knowledge representation, such as contradiction among positive statements or
temporal statements, to enhance the predictive power of HARE.

140

Chapter 6

Crowdsourcing Linked Data
Quality Issues

6.1. Introduction

Seamless Linked Data consumption and processing is still very limited given the
varying quality of the data published in the Linking Open Data (LOD) Cloud
[82, 180]. In previous chapters, we assume that RDF datasets are correct albeit
incomplete, nonetheless, real-world datasets published in the LOD Cloud contain
incorrect data according to different types of quality issues. In particular, execut-
ing queries against data with quality issues leads to incorrect or low-quality results.
For instance, when selecting the URI of the book with International Standard Book Num-

ber (ISBN) equal to ‘ISBN 0-262-51087-1’ from the DBpedia dataset [100], the result
set is empty, indicating that no book exists with the given ISBN. However, the
result for this query should be dbr:Structure and Interpretation of Computer Programs.
The problem is generated since the ISBN of this book in DBpedia is ‘ISBN 0-262-

51087-1 (2nd ed.)’, which contains additional characters that do not comply with
standard ISBN values. As illustrated in the previous example, data quality issues
often pose serious problems during query processing. Therefore, in this chapter,
we tackle the problem of detecting quality issues in RDF datasets, in particular,
quality issues that are specific to Linked Data.

Data quality issues in Linked Data sets are the result of a combination of data-
and process-related factors. The datasets being released into the LOD Cloud are
– apart from any factual flaws that they may contain – very diverse in terms
of formats, structures, and vocabularies. This heterogeneity and the fact that
some kinds of data tend to be more challenging to lift to RDF than others make
it hard to avoid errors, especially when the translation happens automatically.
Probably the best example of an RDF dataset produced in this manner is DB-
pedia. An investigation by Zaveri et al. [179] on DBpedia reveals that 11.93%
of the resources analyzed present quality issues. Simple issues like syntax errors,
broken links or duplicates can be easily identified and repaired in a fully auto-
matic fashion [59, 67, 72, 104, 125, 126]. However, certain data quality issues in
Linked Data are more challenging to detect, since they require further semantic
interpretations. For instance, one common quality problem encountered by Zaveri

141

6. Crowdsourcing Linked Data Quality Issues

et al. [179] in DBpedia is ‘incorrect objects’, which in most of the cases require
human inspection. Based on these results, we analyzed the reported quality issues
by Zaveri et al. [179] and classified them according to the extent to which they
should be assessed by humans. Consequently, in this chapter, we study the assess-
ment of three Linked Data quality issues: ‘incorrect object’, ‘incorrect datatype
or language tag’, and ‘incorrect link’. In order to compare our findings with the
state-of-the-art, our study is also carried out on DBpedia.

Current quality assessment approaches that involve human intervention solely
rely on experts who specify rules [67] or test cases [93] to detect domain-specific
issues. Although these approaches have shown to be effective, they are often
limited by the high demand of user expertise and are usually bound to a given
dataset.1 In this chapter, we explore an alternative data curation strategy to
detect quality issues that can be applied to several Linked Data sets; our approach
is based on crowdsourcing to resort to experts as well as lay users. As described
in Chapter 4, different types of crowds exhibit skills that are tailored for certain
tasks. For instance, in Chapter 5, we show that crowd workers from a microtask
platform are able to effectively complete missing values. While many tasks can
be performed by untrained workers, others might require more skilled human
participants, particularly in specialized fields of expertise, such as Linked Data.
Of course, expert intervention usually comes at a higher price; either in monetary
rewards or in the form of effort to recruit participants in another setting, such
as volunteer work. Microtask crowdsourcing platforms such as CrowdFlower or
Amazon Mechanical Turk (MTurk) on the other hand offer a readily available
workforce at relatively low fees.

6.1.1. Research Questions

iii.1 Is it feasible to detect Linked Data quality issues via crowdsourcing?

iii.2 In a crowdsourcing approach, is it feasible to employ unskilled lay users to
identify Linked Data quality issues and to what extent is expert validation
needed and desirable?

iii.3 What is the impact in terms of accuracy of applying two-fold crowdsourc-
ing workflows for detecting Linked Data quality issues, instead of one-step
solutions for pointing out quality issues?

With research question iii.1, we aim at providing insights whether crowd-
sourcing approaches can be applied to find the selected quality issues in LD sets
– specifically in DBpedia – and if so, to what degree they are an efficient and
effective solution. Secondly, given the option of different crowds, we formulate
research question iii.2 to investigate the performance of unskilled lay users and
experts. As a subquestion to iii.2, we also examine which type of crowd is most
suitable to detect which type of quality issue (and, conversely, which errors they
are prone to make). With these questions, we are interested in learning to what

1Rules and test cases are specified with ontologies or vocabularies used in the assessed dataset.

142

6. Crowdsourcing Linked Data Quality Issues

extent we can exploit the cost-efficiency of lay users, or if the quality of error de-
tection is prohibitively low. We also investigate how well LD experts perform in a
crowdsourcing setting and if and how they outperform lay users. And lastly, it is
of interest whether one of the two distinct crowd (experts vs. lay users) performs
well in areas that might not be a strength of the other crowd.

To answer research questions iii.1 and iii.2, we study two crowdsourcing mech-
anisms relying on experts and lay users. First, we obtain the results of a contest
launched to reach to experts knowledgeable in LD to find and classify erroneous
RDF triples from DBpedia. Then, we submit the triples assessed by experts as
paid microtasks on the MTurk platform to be examined by laymen or crowd work-
ers in a similar way. Each approach (contest and paid microtasks) made several
assumptions about the audiences they address (the ‘crowd’) and their skills. The
results of both crowds were then compared to a manually created gold standard.
The results of the comparison of experts and workers indicate that (i) untrained
workers are in fact able to quality issues that do not require knowledge about
RDF with satisfactory precision; (ii) experts perform well detecting incorrect ob-
jects and datatypes but not incorrect links, and lastly (iii) the two crowdsourcing
approaches reveal complementary strengths.

Given these insights, we investigate research question iii.3 to determine the
impact on the accuracy of applying one-step or two-fold crowdsourcing workflows
for detecting LD quality issues. Specifically, we enquire into the following ques-
tions: (i) Can we enhance the results of the LD quality issue detection through lay
users by adding a subsequent step of cross-checking to the initial stage? Or (ii) is
it even more promising to combine experts with lay workers by letting the latter
assess the results of the experts, hence drawing on the crowds’ complementary
skills for detecting quality issues we had recognized before?.

To study research question iii.3, we propose an adaption [14, 15] of the crowd-
sourcing workflow known as Find-Fix-Verify, originally proposed by Bernstein et
al. [28]. As described in Chapter 4, Find-Fix-Verify addresses tasks that initially
can be very complex (or very large), like in our case the discovery and classifica-
tion of various types of errors in DBpedia. In the Find stage the crowd assesses
RDF triples and assigns the corresponding quality issues. The outcome of this
initial stage is a set of triples identified as incorrect, marked with the respective
errors. Then, the Verify stage consists in confirming whether a formerly indicated
quality issue for a triple is correctly or wrongly assigned. We studied two variants
of the crowdsourcing Find-Verify workflow:

• Expert-worker: The Find stage is conducted by LD experts via a contest,
and the Verify stage is executed by MTurk workers.

• Worker-worker: Find and Verify stages are executed by MTurk workers.

Note that in this work we did not implement a Fix step from the Find-Fix-
Verify pattern, as correcting the greatest part of the found errors via crowdsourc-
ing is not the most cost-efficient method of addressing these issues. Thus, we
argue in Section 6.4 that a majority of errors can be addressed already at the
level of wrappers or mappings that leverage non-RDF sources to LD.

143

6. Crowdsourcing Linked Data Quality Issues

We conduct an experimental study over 33, 404 RDF triples from DBpedia to
detect the studied LD quality issues. Empirical results confirm that the Verify
stage is, in fact, able to improve the precision of the Find stage in both workflow
variants substantially. In particular, the experts’ Find stage results can be im-
proved to precision levels of around 0.90 in the Verify stage for two error types
which showed to score much lower for an expert-only Find approach. The worker-
worker Find-Verify strategy yields also better results than the Find -only worker
approach, and for one error type even reached slightly better precision than the
expert-worker model. All in all, our results show that (i) a Find-Verify combi-
nation of experts and lay users is likely to produce the best results, but that (ii)
they are not superior to expert-only evaluation in all cases. We demonstrate also
that (iii) lay users-only Find-Verify approaches can be a viable alternative for
detection of the studied LD quality issues if experts are not available and that
they certainly outperform Find -only lay user workflows.

To understand the strengths and limitations of crowdsourcing in the studied
scenario, we further execute the semi-automatic state-of-the-art RDFUnit frame-
work [93] and a simple automatic baseline against DBpedia. We then compare
the outcomes of these (semi-)automatic approaches to the results of our crowd-
sourcing experiments. This evaluation shows that while these (semi-)automatic
approaches may be amenable to pre-filtering RDF data (thus potentially decreas-
ing the number of triples to be manually assessed), a substantial part of quality
issues can only be addressed via human intervention.

6.1.2. Contributions

In this chapter, we make the following contributions to the problem of detecting
quality issues in DBpedia via crowdsourcing mechanisms:

• Definition of the problem of classifying RDF triples into quality issues.

• The adaptation of the Find-Fix-Verify pattern is formalized for the problem
of detecting quality issues in RDF triples.

• Implementation of two crowdsourcing workflows that combine different crowds
in different stages to detect LD quality issues: an expert-worker workflow
based on a contest and microtasks, and a worker-worker workflow that solely
relies on microtask crowdsourcing.

• Analysis of the formal properties of our approach to generating microtasks
for triple-based quality assessment.

• Empirical evaluation of the proposed crowdsourcing workflows. Our experi-
mental study includes the execution of the state-of-the-art RDFUnit [93], a
test-based approach to detect LD quality issues (semi-)automatically.

6.1.3. Structure of the Chapter

In Section 6.2, we discuss the type of LD quality issues that are studied in this
work. Related work is discussed in Section 6.3. An overall description of our

144

6. Crowdsourcing Linked Data Quality Issues

Table 6.1: Linked Data quality dimensions classified according to Zaveri et al [180].

Intrinsic Contextual Representational Accessibility

Syntactic validity Relevancy Conciseness Availability

Semantic accuracy Trustworthiness Interoperability Interlinking

Consistency Understandability Interpretability Performance

Conciseness Timeliness Versatility Security

Completeness Licensing

approach is presented in Section 6.4. The implementation of the Find stages with
a contest-based and microtasks is described in Section 6.5 and Section 6.6, re-
spectively. The Verify stage is presented in Section 6.7. The formal properties
of our microtask approach are stated in Section 6.8 while our solution is empiri-
cally evaluated in Section 6.9. In Section 6.10 we summarize the findings of our
experimental study and provide answers to the formulated research questions.
Conclusions and future work are presented in Section 6.11.

6.2. Preliminaries: Linked Data Quality Issues

Data quality is commonly conceived as “fitness for use” [88] for a certain applica-
tion or use case. In particular, for the case of Linked Data, the work by Zaveri et
al. [180] presents a survey of existing literature and identified a total of 18 data
quality dimensions applicable to LD quality assessment. These dimensions are
then categorized into four quality groups defined by Wang and Strong [172]:

• Intrinsic, includes quality issues that are independent of the user’s context.

• Contextual, corresponds to quality issues that highly depend on the context
of the task at hand.

• Representational, contains quality issues that capture aspects related to the
representation or model of the data.

• Accessibility, comprises issues that involve aspects related to the access,
authenticity and retrieval of data to obtain either the entire or some portion
of the data (or from another source) for a particular use case.

Table 6.1 presents a summary of the Linked Data quality groups and the corre-
sponding dimensions as classified by Zaveri et al. [180]. Although the Web of Data
spans a network of data sources of varying quality, recent work [179] has focus
on studying the quality of the DBpedia dataset due to the diversity of knowledge
domains and scope of this dataset. DBpedia has been semi-automatically trans-
lated into RDF from its primary source Wikipedia2, applying crowdsourcing in a
decentralized process involving human contributors. However, due to the hetero-
geneity of data represented in Wikipedia, the mappings developed for extracting

2https://www.wikipedia.org/

145

https://www.wikipedia.org/

6. Crowdsourcing Linked Data Quality Issues

the data from Wikipedia currently result in a wide range of quality problems
within DBpedia. The work by Zaveri et al. [179] identified the quality dimensions
applicable to DBpedia and found four dimensions that are particularly prevalent:
semantic accuracy, relevancy, representational-consistency, and interlinking. For
the purpose of this work, from these sub-categories the following three triple-level
quality issues are studied:

Incorrect object of an RDF triple. This quality issue is contained in the
semantic accuracy dimension. Consider the following triple: (dbr:Rodrigo Salinas,

dbo:birthPlace, “Puebla F.C.”). This RDF triple states that “Rodrigo Salinas” was
born in “Puebla F.C.”; however, this birth place is incorrect since “Puebla F.C.”
corresponds to a soccer club. The right object value for this RDF triple should
be the city Apizaco or the country Mexico.

Incorrect datatype or language tag. This quality issue belongs to the seman-
tic accuracy dimension. This category refers to triples with an incorrect datatype
or language tag for a typed literal in the object position. For example, consider
the triple: (dbr:Vicks, rdfs:label, “Vicks”@de). The language tag of the literal is con-
sidered incorrect since the correct spelling in German for this company is “Wick”3.

Incorrect link. This quality issue is part of the interlinking dimension. This
issue refers to RDF triples whose association between the subject and the object
URI is incorrect. This occurs when objects do not show any related content per-
taining to the subject of the triple. Erroneous links can associate resources within
a dataset or between several data sources. This category of quality issues also
includes faulty links to external Web sites or other external data sources, e.g.,
Wikipedia, Freebase, GeoSpecies, among others for the case of DBpedia.

These categories of quality problems were specifically chosen since, according
to previous work [179], these were highly frequent occurring problems in DBpedia
(version 3.9). In particular, out of the 521 distinct resources that were evaluated
by Zaveri et al. [179], there were a total of 2, 928 distinct incorrect triples identified.
Of these 2, 928 triples the following triple-level quality issues were identified: (i)
550 triples had an incorrect/incompletely extract object, (ii) 363 triples had an
incorrect datatype and (iii) 596 triples had incorrect links.

Given the diversity of situations in which the selected quality issues can be
instantiated (broad range of object values and datatypes) and their semantic char-
acter, assessing them automatically is challenging. Current automatic approaches
apply different mechanisms to detect various types of errors in LD datasets, for
example: inconsistencies with ontological definitions [93, 156], assigning missing
classes to RDF resources [126], or abnormal numerical values [59, 104]. Also
semi-automatic solutions [93] have been proposed that rely on domain experts
to specify customized rules that are tested against the dataset. Further details
about these approaches and other relevant works are presented in Section 6.3.

3https://de.wikipedia.org/wiki/Vicks

146

https://de.wikipedia.org/wiki/Vicks

6. Crowdsourcing Linked Data Quality Issues

Although these approaches are able to reliably identify certain issues in LD, there
is still a considerable amount of errors that are missed, in particular those re-
lated to semantic correctness of facts. We therefore theorize that human-based
appraisal can constitute an effective solution to detect the selected quality flaws
in many instances. In particular, these three quality issues – incorrect object,
incorrect datatype or language tag, or incorrect link – require different cognitive
skills in terms of evaluation, i.e., from examining the values of different attributes
to identifying whether the links between two resources is appropriate. In this way,
we can study whether it is feasible to evaluate these types of quality issues via
crowdsourcing mechanisms where lay users can detect erroneous triples without
having knowledge about the underlying RDF structure. This allows us for identi-
fying which types of skills are most cost-effective to be employed with regards to
utilizing crowdsourcing.

6.3. Related Work

In this chapter, we focus on investigating two types of related work: Using crowd-
sourcing in Linked Data management and Web data quality assessment.

6.3.1. Using Crowdsourcing in Linked Data Management

There is wide agreement in the community that specific aspects of Linked Data
management are inherently human-driven [26]. This holds true most notably for
those Linked Data tasks which require a substantial amount of domain knowledge
or detailed, context-specific insight that go beyond the assumptions and natural
limitations of algorithmic approaches. Like any Web-centric community of its
kind, Linked Data has had its share of volunteer initiatives, including the Linking
Open Data Cloud itself and DBpedia [100], and competitions such as the yearly
Semantic Web Challenge4 and the European Data Innovator Award5.

From a process point of view, Villazón-Terrazas and Corcho [169] introduced a
methodology for publishing Linked Data. They discussed activities which theoreti-
cally could be subject to crowdsourcing, but did not discuss such aspects explicitly.
Similarly, Luczak-Rösch et al. [107] mapped ontology engineering methodologies
to Linked Data practices, drawing on insights from interviews with practitioners
and quantitative analysis. A more focused account of the use of human and crowd
intelligence in Linked Data management is offered in the work by Siorpaes and
Simperl [148]. The authors investigated several technically oriented scenarios in
order to identify lower-level tasks and analyze the extent to which they can be
feasibly automated. In this context, feasibility referred primarily to the trade-off
between the effort associated with the usage of a given tool targeting automation
– including aspects such as getting familiar with the tool, but more importantly
creating training datasets and examples, configuring the tool and validating (in-
termediate) results – and the quality of the outcomes. The fundamental question

4http://challenge.semanticweb.org/
5http://2013.data-forum.eu/tags/european-data-innovator-award.html

147

http://challenge.semanticweb.org/
http://2013.data-forum.eu/tags/european-data-innovator-award.html

6. Crowdsourcing Linked Data Quality Issues

studied in these works is related to ours, though not focused on data quality
assurance – their aim was come up with patterns for human and machine-driven
computation, which could service semantic data management scenarios effectively.
This was also at the core of the work by Simperl et al. [146], which took the main
findings of this analysis a step further and proposed a methodology to build in-
centivized Semantic Web applications, including guidelines for mechanism design
which are compatible to our Find-Verify workflow. They have also analyzed mo-
tivations and incentives for several types of Semantic Web tasks, from ontology
population to semantic annotation.

An important prerequisite to any participatory exercise is the ability of the
crowd – experts or laymen – to engage with the given data management tasks.
This has been subject to several user experience design studies [115, 128, 141, 161,
164], which informed the implementation of our crowdsourcing projects, both the
contest, and the paid microtasks running on Amazon Mechanical Turk. For in-
stance, microtasks have been used for entity linking in ZenCrowd [48] quality
assurance, entity resolution in CrowdER [171], and ontology alignment [116, 137].
In particular, the work by McCann et al. [116] investigates a combination of vol-
unteer and paid user involvement to validate automatically generated alignments
formulated as natural-language questions. This proposal shares many commonal-
ities with the CrowdMap [137] approach, however, CrowdMap resorts to a real-
world labor marketplace to reach to the crowd. Overall, both approaches show
that different crowds can be used to perform ontology alignment tasks.

At a more technical level, many Linked Data management tasks have already
been subject to human computation, be that in the form of games with a pur-
pose [114, 154, 170] or, closer to our work, paid microtasks. Games with a pur-
pose, which capitalize on entertainment, intellectual challenge, competition, and
reputation, offer another mechanism to engage with a broad user base. In the
field of semantic technologies, the OntoGame series [147] propose several games
that deal with the task of data interlinking, be that in its ontology alignment
instance (SpotTheLink [154]), multimedia interlinking (SeaFish [153]) or spotting
inconsistencies in data (WhoKnows? [170]). Similar ideas are implemented in
GuessWhat?! [114], a selection-agreement game which uses URIs from DBpedia,
Freebase and OpenCyc as input to the interlinking process. While OntoGame
looks into game mechanics and game narratives and their applicability to find-
ing similar entities and other types of correspondences, our research studies an
alternative crowdsourcing strategy that is based on a contest and financial re-
wards in a microtask platform. Most relevant for our work are the experiments
comparing games with a purpose and paid microtasks, whose results showed the
complementarity of the two forms of crowdsourcing [57, 135].

6.3.2. Web Data Quality Assessment

Existing frameworks for quality assessment of the Web of Data, including Linked
Data, can be classified as automated [59, 67, 72, 104, 125, 126], semi-automated [38,
61, 101, 156] and manual [30, 117].

Regarding the quality issues studied in this chapter, the approach presented

148

6. Crowdsourcing Linked Data Quality Issues

by Guéret et al. [72] performs quality assessment on link sets in an automated
fashion based on a set of quality metrics. However, this approach does not assess
the semantic accuracy of the links. On the other hand, the framework SWIQA
proposed by Fürber and Hepp [67] can be applied for detecting accuracy quality
issues including incorrect object values, datatypes and literals. However, these
approaches rely on specific syntactical rules to detect errors thus requiring knowl-
edge of the underlying schema by the user to specify these rules. Other automatic
solutions rely on clustering or statistical-based algorithms to detect different qual-
ity issues in Linked Data sets [59, 104, 125, 126]. Fleischhacker et al. [59] proposed
a two-fold approach that relies on unsupervised outlier detection methods to iden-
tify numerical errors in objects of RDF triples. Similarly, Li et al. [104] presented
a probabilistic framework that predicts arithmetic relations (equal, greater than,
less than) between multiple RDF predicates in order to detect inconsistencies in
numerical and date values. Other works have also proposed automatic approaches
to improve the quality of LD in terms of completeness and accuracy. In this re-
gard, SDType [125, 126] and SDValidate [126] rely on statistical distributions of
predicates and objects in RDF datasets. SDType predicts classes of RDF resources
thus completing missing values of rdf:type properties. SDValidate detects incorrect
links between resources within a dataset. These solutions [59, 104, 125, 126] are
tailored to detect very specific errors in RDF triples, however, they can be used
in combination with our approach to prune RDF triples or quality issues that do
not require human assessment.

Semi-automatic approaches to tackle quality assessment have been also pro-
posed. CROCUS [38] is a clustering-based framework that identifies outliers at the
instance-level of ontologies to detect inconsistencies in LD sets. Outliers are then
assessed by non-experts denominated quality raters. CROCUS is able to detect
violations in cardinality constraints or value ranges. In the context of ontology
enriching, Lehmann and Bühmann presented ORE [101], a tool to detect ontol-
ogy modeling problems. ORE implements reasoning as well as semi-automatic
supervised learning to provide suggestions to users (knowledge engineers) for en-
riching ontologies. Töpper et al. [156] proposed an approach to enrich ontologies
with class disjointness as well as property domain and range restrictions. The
latter approach is able to detect semantic errors that cannot be detected with
syntactic validators or reasoners. The outcome of this approach is a set of sugges-
tions to correct inconsistencies that are processed manually. The latter two solu-
tions [101, 156] require either domain or ontology experts to implement changes
in ontological constructs. Unlike the solutions previously described, our approach
is tailored to assess the semantic correctness of triples in RDF datasets without
requiring knowledge about the ontology.

In case of manual assessment methodologies or frameworks [30, 117], the
WIQA quality assessment framework [30] consists of a set of software compo-
nents for filtering information from the Web using a range of different policies or
metrics. Sieve [117], a framework tailored for user-specific tasks, allows for speci-
fying and configuring quality assessment methods. Even though these frameworks
introduce useful methodologies to assess the quality of a dataset, the results are
difficult to interpret and mandate a considerable amount of user prior knowledge

149

6. Crowdsourcing Linked Data Quality Issues

and involvement.
Other studies analyzed the quality of Web [35] and RDF [81] data. The latter

study focuses on errors occurred during the publication of LD datasets. Fur-
thermore, a study [82] looked into four million RDF/XML documents to analyze
Linked Data conformance. These studies performed large-scale quality assess-
ment on LD but are often limited in their ability to produce interpretable results,
demand user expertise or are bound to a given dataset.

Lastly, rule-based automated approaches have also been proposed to detect
quality issues in RDF datasets. The SPARQL Inferencing Notation [66] (SPIN)6 is
a W3C submission aiming at representing rules and constraints on Semantic Web
models using SPARQL. SPIN advocates the use of SPARQL and SPIN for RDF
data quality assessment. In a similar way, Fürber et al. [65] define a set of generic
SPARQL queries to identify missing or illegal literal values and datatypes and
functional dependency violations. Another related approach is the Pellet Integrity
Constraint Validator (ICV)7. Pellet ICV translates OWL integrity constraints
into SPARQL queries. A more light-weight RDF constraint syntax, decoupled
from SPARQL, is offered from Shape Expressions (ShEx) [129] and IBM Resource
Shapes8. Unlike our proposed approach, these solutions demand high expertise
on the knowledge domain of the dataset as well as SPARQL or other languages
to specify the assessed rules.

In summary, our work is situated at the intersection of the previously dis-
cussed research areas. In Section 6.3.1, we explained how crowdsourcing in various
forms, e.g., contests, games with a purpose, and microtasks, have been successfully
applied to tackle diverse aspects of LD management. However, our work stud-
ies novel applications of crowdsourcing to detect specific LD quality issues with
crowds composed by experts and non-experts. Furthermore, unlike the solutions
presented in Section 6.3.2 for assessing the quality of Web Data, our approach
solely relies on human intervention to detect semantic errors in LD.

6.4. Crowdsourcing Linked Data Quality Assessment

Our work on human-driven Linked Data quality assessment focuses on applying
crowdsourcing techniques to annotate RDF triples with their corresponding qual-
ity issue. We formally define the annotation of triples with their corresponding
quality issues as follows.

6.4.1. Problem Statement

Given a set T of RDF triples and a set QI of quality issues, a mapping of triples
to quality issues is defined as a partial function φ : T 7→ 2QI . φ(t) denotes the
quality issues associated with t ∈ T . In particular, when φ(t) 6= ∅ the triple t is
considered ‘incorrect’ (with respect to QI), otherwise it can be affirmed that t is
‘correct’ (with respect to QI).

6http://www.w3.org/Submission/spin-overview/
7http://clarkparsia.com/pellet/icv/
8http://www.w3.org/Submission/2014/SUBM-shapes-20140211/

150

http://www.w3.org/Submission/spin-overview/
http://clarkparsia.com/pellet/icv/
http://www.w3.org/Submission/2014/SUBM-shapes-20140211/

6. Crowdsourcing Linked Data Quality Issues

6.4.2. Proposed Hybrid Crowdsourcing Workflow

In order to provide an efficient crowdsourcing solution to the previous problem,
we applied a variation of the crowdsourcing pattern Find-Fix-Verify [28]. As
discussed in Chapter 4, this crowdsourcing pattern allows for increasing the overall
quality of the results while maintaining competitive monetary costs when applying
other crowdsourcing approaches. Our adaptation of the Find-Fix-Verify pattern
consists in executing only the Find and Verify stages. The Fix stage originally
proposed in the Find-Fix-Verify pattern is out of the scope of this work, since the
main goal of this work is identifying quality issues. Furthermore, our adaptation
of the Find-Fix-Verify pattern is tailored to assess the quality of LD datasets
that are (semi-)automatically created from other sources. Such is the case of
DBpedia [102], a dataset created by extracting knowledge from Wikipedia via
declarative wrappers or mappings. The DBpedia wrappers are the result of a
crowdsourced community effort of contributors to the DBpedia project. When
datasets are extracted via wrappers or mappings, it is highly probable that the
quality issues detected for a certain triple might also occur in the set of triples
that were generated with the same wrapper. Therefore, a more efficient solution
to implement the Fix stage could consist of adjusting the wrappers that caused
the issue in the first place, instead of crowdsourcing the correction of each triple
which increases the overall monetary cost.

We devise a two-fold approach to crowdsource triple-based quality assessment
of (semi-)automatically extracted Linked Data sets. Our approach relies on the
Find and Verify stages of the Find-Fix-Verify pattern. In the Find stage, the crowd
is requested to detect LD quality issues in a set of RDF triples, and annotate them
with the corresponding issues. We define the Find stage as follows:

Definition 33 (Find Stage) Given a set T of RDF triples and a set QI of
quality issues, the Find stage consists in crowdsourcing the mappings φ̇ : T →
2QI. The input of the Find stage is represented as Fi = (T ,QI), and the output
Fo = (T , φ̇).

The outcome of the Find stage – triples judged as ‘incorrect’ – is then assessed
in the Verify stage. In this subsequent step, the crowd confirms or denies the
presence of quality issues in RDF triples produced from the previous stage. We
define the Verify stage as follows:

Definition 34 (Verify Stage) Given a set T of RDF triples and mappings φ̇,
the Verify stage consists in crowdsourcing mappings φ̈ : φ̇ 7→ 2Q, where φ̈(φ̇(t)) ⊆
2φ̇(t), for t ∈ T . The input of the Verify stage is represented as Vi = (T , φ̇) which
corresponds to the output of the Find stage (Vi = Fo), and the output of the Verify
stage is represented as Vo = (T , φ̈).

6.4.3. Crowdsourcing Workflows Proposed in Our Approach

In the implementation of the Find and Verify stages in our approach, we ex-
plore two different types of crowds: experts and laymen. For the experts, we

151

6. Crowdsourcing Linked Data Quality Issues

Table 6.2: Comparison between the proposed crowdsourcing mechanisms to perform LD
quality assessment.

Characteristic Contest Microtask Crowdsourc-
ing

Participants Controlled group: LD experts Anonymous large group

Time duration Long (weeks) Short (days)

Reward A final prize Micropayments

Reward mecha-
nism

“One participant gets it all”:
The contest winner gets the
prize.

“Payment per task”: Workers
receives a payment per solved
task.

Tool/platform TripleCheckMate MTurk

obtain the results of the DBpedia Evaluation Campaign [179] contest to mobilize
a crowd composed of researchers and Linked Data enthusiasts to discover and
classify quality issues in DBpedia. The reward mechanism applied in this contest
is ”one-participant gets it all”. The winner corresponds to the participant who
evaluated the highest number of DBpedia resources. Further details about this
contest are explained in Section 6.5. On the other hand, we used microtasks to
reach to a non-expert crowd. In this context, microtask is a fast and cost-efficient
solution to examine the three types of DBpedia errors described in Section 6.2.
We provided specific instructions to workers explaining how to assess each type of
studied quality issues. As discussed in Chapter 4, contests and microtasks exhibit
different characteristics in terms of the types of tasks they can be applied to, the
way the results are consolidated and exploited, and the audiences they target.
Therefore, in this work we study the impact on involving different types of crowds
to detect quality issues in RDF triples: LD experts in the contest and workers
in the microtasks. Table 6.2 presents a summary of the two approaches as they
have been used in this work for LD quality assessment purposes. Therefore, in
our approach, contest and microtasks are combined in two different workflows:
expert-worker and worker-worker.

Expert-worker workflow. The first workflow combines experts and lay users.
This first workflow leverages the expertise of LD experts in the Find stage, carried
out as a contest, to find and classify erroneous triples according to a pre-defined
quality taxonomy; workers from a microtask platform then assess the outcome of
the contest in Verify stage.

Worker-worker workflow. This second workflow entirely relies on microtask
crowdsourcing to perform both the Find and the Verify stages. It is important
to notice that crowd workers that participated in the Find stage do not perform
tasks from the Verify stage.

152

6. Crowdsourcing Linked Data Quality Issues

Resource

Accept HIT

Evaluation of
resource’s

triples

[Incorrect triple]

[Yes]

[No]

List of incorrect
triples classified
by quality issue

(Find stage)
Workers in paid microtasks

Microtask Generator
Verify Stage

(Verify stage)
Workers in paid microtasks

Accept HIT

Assess triple
according to

the given
quality issue

Submit HIT [Correct]

[Incorrect]

[Data doesn’t
make sense]

[I don’t know]
[More triples
to assess]

[No]

[Yes]

[Value] [Link] [Data type]

[More triples
to assess]

Submit HIT

[No]

[Yes]

Resource

[Manual]

[Any]

Resource
selection

Evaluation of
resource’s

triples

Selection of
quality issues

[Incorrect triples]

[Yes]

[No]

List of incorrect
triples classified
by quality issue

[Per Class]

(Find stage)
LD Experts in contest

Microtask Generator
Find Stage TripleCheckMate

Figure 6.1: Studied workflows to crowdsource LD quality assessment. The first workflow
combines LD experts reached via a contest with laymen from microtasks.
The second workflow solely relies on microtask crowdsourcing.

Figure 6.1 depicts the steps carried out in each of the stages of the two crowd-
sourcing workflows studied in this work. In the following sections, we provide the
details about the implementation of the variants of the Find and Verify stages.

153

6. Crowdsourcing Linked Data Quality Issues

1

2

3

Figure 6.2: User interface of the TripleCheckMate crowdsourcing data quality assess-
ment tool. (1) Displays the RDF resource that is currently being assessed;
(2) Users can specify that a triple is erroneous by checking the box ‘Is
Wrong’; (3) Users select the quality issues present in the triple from a pre-
defined taxonomy, which contains a hierarchy of quality issues including
detailed descriptions and examples for each issue.

6.5. Find Stage: Contest-based Crowdsourcing

In this implementation of the Find stage, a contest is set to reach out to an expert
crowd of researchers and LD enthusiasts. The task in the contest consists of iden-
tifying and classifying specific types of LD quality problems in DBpedia triples.
To collect the contributions from this crowd, the TripleCheckMate9 [94] (cf. Fig-
ure 6.2) tool is used. TripleCheckMate is a Web-based application for assessing
quality issues in RDF datasets. TripleCheckMate allows human contributors to
select RDF resources, identify issues related to RDF triples of the resources and
classify these issues according to a pre-defined taxonomy of data quality prob-
lems. In the ‘DBpedia Evaluation Campaign’ contest [179], TripleCheckMate is
configured to use the DBpedia dataset (version 3.9) and the taxonomy of quality
issues presented in Zaveri et al. [179]. Nonetheless, TripleCheckMate can be easily
configured to work with any dataset. In the contest, a prize is announced for the
user submitting the highest number of quality issues.

The Find stage starts when a user signs into the TripleCheckMate tool to
participate in the contest, as shown in Figure 6.2. Then, the user is presented
with three options to choose a resource from the dataset: (i) ‘Any’, for random
selection; (ii) ‘Per Class’, where a resource belonging to a particular class may be

9http://github.com/AKSW/TripleCheckMate

154

http://github.com/AKSW/TripleCheckMate

6. Crowdsourcing Linked Data Quality Issues

chosen; and (iii) ‘Manual’, where users may provide a URI of a resource. Once
a resource is selected following one of these alternatives, the user is presented
with a table in which each row is an RDF triple of that resource. The next step
corresponds the actual quality assessment at triple level. In TripleCheckMate, the
user is provided with the link to the Wikipedia page of the given resource in order
to offer additional information for the evaluation. The box ‘Is Wrong’ should
be checked in an RDF triple, whenever the user detects an issue in that triple.
Moreover, users assign specific quality problems (according to the classification
devised by Zaveri et al. [179]) to erroneous triples, as depicted in Figure 6.2. In
the contest, users are allowed to assess as many triples from a resource as desired,
or select another resource to evaluate.

The TripleCheckMate tool only records the triples that are identified as ‘in-
correct’. This is consistent with the definition of the Find stage from the original
Find-Fix-Verify pattern, where the crowd exclusively detects the problematic ele-
ments, while the remaining elements (implicitly considered ‘correct’) are not taken
into consideration. In addition, TripleCheckMate measures inter-rater agreement
for RDF resources that are checked by different users. Measuring inter-rater agree-
ment allows for (i) analyzing the performance of the users (as compared with each
other), (ii) detecting unwanted behavior (as users are not ‘rewarded’ unless their
assessments are ‘consensual’) and (iii) ensuring the quality of the assessment, i.e.,
when there is an agreement and several workers detect the same quality issue.
The outcome of this contest corresponds to a set of triples T judged as ‘incorrect’
by LD experts and classified according to the quality issues in QI.

6.6. Find Stage: Paid Microtask Crowdsourcing

This implementation of the Find stage applies microtasks that are solved by lay
users from a crowdsourcing platform. This variant of the Find stage aims at
implementing a similar workflow for the crowd workers as the one provided to the
LD experts. However, given that crowd workers are not necessarily knowledgeable
about RDF or complex taxonomies of LD issues [138], we restrict the scope of LD
quality assessment to the issues presented in Section 6.2. In addition, following
the guidelines presented by Sarasua et al. [138], each microtask was augmented
with human-readable information that could be dereferenced from RDF triples.
Formally, in our approach, a microtask is defined as follows.

Definition 35 (Microtask for LD Quality Assessment) A microtask m is a
set of 3-tuples (t, ht,QI), where t is an RDF triple, ht corresponds to human-
readable information that describes t, and QI is the set of quality issues to be
assessed on triple t.

Following the MTurk terminology (cf. Chapter 4), each 3-tuple (t, ht,QI) cor-
responds to a question while m is a task (or a HIT in MTurk terminology) with
granularity (number of questions) equals to |m|.

The execution of this stage, as depicted in Figure 6.1, starts by generating the
microtasks from Fi, i.e., the sets of RDF triples T and quality issues QI to crowd-

155

6. Crowdsourcing Linked Data Quality Issues

Algorithm 5: Microtask Generator for Find Stage
Input: Fi = (T ,QI) and α, where T is a set of RDF triples, QI is the set of quality

issues, α is the maximum number of triples grouped in a single microtask.
Output: A set of microtasks M to assess triples from T according to QI.
1: M← ∅
2: T ′ ← prune(T)
3: S ← {s | (s, p, o) ∈ T ′}

// Process the resources that play role of subjects in T ′.
4: for all s ∈ S do
5: Build T ′′ ⊆ T ′ such that T ′′ = {t | t = (s, p, o) ∧ t ∈ T ′}
6: m← ∅

// Process triples with subject s.
7: while T ′′ 6= ∅ do
8: Select a triple t from T ′′
9: Extract human-readable information ht from RDF triple t

10: m← m ∪ {(t, ht,QI)}
// Create a new microtask when threshold α is exceeded.

11: if |m| ≥ α then
12: M←M∪ {m}
13: m← ∅
14: end if
15: T ′′ ← T ′′ − {t}
16: end while
17: M←M∪ {m}
18: end for
19: return M

source. In addition, a parameter α can be specified as a threshold on the number
of questions to include in a single microtask. Algorithm 5 presents the procedure
to create the microtasks. The algorithm firstly performs a pruning step (line 2)
to remove triples that do not require human assessment. The pruning function in
our approach is generic and can be implemented differently according to specific
use cases. For instance, in our evaluation, the function prune simply discards
RDF triples whose URIs could not be dereferenced. Further implementations of
prune could consider removing triples whose quality issues can be automatically
detected. After the pruning step, the remaining triples are stored in T ′. The
algorithm then proceeds to build microtasks such that each microtask only con-
tains triples associated with a specific resource, similar to the interfaces of the
TripleCheckMate tool used in the contest. The set S contains all the resources
that appear as subjects in the set of triples T ′ (line 3). For each subject, the
algorithm builds the set of triples T ′′ associated with the subject (line 5), and
the creation of microtasks begins (line 6). From the pool T ′′, a triple t is selected
(line 8) and the corresponding human-readable information is extracted (line 9).
In this stage, similar to the TripleCheckMate, each microtask requires the work-
ers to browse all the possible quality issues, therefore, the set of issues to assess
on triple t is equal to QI in each microtask created (line 10). In case that the
number of questions in the current microtask exceeds the threshold α, a new mi-
crotask is then created. The definition of the parameter α allows for avoiding the

156

6. Crowdsourcing Linked Data Quality Issues

About: Lhoumois
GO TO WIKIPEDIA ARTICLE: Lhoumois

Type of Errors

elevation
 max
 m: 172 elevation
 max
 m: 172
Data type: Integer

Value Data type Link

Name: Lhoumois Name: Lhoumois
Data type: English

Value Data type Link

Type: Not
 specified Type: populated place Value Data type Link

arrondissement: Parthenay arrondissement: Parthenay
Data type: English

Value Data type Link

Label: Not
 specified Label: Lhoumois
Data type: French

Value Data type Link

Type: Not
 specified Type: http://dbpedia.org/class/yago/Region108630985 Value Data type Link

Same
 As: Not
 specified Same
 As: http://sws.geonames.org/6444136/ Value Data type Link

1

2

3

Figure 6.3: Interface of a microtask generated in the Find stage. (1) Displays the RDF
resource that is currently assessed and also a link to the Wikipedia page
of the resource; (2) Users select the corresponding quality issues present in
the triple; (3) Displays contextual information: In our implementation, we
extracted values from the infobox of the Wikipedia article associated with
the resource – not all the properties of DBpedia resources are available in
the infobox, in this case the microtask interface displays ‘Not specified’ in
the Wikipedia column.

construction of very long tasks, i.e., when the number of triples with the same
subject is large. Appropriate values of α enable the creation of tasks that can still
be solved in a reasonable time, consistent with the concept of microtask (a short
task). The algorithm continues creating microtasks for all the triples of a resource
(lines 7-16), for all the resources (lines 4-18). The output of Algorithm 5 is a set
M of microtasks to assess the quality of triples in T according to QI.

The generated microtasks are then submitted to a crowdsourcing platform.
Workers who accept to solve a microtask or HIT are presented with a table that
contains triples associated with an RDF resource, as shown in Figure 6.3. For
each triple, the worker determines whether the triple is ‘incorrect’ with respect to
the fixed set of quality issues QI. In our implementation, QI is composed of the
following LD quality issues (cf. Section 6.2): incorrect object, incorrect datatype
or language tag, or incorrect link, abbreviated as ‘Value’, ‘Datatype’, and ‘Link’,
respectively. The crowd has the possibility to select one or several quality issues
per triple. Once a worker has assessed the triples within a microtask, he/she
proceeds to submit the HIT. Consistently with the Find stage implemented in the
contest, the outcome of the microtasks corresponds to a set of triples T judged as
‘incorrect’ and classified according to the detected quality issues in QI.

An important aspect when generating microtasks from RDF data is develop-
ing useful human-understandable interfaces (Algorithm 5, line 9) when targeting
non-expert crowds. In microtasks, effective user interfaces reduce ambiguity as
well as the probability to retrieve erroneous answers from the crowd due to a mis-
interpretation of the task. Therefore, before starting to resolve one of our tasks,

157

6. Crowdsourcing Linked Data Quality Issues

the crowd workers are instructed with details and examples about each quality
issue. After reading the instructions, workers proceed to resolve the given task.
Figure 6.3 depicts the interface of a microtask generated for the Find stage in our
approach. To display each RDF triple, values of the foaf:name or rdfs:label proper-
ties for subjects, predicates, and datatypes are dereferenced from the URIs. The
name of languages in language-tagged strings are parsed using the conversion from
the best current practices BCP 47 [47], as suggested by the RDF specification10.
Language tags and datatypes of objects are highlighted in the microtask interface,
such that workers can easily identify them11. In addition, contextual information
can be displayed in the microtasks in order to assists the workers in successfully
solving the task.

Depending on the human-readable data available in the dataset, line 9 from
Algorithm 5 can be implemented differently in order to provide contextual in-
formation. For constructing our microtasks, we devise a simple wrapper which
extracts data encoded in the infobox of the Wikipedia article version from which
DBpedia triples were generated (depicted in the first column of Figure 6.3). To
do so, we crawl the Wikipedia page for the version specified via the property
prov:wasDerivedFrom. In the instructions of the microtasks we explain workers that
the Wikipedia column should be considered as a guideline; we clarify in the in-
structions that these values are not strictly correct12 or sometimes are not even
available13. Therefore, to make a better judgement (in case that data in the
Wikipedia column is not readable or not available) workers could visit the corre-
sponding Wikipedia page by clicking on the provided link in the microtask.

Further microtask configurations related to quality control are presented in
the experimental settings (cf. Section 6.9.2). We employ different mechanisms
to discourage low-effort behavior which leads to random answers and to identify
accurate answers. The outcome of this stage Fo corresponds to a set of triples T
judged as ‘incorrect’ and annotated with the detected quality issues from QI.

6.7. Verify Stage: Microtask Crowdsourcing

In this stage, we apply microtask crowdsourcing in order to verify quality issues
in RDF triples identified as problematic during the Find Stage (see Figure 6.1).
To ensure that in this stage a proper validation is performed on each triple, the
microtasks are simplified with respect to the ones from the Find stage such that:
(i) each microtask focuses on a specific quality issue, and (ii) the number of triples
per microtask is reduced.

10http://www.w3.org/TR/rdf11-concepts/
11Datatype and language tag errors do not occur simultaneously in an RDF triple and both are

associated with literals in the object position. To simplify the instructions, datatypes and lan-
guage tags are introduced as a single issue to workers, therefore our interfaces display “datatype”
even for language tags.

12The implemented wrapper could introduce certain errors in the values while parsing the
Wikipedia articles’ infoboxes.

13Certain predicates in DBpedia triples cannot be found in Wikipedia infoboxes, in partic-
ular predicates of RDF/S or OWL, e.g., rdfs:label, rdf:type, and owl:sameAs. Therefore, the
Wikipedia column is usually less complete than the DBpedia one.

158

http://www.w3.org/TR/rdf11-concepts/

6. Crowdsourcing Linked Data Quality Issues

Algorithm 6: Microtask Generator for Verify Stage

Input: Fo = (T , φ̇(.)) and β, where T is a set of RDF triples, φ̇(.) is a mapping of
triples in T to quality issues, and β is the maximum number of triples grouped
in a single microtask.

Output: A set of microtasks M to assess triples from T annotated with quality
issues φ̇(.).

1: M,F ← ∅
2: T ′ ← prune(T)
3: F ′o ← (T ′, φ̇(.)) // F ′o contains non-pruned triples

// Decomposition of φ(t) into singletons per RDF triple.

4: for all (t, φ̇(.)) ∈ F ′o do
5: for all q ∈ φ̇(t) do
6: F ← F ∪ {(t, {q})}
7: end for
8: end for
9: Q′ ← {q | (t, {q}) ∈ F}

// Group microtasks per quality issues in Q′.
10: for all q ∈ Q′ do
11: m← ∅

// Process RDF triple t annotated with quality issue q in the Find stage.

12: for all (t, {q}) ∈ F do
13: Extract human-readable information ht from RDF triple t
14: m← m ∪ {(t, ht, q)}

// Create a new microtask when threshold β is exceeded.

15: if |m| ≥ β then
16: M←M∪ {m}
17: m← ∅
18: end if
19: end for
20: M←M∪ {m}
21: end for
22: return M

The generation of microtasks in this stage is presented in Algorithm 6. This
algorithm groups triples in T obtained from the previous stage by quality issue,
which enables workers to focus on one quality issue at a time. The input of this
stage is the set of triples to assess T and their mappings to quality issues φ̇(.). The
parameter β specifies the number of questions to include in a single microtask.
The algorithm firstly performs a pruning step (line 2) to remove certain triples.
For instance, a triple t that was considered ‘correct’ in the Find stage (φ̇(t) = ∅)
is discarded, consistently with the definition of the Find-Fix-Verify pattern [28].
Further implementations of the prune function could consider agreement or con-
fidence values obtained in the Find stage in order to crowdsource a triple in the
Verify stage14. In our second workflow, the function prune discards answers whose

14For instance, a low agreement value might suggest that the triple has no quality issues and
hence it should not be crowdsourced. On the other hand, a high agreement value could be
an indicator that the triple is indeed incorrect and no further verification is needed. Setting
appropriate thresholds for agreement in prune might also depend on the expertise of the crowd.
However, exploring optimal configurations of the prune function is out of the scope of this study.

159

6. Crowdsourcing Linked Data Quality Issues

"Rodrigo Salinas"

Place of birth: Apizaco Puebla F.C.

(a) Incorrect object value in DBpedia.

"Elvis Presley"

Date of birth: January 8, 1935 1935-‐‑01-‐‑08

(b) Correct object value in DBpedia.

Figure 6.4: Interface for incorrect object value microtask. Crowd workers must compare
the DBpedia and Wikipedia values and decide whether the DBpedia entry
is correct or not for a given subject and predicate.

inter-rater agreement values were not higher than a certain threshold. The algo-
rithm then proceeds to build microtasks such that each microtask only contains
triples associated with a specific quality issue. For each answer from the previous
stage, the algorithm decomposes the set of quality issues φ̇(t) of a triple t into
singletons (lines 3-8). The set QI contains all the quality issues present in the set
of triples T (line 9). For each quality issue q (line 10), the algorithm processes all
triples associated with that quality issue (line 12). The algorithm extracts human-
readable information about the triples (line 13) and appends it to the microtask
(line 14). In case the number of questions in the current microtask exceeds the
threshold β, a new microtask is then created. The outcome of the algorithm is
a set M of microtasks to assess the quality of the triples in T according to the
issues φ̇(.) identified in the Find stage.

Based on the classification of LD quality issues explained in Section 6.2, Al-
gorithm 6 creates three different interfaces for the microtasks. Each microtask
contains the description of the procedure to be carried out to complete the task
successfully. We provide workers examples of incorrect and correct triples along
with four options (cf. Figure 6.1): (i) ‘Correct’; (ii) ‘Incorrect’; (iii) ‘I cannot tell/I
don’t know’; (iv) ‘Data doesn’t make sense’. The third option is meant to allow
users to specify when they could not provide a reliable answer. The fourth option
referred to those cases in which the presented data is truly unintelligible. Further-
more, workers are not aware that the assessed triples were previously identified as
‘incorrect’ in the Find stage and questions are designed such that workers could
not foresee the right answer. We describe the particularities of the interfaces of
the microtask generated for the Verify stage in the following.

6.7.1. Task for Incorrect Object Value

In this type of microtask, workers evaluate whether the value of a given RDF triple
from DBpedia is semantically correct or not. The microtask interfaces display
human-readable information retrieved by dereferencing URIs of the subject and
predicate of triples. In particular, we selected values of the foaf:name or rdfs:label

properties for each subject and predicate. Additionally, we extracted the values
from the infobox of the Wikipedia article associated with the subject of the triple
using the wrapper implemented in the Find stage (cf. Section 6.6). Figure 6.4

160

6. Crowdsourcing Linked Data Quality Issues

(a) External link displaying unrelated content to the subject

(b) Web page displaying related images to the subject

Figure 6.5: Interface for incorrect link microtask. The crowd must decide whether the
content of a link (indicated as “External page” in the user interface) is
related to the subject. When assessing links between RDF resources, the
preview of the “External page” displays the resource’s page (most of the
datasets linked from DBpedia – Wikidata, YAGO – support Linked Data
browsers).

depicts the interface of the resulting tasks.

In the task presented in Figure 6.4a, workers must decide whether the place
of birth of Rodrigo Salinas is correct. According to the DBpedia triple, the value
of this property is Puebla F.C. However, the information extracted from Wikipedia
indicates that value is Apizaco, which is actually the birth place of Rodrigo Salinas.
In this case, the right answer to this task is: the DBpedia data is incorrect.15

An example of a DBpedia triple whose value is correct is depicted in Fig-
ure 6.4b. In this case, workers must analyze the date of birth of Elvis Presley.
According to the information extracted from Wikipedia, the date of birth of Elvis
Presley is January 8, 1935, while the DBpedia value is 1935-01-08. Despite the dates
are represented in different formats, semantically the dates are indeed the same,
thus the DBpedia value is in this case correct.

15In case that DBpedia correctly extracted Apizaco but Rodrigo Salinas was born in a dif-
ferent place, then the right answer to the task is: the DBpedia triple is incorrect.

161

6. Crowdsourcing Linked Data Quality Issues

6.7.2. Task for Incorrect Datatypes or Language Tags

This type of microtask consists of detecting DBpedia triples whose object datatype
or language tags are not correctly assigned. The generation of the interfaces for
these tasks is performed by dereferencing the URIs of the subject and predicate
of each triple and displaying the values of foaf:name or rdfs:label.

In the description of the task, we introduce to workers the concept of datatypes
and language tags using examples. One of the examples illustrates when a lan-
guage tag is incorrect; consider the resource dbr:Torishima Izu Islands: Given the

property “name”, is the value “鳥島” of type “English”?. A worker does not need
to understand that the name of this island is written in Japanese, since it is ev-
ident that the language type “English” in this example is incorrect. In a similar
fashion, we provide an example where the language tag is assigned correctly by
showing the entity dbr:Dragon: Given the property “name”, is the value “Dragon” of

type “English”? According to the data from DBpedia, the value of name is written
in English and the type is correctly identified as English.

6.7.3. Task for Incorrect Links

In this type of microtask, we ask workers to verify whether the object of an RDF
triple is associated with the subject. Incorrect subject-object associations may
be due to several reasons: erroneous links referenced from Wikipedia articles,
wrong associations between RDF resources (e.g., via the dbp:wordnet type predi-
cate) within DBpedia, or incorrect extraction of links via the DBpedia wrappers.
In the latter case, incorrect links that result in broken links can be automatically
detected and are not crowdsourced. For the interface of the tasks, we provide
workers a preview of the Wikipedia article and the triple object via HTML iframe.
In addition, we retrieve the foaf:name of the subject and the link to the corre-
sponding Wikipedia article using the predicate foaf:isPrimaryTopicOf.

Examples of this type of task are depicted in Figure 6.5. In the first example
(see Figure 6.5a), workers must decide whether the content in the given external
Web page is related to John Two-Hawks. The content of the Web page reveals
that it is not associated with the person “John Two-Hawks”. Therefore, the right
answer is that the link is incorrect. On the other hand, we also exemplify the
case when a link presents pertinent content to the given subject. Consider the
example in Figure 6.5b, where the subject is the plant dbr:Pandanus boninensis and
the external link is a Web page generated by the DBpedia Flickr wrapper. The
Web page indeed shows pictures of the subject plant. Therefore, the right answer
is in this case that the link is correct.

6.8. Properties of Our Approach

Given that the contest settings are handled through the TripleCheckMate tool [94],
in this section we expose the properties of the proposed microtask crowdsourcing
approaches. First, we demonstrate that the algorithms for microtask generation
in the Find and Verify stages are efficient in terms of time.

162

6. Crowdsourcing Linked Data Quality Issues

Proposition 1 The time complexity of the microtask generators is O(|T |)
for the Find stage and O(|T ||QI|) for the Verify stage.

Proof The algorithm of the Find stage iterates over all the triples associated with
each distinct triple subject in T , therefore the complexity of this stage is O(|T |).
In the Verify stage, the algorithm firstly iterates over the answers obtained from
the previous stage, which corresponds to T . Next, the algorithm iterates over the
quality issues detected in the Find stage; in the worst case, each quality issue is
found in at least one triple, then, the set Q′ is equal to QI. For each quality issue,
the algorithm processes the triples annotated with that quality issue, which again
in the worst case is T (all the triples present all the quality issues). Therefore, the
complexity of the Verify stage is calculated as O(|T |+ |T ||QI|), then O(|T ||QI|).
�

One important aspect when applying paid microtask crowdsourcing is the
number of generated tasks, since this directly impacts the scalability of the ap-
proach in terms of the time required to solve all the tasks and the overall monetary
cost. The following proposition states the complexity of Algorithm 5 and Algo-
rithm 6 in terms of the number of crowdsourced microtasks.

Proposition 2 The number of microtasks generated in each stage is linear
with respect to the number of triples assessed.

Proof In the Find stage, a microtask is generated when the number of triples
within task exceeds the threshold α. Since in this stage each microtask groups

triples by subjects, then the number of microtasks per subject is
⌈
|{(p,o) | (si,p,o)∈T }|

α

⌉
,

where {(p, o) | (si, p, o) ∈ T } corresponds to triples with subject si. In total, in the

Find stage, the exact number of microtasks generated is
∑

si∈S

⌈
|{(p,o) | (si,p,o)∈T }|

α

⌉
,

which is less than |T | (for α > 1). In the Verify stage, each microtask groups RDF
triples with the same quality issue. When considering β as the maximum number
of triples contained within a microtask, then the number of tasks created per quality

issue qi ∈ QI is
⌈
|{t | t∈T ∧ qi∈φ̇(t)}|

β

⌉
. Therefore, the exact number of microtasks

generated in the Verify stage is
∑

qi∈QI

⌈
|{t | t∈T ∧ qi∈φ̇(t)}|

β

⌉
, which is ≤ |T ||QI|

(for β > 1). Considering that the set QI is considerably smaller than T , we can
affirm that the number of microtasks generated in the Verify stage is linear with
respect to T . �

When analyzing the number of microtasks generated in each stage, the Verify
stage in theory produces more tasks than the Find stage. This is a consequence
of simplifying the difficulty of the microtasks in the Verify stage, where workers
have to assess only one type of quality issue at the time. However, in practice,
the number of microtasks generated in the Verify stage is not necessarily larger.
For instance, in our experiments with LD experts and crowd workers, we observed
that large portions of the triples are not annotated with quality issues in the Find

163

6. Crowdsourcing Linked Data Quality Issues

Table 6.3: Comparison between the microtask generators for Find and Verify stages. T
is the set of RDF triples assessed; QI corresponds to the set of quality issues;
S is the set of distinct subjects of the triples in T ; α, β are the parameters
that define the number of questions per microtask in the Find and Verify
stages, respectively.

CharacteristicFind Stage Verify Stage

Goal per task Detecting and classifying LD
quality issues in RDF triples.

Confirming LD quality issues in
RDF triples.

Task generation
complexity

O(|T |) O(|T ||QI|)

Total tasks
generated (only
for microtask
crowdsourcing)

∑
si∈S

⌈
|{(p,o) | (si,p,o)∈T }|

α

⌉ ∑
qi∈QI

⌈
|{t | t∈T ∧ qi∈φ̇(t)}|

β

⌉

Task difficulty High: Each task requires knowl-
edge on Linked Data quality is-
sues; participants have to browse
large number of RDF triples.

Medium-low: Each task consists
of validating pre-processed and
classified triples; each task fo-
cuses on one quality issue.

stage. Since Algorithm 6 prunes triples with no quality issues (consistently with
the definition of the Find-Fix-Verify pattern), the subset of triples crowdsourced
in the Verify stage is considerably smaller than the original set, hence the number
of microtasks to verify is reduced.

A summary of our microtask crowdsourcing approach implemented for the
Find and Verify stages is presented in Table 6.3.

6.9. Experimental Study

We empirically analyze the performance of the two crowdsourcing workflows de-
scribed in Section 6.4. The first workflow expert-worker combines LD experts in
the Find stage with microtask (lay) workers from MTurk in the Verify stage. The
second workflow worker-worker consists of executing both Find and Verify stages
with microtask workers. It is important to highlight that, in the experiments
of the Verify stage, workers did not know that the data provided to them was
previously classified as problematic.

In addition, we execute (semi-)automatic approaches to detect quality issues.
This experiment allows us to understand the strengths and limitations of applying
crowdsourcing in this scenario. We used the semi-automatic RDFUnit tool [93] for
assessing ‘object value’ and ‘datatype’ issues, and implemented a simple automatic
baseline for detecting incorrect ‘links’.

164

6. Crowdsourcing Linked Data Quality Issues

6.9.1. Experimental Settings

Dataset and Implementation: In our experiments, the assessed triples are
extracted from the DBpedia dataset (version 3.9)16. As described in Section 6.5,
the TripleCheckMate tool is used in the contest. For the microtask crowdsourc-
ing approaches, Algorithm 5 and Algorithm 6 are implemented in Python 2.7.2.
During the experiments, we process a total of 38, 633 RDF triples from DBpe-
dia and pruned 5, 230 triples that contained non-dereferenceable URIs. A URI
is considered non-dereferenceable if after ten retries of performing HTTP GET
operations, we do not obtain a successful response (HTTP codes 2xx or 3xx in the
response header). Non-dereferenceable URIs correspond to external datasets or
Web pages, i.e., DBpedia URIs were dereferenced successfully. In our experiments,
we aim at gaining insights on the type of misclassifications performed by experts
and laymen, therefore, besides pruning broken links no further RDF triples are
removed from our study. With Algorithm 5 and Algorithm 6, we generate the
corresponding microtasks for the Find and Verify stages, respectively. Resulting
microtasks are submitted as HITs to Amazon Mechanical Turk using the MTurk
SDK for Java.17

Metrics: The task in our experiments is to detect whether RDF triples are
incorrect. Based on this, we define:

• True Positive (TP): Incorrect triple classified as incorrect.

• False Positive (FP): Correct triple classified as incorrect.

• True Negative (TN): Correct triple classified as correct.

• False Negative (FN): Incorrect triple classified as correct.

To measure the performance of the studied crowdsourcing approaches (contest
and microtasks), we report on the following metrics:

i) Inter-rater agreement computed with the Fleiss’ kappa [60] metric to mea-
sure the consensus degree among raters (experts or MTurk workers);

ii) Precision to measure the proportions of positive results of each crowd, com-
puted as TP

TP+FP
.

iii) Sensitivity (or recall) to measure the true positive rate, computed as TP
TP+FN

iv) Specificity to measure the true negative ratio, computed as TN
TN+FP

The inter-rater agreement of the experts is reported by TripleCheckMate for
the overall results of the contest in the Find stage. Therefore, we also report on
the inter-rater agreement of the overall results for microtask workers in the Find
stage. Inter-rater agreement is computed per quality issue for the Verify stages.

16http://wiki.dbpedia.org/Downloads39
17http://aws.amazon.com/code/695

165

http://wiki.dbpedia.org/Downloads39
http://aws.amazon.com/code/695

6. Crowdsourcing Linked Data Quality Issues

Precision values are computed for all stages of the studied workflows with re-
spect to the gold standard explained below. In our Find stages, the crowd – expert
or layman – was not enquired for annotating triples as ‘correct’ (in conformance
with the definition of the Find-Fix-Verify pattern [28]); i.e., the outcome of our
Find stages does not contain true or false negatives. Therefore, sensitivity and
specificity values are computed only for the Verify stages.

Gold Standard A gold standard is manually built for two samples of the crowd-
sourced triples. To generate the gold standard, two raters independently evaluate
the triples. After an individual assessment, the raters compare their results and
resolve the conflicts via mutual agreement. The first sample evaluated contains
1, 073 triples that corresponds to the set of triples obtained from the contest
in the experts’ Find stage and submitted to MTurk. The inter-rater agreement
between the authors for this first sample is 0.4523 for object values, 0.5554 for
datatypes/language tags, and 0.5666 for links. For the second sample, we ana-
lyze a subset of 1, 073 triples that have been identified in the Find stage by the
crowd as ‘incorrect’. This subset has the same distribution of triples per qual-
ity issues as the one assessed in the first sample: 509 triples for object values,
341 for datatypes / language tags, and 223 for links. We measure the inter-rater
agreement for this second sample and was 0.6363 for object values, 0.8285 for
datatypes, and 0.7074 for links. The inter-rater agreement values were calculated
using the Cohen’s kappa measure [41], designed for measuring agreement among
two annotators. Disagreement arose in the object value triples when one of the
raters marked number values which are rounded up to the next integer number
as correct. For example, the length of the course of the 1949 Ulster Grand Prix was
26.5Km in Wikipedia but rounded up to 27Km in DBpedia. In case of datatypes,
most disagreements were considering the datatype “number” of the value for the
property “year” as correct. For the links, those containing unrelated content, were
marked as correct by one of the reviewers since the link existed in the Wikipedia
page. Given the effort and careful process (resolution of conflicts and discussion
of disputed triples) carried out during our assessment, we consider that the pro-
duced gold standard is sufficiently reliable to evaluate the outcome of the different
crowdsourcing approaches. Yet, the gold standard is openly available to encourage
the community to assess and expand it further.

The tools used in our experiments and the results are available online, includ-
ing the outcome of the contest,18 the gold standard and microtask data (raw data
to reproduce the HITs and the results obtained from the crowd in all stages).19

6.9.2. Evaluation of the Expert-Worker Workflow: Combining LD
Experts (Find Stage) and Microtasks (Verify Stage)

Contest Settings: Find Stage The contest was open from November to De-
cember in 2012; the configurations used in the contest are as follows.

18http://nl.dbpedia.org:8080/TripleCheckMate/
19http://people.aifb.kit.edu/mac/DBpediaQualityAssessment/

166

http://nl.dbpedia.org:8080/TripleCheckMate/
http://people.aifb.kit.edu/mac/DBpediaQualityAssessment/

6. Crowdsourcing Linked Data Quality Issues

Participant expertise: We relied on the expertise of members of the Linked
Data and the DBpedia communities who were willing to take part in the contest.

Task complexity: In the contest, each participant was assigned the concise
bound description of a DBpedia resource. All triples belonging to that resource
were displayed and the participants had to validate each triple individually for
quality problems. Moreover, when a problem was detected, the participant had
to map it to one of the problem types from a quality problem taxonomy.

Payment: We awarded the participant who evaluated the highest number of re-
sources a Samsung Galaxy Tab 2 worth 300 EU.

Redundancy: Each resource was evaluated by at most two different participants.

Microtask Settings: Verify Stage The microtasks for this experiment were
submitted to MTurk in May 2013 using the following settings.

Quality control: In MTurk, the requester can filter workers according to differ-
ent qualification metrics. In this experiment, we recruited workers with “Approval
Rate” greater than 50%.

Task granularity: In each HIT, we asked workers to solve five different questions
(β = 5). Each question corresponded to an RDF triple and each HIT contained
triples classified into one of the three quality issue categories discussed earlier.

Payment: The micropayments were fixed to 4 US dollar cents. Considering the
HIT granularity, we paid 0.04 US dollar per 5 triples. At the time of submitting
the tasks, 0.04 was one of the most popular HIT rewards in MTurk as reported
by Difallah et al. [51].

Redundancy: The number of assignments was set up to five and the answer was
selected applying majority voting. We additionally compared the quality achieved
by a group of workers vs. the resulting quality of the worker who submitted the
first answer, in order to test whether collecting more than one answer (assign-
ment) actually increases the quality of the results.

Overall Results

The contest was open for a predefined period of time of three weeks. During this
time, 58 LD experts analyzed 521 distinct DBpedia resources and we determined
that the experts browsed around 33,404 triples. They detected a total of 1, 512
triples as erroneous and classified them using the given taxonomy. After obtaining
the results from the experts, we filtered out duplicates and triples whose objects
were broken links. In total, we submitted 1, 073 triples to the crowd. A total of 80
distinct workers assessed all the RDF triples in four days. The average time per

167

6. Crowdsourcing Linked Data Quality Issues

Table 6.4: Results in each type of crowdsourcing approach in the expert-worker crowd-
sourcing workflow: Combining LD experts (Find stage) and microtask work-
ers (Verify stage).

Results Contest Microtasks

Object values: 35

Number of Datatypes/Language tags: 31

distinct participants Links: 31

Total: 58 Total: 80

Inter-rater agreement 0.38

Object values: 0.5348

Datatypes/Language tags: 0.4960

Links: 0.7396

Microtasks generated – 216

Total time 3 weeks (predefined) 4 days

Total triples
Browsed: 33, 404

Marked as ‘incorrect’: 1, 512 Evaluated: 1, 073

Incorrect triples

Object values 550 509

Datatype / Language tags 363 341

Links 599 223

microtask spent by the crowd was 94.55 sec. for incorrect values, 71.69 sec. for
incorrect datatypes or language tags, and 116.11 sec. for incorrect links. We then
computed the effective hourly rate per type of task: 1.52 US$ for incorrect values,
2.01 US$ for incorrect datatypes or language tags, and 1.24 US$ for incorrect
links. A summary of these observations are shown in Table 6.4.

We compared the common 1, 073 triples assessed in each crowdsourcing ap-
proach against our gold standard and measured inter-rater agreement as well as
precision, sensitivity, and specificity values for each task (see Table 6.4). For
the contest-based approach, the tool allowed two participants to evaluate a single
resource. In total, there were 268 inter-evaluations for which TripleCheckMate
calculated triple-based inter-agreement (adjusting the observed agreement with
agreement by chance) to be 0.38. For the microtasks, for each type of task we
measured the inter-rater agreement values among a maximum of five workers using
Fleiss’ kappa measure. While the inter-rater agreement between workers for the
link task was high (0.7396), the ones for object and datatype tasks were moderate
to low with 0.5348 and 0.4960, respectively. In the following we present further
details on the results for each type of task.

Results: Incorrect Object Values

As reported in Table 6.5, our crowdsourcing experiments reached a precision of
0.8977 for MTurk workers (majority voting) and 0.7151 for LD experts. Most of

168

6. Crowdsourcing Linked Data Quality Issues

Table 6.5: Crowd performance when assessing ‘object value’ issues. Metrics (computed
against the Gold Standard) achieved in the expert-worker workflow.

Stage and Crowd Precision Sensitivity Specificity

Find: LD Experts 0.7151 – –

Verify: MTurk Workers (First Answer) 0.8595 0.8056 0.6693

Verify: MTurk workers (Majority Voting) 0.8977 0.8899 0.7482

the incorrect values that are extracted from Wikipedia occur with predicates re-
lated to dates, for example: (dbpedia:2005 Six Nations Championship, dbp:date, “12”).
In these cases, the experts and workers presented a similar behavior, classifying
110 and 107 triples correctly, respectively, out of the 117 assessed triples for this
class. In this type of task, the experts were able to detect more true positives than
the crowd (365 for the experts vs. 307 for the crowd workers in majority voting).
However, the difference in precision between the two approaches is due to the large
amount of false positives generated by the experts (144 in total). Most of the false
positives from the experts correspond to triples with values that might seem se-
mantically erroneous, although they were syntactically and semantically correct.
For instance, the triple (dbpedia:Durango-class patrol vessel, dbp:shipCrew, “Crew of

81”)20 was marked as erroneous by the LD experts. On the other hand, the crowd
workers generated false negatives when the data was correctly extracted from
Wikipedia but it was semantically incorrect, e.g., the triple (dbpedia:Oncorhynchus,

dbp:subdivision, “See text”)21. We found out that in these cases the LD experts
classified the triples as incorrect.

Furthermore, crowd workers obtained higher values of sensitivity than speci-
ficity (0.8899 vs. 0.7482 in majority voting) in both microtask settings. This
suggests that workers perform better when detecting incorrect values (true posi-
tives) than correct values (true negatives) in RDF triples.

Results: Incorrect Datatypes or Language Tags

Table 6.6 reports that both crowdsourcing mechanisms achieved high values of
precision: 0.8270 precision for experts on finding this type of quality issue, while
the crowd achieved 0.9116 precision on verifying these triples. However, a closer
inspection to the results revealed that the crowd generated a large number of false
negatives, obtaining low sensitivity values (0.4802 with majority voting).

In particular, the first answers submitted by the crowd were slightly better in
terms of sensitivity than the results obtained with majority voting. A detailed
study of these cases showed that 28 triples that were classified correctly in the

20In DBpedia, the property dbp:shipCrew is used to describe the crew of vessels or ships,
however, there are no restrictions on the object. Some examples of other DBpedia triples
with this predicate are: (dbpedia:Chilean ship Lautaro (1818), dbp:shipCrew, “Chilean Navy:
288”) and (dbpedia:Histria Giada, dbp:shipCrew, “Romanian”@en).

21Wikipedia page version from which this data was extracted: https://en.wikipedia.org/
w/index.php?title=Oncorhynchus&oldid=551701016

169

https://en.wikipedia.org/w/index.php?title=Oncorhynchus&oldid=551701016
https://en.wikipedia.org/w/index.php?title=Oncorhynchus&oldid=551701016

6. Crowdsourcing Linked Data Quality Issues

Table 6.6: Crowd performance when assessing ‘datatype / language tag’ issues. Met-
rics (computed against the Gold Standard) achieved in the expert-worker
workflow.

Stage and Crowd Precision Sensitivity Specificity

Find: LD Experts 0.8270 – –

Verify: MTurk Workers (First Answer) 0.8889 0.5161 0.6897

Verify: MTurk Workers (Majority Voting) 0.9116 0.4802 0.7759

Table 6.7: Frequency of datatypes and language tags in the crowdsourced triples in the
expert-worker crowdsourcing workflow.

Datatype / Language Tag Frequency Datatype / Language Tag Frequency

Number 145 Date 19

English 127 Not specified/URI 20

Second 20 Millimetre 1

Number with decimals 19 Nanometre 1

Year 15 Volt 1

first answer from the crowd, later were misclassified, and most of these triples
refer to a language tag. The low performance of the MTurk workers in terms of
sensitivity is not surprising, since this particular task requires certain technical
knowledge about datatypes and their specification in RDF.

In order to understand the previous results, we analyzed the performance of
experts and workers at a more fine-grained level. We calculated the frequency
of occurrences of datatypes and language tags in the assessed triples (see Ta-
ble 6.7) and reported on precision, sensitivity, and specificity achieved by the
crowdsourcing methods per datatype or language tag. Figure 6.6 depicts these
results. The most notorious result in this task is the assessment performance
for the datatype “number”. The experts effectively identified triples where the
datatype was incorrectly assigned as “number”22, for instance, in the DBpedia
triple (dbpedia:Walter Flores, dbp:dateOfBirth, “1933”) the value “1933” was typed
as number instead of year. These are the cases where the crowd was confused
and determined that the datatype ‘number’ was correct, thus generating a large
number of false negatives, hence the low values of sensitivity for this datatype.
Nevertheless, it could be argued that the data type “number” in the previous
example is not completely incorrect, when being unaware of the fact that there
are more specific data types for representing time units. Under this assumption,
the sensitivity of the crowd would have been 0.85 and 0.82 for first answer and
majority voting, respectively.

While looking at the language-tagged strings in “English” (@en in RDF), Fig-
ure 6.6 shows that the experts perform very well when discerning whether a given

22This error is very frequent when extracting dates from Wikipedia as some resources only
contain partial data, e.g., only the year is available and not the whole date.

170

6. Crowdsourcing Linked Data Quality Issues

N/A

0

0.25

0.5

0.75

1

Number English Second Number
with

decimals

Year Date Not
specified

Millimetre Nanometre Volt

Datatype / Language Tag

V
al

ue
 o

f c
or

re
sp

on
di

ng
 m

et
ric

Experts (Find) Precision Crowd (Verify) Precision Crowd (Verify) Sensitivity Crowd (Verify) Specificity

Figure 6.6: Results for the “Incorrect datatype/language tag” task in the expert-worker
crowdsourcing workflow. Precision, sensitivity, and specificity per datatype
in each stage (Find, Verify) are reported. Bars with values N/A indicate
that the metric could not be computed since the denominator was equal to
zero.

Table 6.8: Crowd performance when assessing ‘link’ issues. Metrics (computed against
the Gold Standard) achieved in the expert-worker crowdsourcing workflow.

Stage and Crowd Precision Sensitivity Specificity

Find: LD Experts 0.1525 – –

Verify: MTurk Workers (First Answer) 0.6111 0.8800 0.8947

Verify: MTurk Workers (Majority Voting) 0.7674 0.9705 0.9450

value is an English text or not. Although the precision achieved by the crowd in
this language tag is high, we identified that the crowd is less successful in the fol-
lowing two situations: (i) The value corresponds to a number and the remaining
data was specified in English, e.g., (dbpedia:Middelburg, dbo:utcOffset, ‘+1”@en). (ii)
The value is a text without special characters, but in a different language than
English – for example German – as in the following triple (dbpedia:Woellersdorf-

Steinabrueckl, dbp:art, “Marktgemeinde”@en). The performance of both crowdsourc-
ing approaches for the remaining datatypes were similar or not relevant due the
low number of triples processed.

Results: Incorrect Links

Table 6.8 reports the precision for each studied quality assessment mechanism.
The extremely low precision of 0.1525 of the contest’s participants was unexpected.
We inspected in detail the 189 misclassifications of the experts:

171

6. Crowdsourcing Linked Data Quality Issues

• The 95 Freebase links23 connected via owl:sameAs were marked as incorrect,
although both the subject and the object were referring to the same real-
world entity.

• There were 77 triples whose objects were Wikimedia uploads (composed
mostly by images hosted for Wikipedia); 74 of these triples were also classi-
fied incorrectly. Within the 74 misclassified triples, the images of 21 triples
directly depict the triple subject. In 30 triples, the subjects correspond to
geographical entities, and the images correctly depicted either maps (12
triples), landscapes (12 triples), or their corresponding coat of arms (6
triples). In another 13 triples, the images depicted examples of abstract
concepts24. Only in 9 triples, the images were not directly associated with
the subject but the images depict something closely related to the subject,
e.g., a book of a writer25, or a bus of a bus company26. In total, 58 pictures
(out of the 74 misclassified triples by the experts) still appear in the latest
version of their corresponding Wikipedia article.27

• 20 links (to blogs or other Web pages) referenced from the Wikipedia article
of subjects were also misclassified, regardless of the language of the content
in the Web page. Furthermore, 16 out of these 20 links are still present in
the corresponding Wikipedia articles.28 Only 3 links have slightly changed
over time but they were correctly extracted from Wikipedia articles.

On the other hand, MTurk workers achieved high values in both settings, in
particular when applying majority voting: 0.7674 for precision, 0.9705 for sensi-
tivity, and 0.9450 for specificity as shown in Table 6.8. The links that were not
properly classified by the crowd correspond to Web pages whose content is in a dif-
ferent language than English or, despite they are referenced from the Wikipedia
article of the subject, their association with the subject is not straightforward.
Examples of these cases are the following subjects and links: the resource dbpe-

dia:Frank Stanford with the website http://nw-ar.com/drakefield, and the resource
dbpedia:Forever Green with http://www.stirrupcup.co.uk. We hypothesize that the
design of the user interface of the HITs – displaying a preview of the Web pages
to analyze – helped the workers to easily identify those links containing related
content to the triple subject.

23http://www.freebase.com
24For instance, Symmetry in biology with the image available at http://upload.wikimedia.

org/wikipedia/commons/a/af/20_petit_paon_de_nuit.jpg
25For instance, Ern Malley and http://upload.wikimedia.org/wikipedia/commons/1/1f/

Ern_Malley.jpg
26Arriva London and https://upload.wikimedia.org/wikipedia/commons/3/3f/London_

Bus_route_59_01.jpg
27As of January 2016.
28As of January 2016.

172

http://www.freebase.com
http://upload.wikimedia.org/wikipedia/commons/a/af/20_petit_paon_de_nuit.jpg
http://upload.wikimedia.org/wikipedia/commons/a/af/20_petit_paon_de_nuit.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1f/Ern_Malley.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1f/Ern_Malley.jpg
https://upload.wikimedia.org/wikipedia/commons/3/3f/London_Bus_route_59_01.jpg
https://upload.wikimedia.org/wikipedia/commons/3/3f/London_Bus_route_59_01.jpg

6. Crowdsourcing Linked Data Quality Issues

6.9.3. Evaluation of Using Microtask Crowdsourcing in Find and
Verify Stages

Microtask Settings: Find and Verify Stages

The microtasks crowdsourced in the Find stage were submitted to MTurk in Febru-
ary 2014 and configured as follows.

Quality control: We recruited workers whose “Approval Rate” qualification is
greater than 50%.

Task granularity: In each HIT, we asked the workers to assess a maximum of
30 different triples with the same subject (α = 30).

Payment: The monetary reward was fixed to 6 US dollar cents.

Redundancy: The assignments were set up to 3 and we applied majority voting
to aggregate the answers.

All triples identified as erroneous by at least two workers in the Find stage
were candidates for crowdsourcing in the Verify stage. The microtasks generated
in the subsequent stage were crowdsourced in February 2014 with the exact same
configurations used in the Verify stage from the expert-worker workflow.

Overall Results

In order to replicate the approach followed in the contest, in the Find stage, we
crowdsourced all the triples associated with resources that were explored by the
LD experts. In total, we submitted to the crowd 33, 404 RDF triples and the
crowd processed 30, 658 triples in 14 days. The microtasks from the Find stage
were resolved by 187 distinct workers in 83.29 secs. on average at an hourly rate
of 2.59 US$. In total, 26, 835 triples were identified as erroneous, and classified
into the three quality issues studied in this work. Then, we selected random
samples from triples identified as erroneous in the Find stage from the crowd
using majority voting. For sampling, we used the same distribution obtained
from the first experiment, i.e., each sample contains the exact same number of
triples that were crowdsourced in the Verify stage in the first workflow. This
allowed us to compare the outcome of the Verify stage from both workflows. We
crowdsourced then 509 triples for the task of incorrect values, 341 for incorrect
datatype or language tag, and 223 for incorrect links. All triples crowdsourced in
the Verify Stage were assessed by 141 distinct workers in seven days. On average,
workers spent 95.59 sec. on resolving a microtask for detecting incorrect values,
53.05 sec. on a microtask for incorrect datatypes or language tags, and 131.48
sec. on a microtask for assessing incorrect links. The effective hourly rates in each
type of task were: 1.51 US$ for assessing values, 2.71 US$ for assessing datatypes
or language tags, and 1.10 US$ for assessing links. For the incorrect value and
incorrect datatype or language tag tasks, all submitted microtasks were finished in

173

6. Crowdsourcing Linked Data Quality Issues

Table 6.9: Overall results in the worker-worker crowdsourcing workflow: Applying mi-
crotask workers in both stages Find and Verify.

Results Microtasks: Find stage Microtasks: Verify stage

Object values: 77

Number of Datatypes / Language tags: 29

distinct participants Links: 46

Total: 187 Total: 141

Inter-rater agreement 0.2695

Object values: 0.6300

Datatypes / Language tags: 0.7957

Links: 0.7156

Microtasks generated 2, 339 216

Total time 14 days 7 days

Total triples

Browsed: 33, 404

Crowdsourced: 30, 658

Marked as ‘incorrect’: 26, 835 Evaluated: 1, 073

Incorrect triples

Object values 8, 691 509

Datatypes / Language tags 13, 194 341

Links 13, 732 223

the first two days. Regarding the incorrect link tasks, 86% of the microtasks were
resolved within four days (consistently with the behavior observed in the first
experiment), and the remaining 14% of these tasks were completed after seven
days of the beginning of the experiment. A summary of these results and further
details are presented in Table 6.9.

Similar to the first experiment, we measured the inter-rater agreement achieved
by the crowd in both stages using the Fleiss’ kappa metric. In the Find stage the
inter-rater agreement of workers was 0.2695, while in the Verify stage, the crowd
achieved substantial agreement for all the types of tasks: 0.6300 for object values,
0.7957 for data types or language tags, and 0.7156 for links. In comparison to the
expert-worker workflow, the crowd in the Verify stage achieved higher agreement.
This suggests that triples identified as erroneous in the Find stage were easier to
interpret or process by the crowd. It is important to notice that in the worker-
worker workflow we crowdsourced all the triples that were shown to the experts
with the TripleCheckMate tool, i.e., all the triples that could have been explored
by the LD experts in the contest. In this way, we evaluate the performance of
lay user and experts under similar conditions. In the following we present further
details on the results for each type of task.

174

6. Crowdsourcing Linked Data Quality Issues

Table 6.10: Crowd performance when assessing ‘object value’ issues. Metrics (computed
against the Gold Standard) achieved in the worker-worker workflow.

Stage and Crowd Precision Sensitivity Specificity

Find: MTurk Workers 0.3713 – –

Verify: MTurk Workers (First Answer) 0.4980 0.4549 0.5432

Verify: MTurk workers (Majority Voting) 0.5072 0.9615 0.4371

Results: Incorrect Object Values

In the Find stage, the crowd achieved a precision of 0.3713 for identifying ‘incorrect
values’, as reported in Table 6.10. In the following we present relevant observations
derived form this evaluation:

• 46 false positives were generated for triples with predicates corresponding
to dbp:placeOfBirth, and dbp:dateOfBirth, although for some of them the value
extracted from Wikipedia coincided with the DBpedia value.

• 22 triples identified as ‘incorrect’ by the crowd encode metadata about
the DBpedia extraction framework via predicates like dbo:wikiPageID and
dbo:wikiPageRevisionID. This is a clear example in which a certain level of
expertise in Linked Data (especially DBpedia) plays an important role in
this task, since it is not straightforward to understand the meaning of these
type of predicates. Furthermore, given the fact that triples with reserved
predicates do not require further validation29, these triples could be entirely
precluded from any crowd-based assessment.

• In 24 false positives, the human-readable information (label) extracted for
triple predicates were not entirely comprehensible, e.g., “longd”, “longs”,
“longm”, “refnum”, “sat chan”, among others. This could negatively impact
the crowd performance, since workers rely on RDF resource descriptions to
discern whether triples values are correct or not.

• 14 triples encoding geographical coordinates with predicates such as geo:lat,
geo:long, and grs:point30 were misinterpreted by the crowd as the values of
these predicates were incorrect. This is because in DBpedia coordinates are
represented as decimals, e.g., (dbpedia:Salasco, geo:lat, “45.3333”), while in
Wikipedia coordinates are represented using a Geodetic system, e.g., “Salasco

latitude 45◦20’N”.

The crowd in the Verify stage achieved similar precision for both settings ‘first
answer’ and ‘majority voting’, with values of 0.4980 and 0.5072, respectively. The
crowd generated a large number of false positives (170 in total), therefore, the

29DBpedia triples whose predicates are defined as “Reserved for DBpedia” should not be
modified, since they encode special metadata generated during the extraction process.

30Prefixes geo and grs correspond to http://www.w3.org/2003/01/geo/wgs84_pos#lat and
http://www.georss.org/georss/point, respectively.

175

http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://www.georss.org/georss/point

6. Crowdsourcing Linked Data Quality Issues

Table 6.11: Crowd performance when assessing ‘datatype / language tag’ issues. Met-
rics (computed against the Gold Standard) achieved in the worker-worker
workflow.

Stage and Crowd Precision Sensitivity Specificity

Find: MTurk Workers 0.1466 – –

Verify: MTurk Workers (First Answer) 0.5510 0.7714 0.9111

Verify: MTurk workers (Majority Voting) 0.8723 0.9223 0.9793

values of specificity achieved in both settings were not high. Moreover, for the
setting ‘majority voting’, the value of sensitivity was 0.9615. Errors from the first
iteration were reduced in the Verify stage, especially in triples with predicates
dbp:dateOfBirth and dbp:placeOfBirth; 38 out of 46 of these triples were correctly clas-
sified in the Verify stage. Workers in this stage still made similar errors as the ones
previously discussed – triples encoding DBpedia metadata and geo-coordinates,
and incomprehensible predicates – although in a lower scale in comparison to the
Find stage.

Results: Incorrect Datatypes or Language Tags

In this type of task, from the analyzed sample of triples we observed that the
crowd in the Find stage focused on assessing triples whose objects correspond
to language-tagged literals. As reported on Table 6.11, the crowd in the Find
stage achieved a precision of 0.1466, being the lowest precision achieved in all
the microtask settings. Table 6.12 shows the distribution of the datatypes and
language tags in the sampled triples processed by the crowd. Out of the 341
analyzed triples, 307 triples identified as ‘erroneous’ in this stage were annotated
with language tags. Most of the triples (72 out of 341) identified as ‘incorrect’
in this stage were annotated with the English language tag. We corroborated
that false positives in other languages were not generated due to malfunctions of
the HIT interface: Microtasks were properly displaying UTF-8 characters used in
several languages in DBpedia, e.g., Russian, Japanese, Chinese, among others.

In the Verify stage of this type of task, the crowd outperformed the preci-
sion of the Find stage, achieving values of 0.5510 for the ‘first answer’ setting
and 0.8723 with ‘majority voting’. This major improvement on the precision put
in evidence the importance of having a multi-validation pattern like Find-Fix-
Verify in which initial errors can be reduced in subsequent iterations. For the
‘majority voting’ setting, the crowd achieved high values for sensitivity (0.9111)
and specificity (0.9793) by correctly detecting true positives and true negatives.
Congruent with the behavior observed in the first workflow, MTurk workers per-
formed well when verifying language-tagged literals. Furthermore, the high values
of inter-rater agreement confirm that the crowd is consistently good in this par-
ticular scenario. Figure 6.7 depicts per datatype / language tag the values for
precision for both stages as well as sensitivity and specificity values for the ‘ma-
jority voting’ setting. We can observe that the crowd is exceptionally successful in

176

6. Crowdsourcing Linked Data Quality Issues

Table 6.12: Frequency of datatypes and language tags in the crowdsourced triples in
the worker-worker crowdsourcing workflow.

Datatype / Language Tag Frequency Datatype / Language Tag Frequency

English (en) 72 Swedish (sv) 18

Russian (ru) 30 Portuguese (pt) 16

French (fr) 20 Italian (it) 15

Chinese (zh) 26 Spanish; Castilian (es) 12

Japanese (jp) 26 Number 11

Polish (pl) 23 Date 1

German (de) 21 G Month Day 1

Dutch; Flemish (nl) 20 G Year 1

Number with decimals 19 Second 1

N/A

0

0.25

0.5

0.75

1

en ru fr zh jp pl de nl Number
with

decimals

sv pt it es NumberDate G
Month
Day

G
Year

Second

Datatype / Language Tag

V
al

ue
 o

f c
or

re
sp

on
di

ng
 m

et
ric

Crowd (Find) Precision Crowd (Verify) Precision Crowd (Verify) Sensitivity Crowd (Verify) Specificity

Figure 6.7: Results for the “Incorrect datatype/language tag” task in the second crowd-
sourcing workflow (crowd workers in both stages). Metrics precision, sen-
sitivity, and specificity per datatype in each stage (Find, Verify) in the
worker-worker crowdsourcing workflow. Bars with values N/A indicate that
the metric could not be computed since the denominator was equal to zero.

identifying correct triples (true negatives) in the Verify stage that were classified
as erroneous in the previous stage. This can be confirmed by the high values of
specificity achieved by the crowd among all the analyzed datatypes/language tags.
A closer inspection to the six false positives revealed that in three cases the crowd
misclassified triples whose object is a proper noun with no translation into other
languages, for instance, (dbpedia:Tiszaszentimre, foaf:name, “Tiszaszentimre”@en) and
(dbpedia:Ferrari Mythos, rdfs:label, “Ferrari Mythos”@de). In the other three cases the
object of the triple corresponds to a common noun or text in the following lan-
guages: Italian, Portuguese, and English, for example, (dbpedia:Book, rdfs:label,

177

6. Crowdsourcing Linked Data Quality Issues

Table 6.13: Crowd performance when assessing ‘link’ issues. Metrics (computed against
the Gold Standard) achieved in the worker-worker crowdsourcing workflow.

Stage and Crowd Precision Sensitivity Specificity

Find: MTurk Workers 0.2422 – –

Verify: MTurk Workers (First Answer) 0.3391 0.8478 0.4967

Verify: MTurk workers (Majority Voting) 0.3442 1.0000 0.3916

“Libro”@it).

Results: Incorrect Links

From the studied sample, the majority of the triples classified as ‘incorrect link’ in
the Find stage contained objects that correspond to RDF resources. We analyzed
in detail the characteristics of the 169 misclassified triples by the crowd in this
stage:

• Out of the 223 triples analyzed, the most popular predicate is rdf:type (found
in 167 triples). For this predicate, the crowd misclassified 114 triples.
The majority of the objects of these triples correspond to classes from the
http://dbpedia.org/class/yago/ namespace. Workers could not successfully as-
sess these RDF triples, although YAGO URIs in DBpedia are intelligible to
some extent31 and workers could access the description of these URIs via a
Web browser. Since no human-readable information is displayed for these
URIs, we presume that this might have affected the crowd performance.

• 35 of the false positives in this stage correspond to triples whose objects are
external Web pages.

• The remaining misclassified triples had the predicate owl:sameAs (in 18 triples),
dbp:wordnet type (one triple), and dbo:termPeriod (one triple).

Table 6.13 reports the precision, sensitivity, and specificity achieved by the
crowd. In the Find stage, the crowd achieved similar values of precision in both
settings ‘first answer’ and ‘majority voting’. Furthermore, in this stage the crowd
achieved higher precision (0.3442 for ‘majority voting’) than in the Find stage.
The ‘majority voting’ setting obtained 1.0000 for sensitivity, since workers did not
produce false negatives, i.e., workers did not classify incorrect triples as correct.
Another important result is exhibited by the metric specificity; low values of
specificity in this task confirms that the crowd has difficulties when processing
triples that are correct, thus, generating a large portion of false positives.

In the Verify stage, from the 167 RDF triples with predicate rdf:type, the
crowd correctly classified 67 triples. Although the false positives were reduced in
the Verify stage, the number of misclassified triples with RDF resources as objects
is still high. Since the value of inter-rater agreement for this type of task is high,

31YAGO URIs in DBpedia usually consist of a name and some numerical characters.

178

6. Crowdsourcing Linked Data Quality Issues

Table 6.14: Summary of RDFUnit test cases: Aggregation of errors of the 850 triples.

Test Case Source No. Test Cases Succeeded Failed Violations

Automatic 3, 376 3, 341 65 424

Enriched 1, 723 1, 660 63 137

Manual 47 7 10 204

Total 5, 146 5, 008 138 765

we can deduce that false positives are not necessarily generated by chance but the
crowd recurrently confirms that these RDF triples are incorrect. These results
suggest that assessing triples with RDF resources as objects without a proper
rendering (human-readable information) is challenging for the crowd. Regarding
the triples whose objects are external Web pages, in the Find stage the crowd
correctly classified 35 out of the 36 triples. This is consistent with the behavior
observed in the Verify stage of the first workflow.

6.9.4. Evaluation of (Semi-)Automatic Approaches

In this study, we execute (semi-)automatic approaches to detect quality issues over
the same set of resources from DBpedia that were assessed in the crowdsourcing
experiments. The goal of this study is to gain insights about the type of errors that
can be detected (semi-)automatically, and in which cases human contributions are
still beneficial. The obtained results are discussed in the following.

Object Values, Datatypes, and Literals

We used the Test-Driven Quality Assessment (TDQA) methodology [93] as our
main comparison approach to detect incorrect object values, datatypes and lan-
guage tags. TDQA is inspired from test-driven development and proposes a
methodology to define (i) automatic, (ii) semi-automatic and (iii) manual test
cases based on SPARQL queries. Automatic test cases are generated based on
schema constraints. The methodology suggests the use of semi-automatic schema
enrichment that, in turn, will generate more automatic test cases. Manual test
cases are written by domain experts and can be based either on a test case pattern
library, or manually specified as SPARQL queries.

RDFUnit32 [92] is a tool that implements the TDQA methodology. RDFUnit
generates automatic test cases for enabled schemata and checks for common axiom
violations. A test is ‘successful’ when there are no violations of the tested axiom;
if violations are found then the test ‘fails’. Currently, RDFUnit supports the
detection of inconsistencies for domain and range for RDFS as well as cardinality,
disjointness, functionality, symmetry and reflexiveness for OWL under CWA.

In these experiments, we re-used the same setup for DBpedia used by Kon-
tokostas et al. [93], but excluding 830 test cases that were automatically generated

32http://rdfunit.aksw.org

179

http://rdfunit.aksw.org

6. Crowdsourcing Linked Data Quality Issues

Table 6.15: Aggregation of errors based on the source pattern. We provide the pattern,
the number of failed test cases for the pattern (F. TCs) along with the
total violation instances (Total) and based on the test case generation type:
automatic (Aut.), enriched (Ern.) and manual (Man.).

Pattern Type F. TCs Violations

Total Aut. Enr. Man.

Symmetry (OWL) 2 1 - 1 -

Cardinality (OWL) 65 142 6 136 -

Disjoint class (OWL) 1 1 1 - -

Domain (RDFS) 33 363 332 - 31

Datatype (RDFS) 29 85 85 - -

Comparison 1 1 - - 1

Regular expression constraint 1 13 - - 13

Type dependencies 3 54 - - 54

Type-property dependencies 1 51 - - 51

Property dependencies 1 3 - - 3

Total 137 714 424 137 153

for rdfs:range. The dataset was checked against the following schemata (names-
paces): dbpedia-owl, foaf, dcterms, dc, skos, and geo33. In addition, we re-used the
axioms produced by the ontology enrichment step for DBpedia, as described by
Kontokostas et al. [93]. In total, 5, 146 tests were run on the 509 (object values)
and 341 (datatype/language tags) triples detected as incorrect by workers in the
Verify stage (Table 6.9). In particular: 3, 376 tests were automatically generated
from the tested vocabularies or ontologies; 1, 723 from the enrichment step; and
47 defined manually.

From the 5, 146 total test cases, only 138 failed and returned a total of 765
individual validation errors. Table 6.14 aggregates the test case results and viola-
tion instances based on the generation type. Although the enrichment based test
cases were generated automatically, we distinguish them from those automatic
test cases that were based on the original schema.

In Table 6.15, we aggregate the failed test cases and the total instance vio-
lations based on the patterns the test cases were based on. Most of the errors
originated from ontological constraints such as cardinality, datatype and domain
violations. Common violation instances of ontological constraints were multi-
ple birth/death dates and population values, datatype of xsd:integer instead of
xsd:nonNegativeInteger and various rdfs:domain violations. In addition to ontological
constraints, manual constraints resulted in violation instances such as: birth date
after the death date (1), person height range (51), invalid postal codes (warning)
(13), persons without a birth date (warning) (51), persons with death date that
should also have a birth date (warning) (3), a resource with coordinates should
be a dbo:Place (warning) (16), and a dbo:Place should have coordinates (warning)

33Schema prefixes as used as defined in Linked Open Vocabularies (http://lov.okfn.org).

180

http://lov.okfn.org)

6. Crowdsourcing Linked Data Quality Issues

(7). It is worth noting that some of the manual constraints are marked as warn-
ings. Depending on the actual use of the data, these violations could possibly be
ignored, taken into consideration or subjected to a moderation or crowdsourcing
step for verification. For example, the person height range check resulted in 51
violations. This test case was manually specified as a SPARQL query. The test
case checked wether a person’s height is between 0.4 and 2.5 meters. In this spe-
cific case, the unit was meters and the values were extracted as centimeter. Thus,
although the results appeared semantically valid to a user, they were actually
wrong.

A complete direct comparison with our crowdsourcing results was not possible
except for 85 wrong datatypes and 13 failed regular expressions34 (cf. Table 6.15).
However, even in this case it was not possible to provide a precision since RDFU-
nit runs through the whole set of resources and possibly catches errors for which
we did not have a curated gold standard. In an inspection to the outcome of
RDFUnit, we observed that RDFUnit was able to identify incorrect triples that
were not detected by the LD experts that participated in our contest. The reason
for this was that RDFUnit was running beyond the isolated triple level that the
LD experts and workers were evaluating and was checking various combinations
of triples. For example, rdfs:domain violations were not reported from the LD ex-
perts since for every triple it was required to cross-check the ontology definitions
for the evaluated property and the rdf:type statements of the resource. Similar
combinations applied for all the other patterns types described in Table 6.15. Al-
though the experts had the means to access portions of the schema definitions via
TripleCheckMate, manually validating ontological constraints is a cognitive task
which can become very difficult since some constrains might require complex com-
binations of further restrictions. Still, the LD experts were able to detect incorrect
triples that were not found by RDFUnit. Examples of such inconsistencies are
incorrect datatypes which are not properly defined in the ontology35, e.g., dates
vs. numbers (dbp:yearOfBirth “1935”^^xsd:integer).

The results of automatically evaluating RDFUnit elucidate the type of in-
consistencies or errors that can be identified exploiting the constraints encoded
in ontologies. To detect further logical inconsistencies, RDFUnit relies on do-
main experts to define custom rules, as in our simple example of human height
measurements. Still, semantic correctness of triples cannot always be specified as
ontology constraints and therefore might require human judgment. In these cases,
crowdsourcing mechanisms can be used in combination with tools like RDFUnit
to provide more comprehensive solutions for LD quality assessment.

Automatic Baseline to Assess Incorrect Links

We implemented a simple baseline that dereferenced, for each triple, the object
of the triple. The baseline then searched for occurrences of the foaf:name of the
subject within the dereferenced data. If the number of occurrences was greater

34E.g., the ISBN value in the triple (dbpedia:Firewing, dbp:isbn, “978”) violated the regular
expression “[ISBN]?[0-9-]10,[-X]?$”.

35And this is very common case for the DBpedia namespace http://dbpedia.org/property/.

181

6. Crowdsourcing Linked Data Quality Issues

Table 6.16: Number and the types of links present in the dataset verified by the experts
in the contest.

Link Type Instances Detected as Correct

http://dbpedia.org/ontology/influencedBy 23 0

http://dbpedia.org/ontology/thumbnail 192 10

http://dbpedia.org/ontology/wikiPageExternalLink 1209 163

http://dbpedia.org/property/wikiPageUsesTemplate 595 63

http://dbpedia.org/property/wordnet_type 82 19

http://www.w3.org/2002/07/owl#sameAs 392 70

http://xmlns.com/foaf/0.1/depiction 192 26

http://xmlns.com/foaf/0.1/homepage 95 17

Total 2780 368

or equal than one, i.e., the subject was mentioned at least once, the baseline
interpreted the object of the triple as being related to the subject. In this case,
the link was considered correct. Our baseline did not take into consideration the
semantics of the links and failed in cases when data dereferenced from objects
did not contain backlinks to the issued subject. Another case when the baseline
failed was when the objects corresponded to images (via predicates foaf:depiction or
foaf:thumbnail), although we configured the baseline to check whether the subject
occurred in the file name of the image.

In order to compare the baseline with the crowdsourcing approaches (i.e. de-
tecting whether the links are correct), we extracted the links from (i) the triples
assessed by the experts in the contest and (ii) the triples that were involved in
both Verify stages of the crowdsourcing experiments with workers. For (i), a
total of 2, 780 links were retrieved. Table 6.16 shows the number and types of
links present in the dataset. As a result of running this baseline, we detected a
total of 2, 412 links that were not detected to have the label of the resource in
the content of the external Web page (link). In other words, only 368 of the total
2, 780 interlinks were detected to be correct by this automatic approach.

From each Verify stages, 223 links were retrieved. As a result of running this
baseline, we detected a total of 161 and 128 links that were not detected to have
the title of the resource in the external Web page (link) in the first and second
stage, respectively. That is, only 48 (in the case of the expert-worker workflow)
and 54 (for the worker-worker workflow) of the total 223 links each were detected
to be correct with this baseline. A precision of 0.2296 and 0.2967 was obtained by
the baseline for each of the stages. Thus, the presented baseline illustrated that
although some links can be excluded from human judgement, the majority of the
examined links could not be properly assessed using naive solutions.

6.10. Final Discussions

Our experiments let us identify the strengths and weaknesses of applying crowd-
sourcing for assessing the studied data quality issues, adapting the Find-Fix-Verify

182

http://dbpedia.org/ontology/influencedBy
http://dbpedia.org/ontology/thumbnail
http://dbpedia.org/ontology/wikiPageExternalLink
http://dbpedia.org/property/wikiPageUsesTemplate
http://dbpedia.org/property/wordnet_type
http://www.w3.org/2002/07/owl#sameAs
http://xmlns.com/foaf/0.1/depiction
http://xmlns.com/foaf/0.1/homepage

6. Crowdsourcing Linked Data Quality Issues

pattern. Regarding the precision achieved in both workflows, we compare the out-
comes produced in each stage by the different crowds against a manually defined
gold standard. The precision reached by both crowds showed that crowdsourcing
is a feasible solution to detect the studied LD quality issues in DBpedia. This
answers our research question iii.1.

Regarding research question iii.2, we observe that the LD experts and MTurk
workers applied different skills and strategies to solve the assignments successfully
in each type of task. The data collected for each type of task suggests that
the effort of LD experts must be applied on tasks demanding specific-domain
skills beyond common knowledge. For instance, LD experts successfully identify
issues on very specific datatypes, e.g., when time units are annotated as numbers
(xsd:Integer or xsd:Float). In the same type of task, workers focus on assessing
triples annotated with language tags, instead of datatypes like the experts. The
MTurk crowd prove to be very skilled at verifying whether literals were written in
a certain language. Our results indicate that workers are successful at performing
comparisons between data values when some contextual information is provided.
This is evident in the “incorrect object value” task where workers compared values
from DBpedia and Wikipedia.

Furthermore, with our experiments we are able to detect common cases in
which none of the two forms of crowdsourcing seemed to be feasible. The most
problematic task for the LD experts is the one about discerning whether an ex-
ternal link was related to an RDF resource. Although the experimental data
does not provide insights into this behavior, we are inclined to believe that this
is due to the relatively higher effort required by this specific type of task, which
involves checking an additional site outside the TripleCheckMate tool. Although
the crowd outperforms the experts in finding incorrect links, the MTurk crowd is
not sufficiently capable of assessing links where the object is an RDF resource.
Furthermore, MTurk workers do not perform so well on tasks about datatypes
where they recurrently confuse numerical datatypes with time units.

The observed results suggests that LD experts and crowd workers offer comple-
mentary strengths that can be exploited not only in different assessment iterations
or stages but also in particular subspaces of quality issues. LD experts exhibited
a good performance when finding incorrect object values and datatypes (in par-
ticular, numerical datatypes). In turn, microtask crowdsourcing can be effectively
applied to: i) verify whether objects values are incorrect, ii) verify literals anno-
tated with language tags, and iii) find and verify incorrect links of RDF resources
to Web pages. This answers our research question iii.3.

One of the goals of our work is to investigate how the contributions of crowd-
sourcing approaches can be integrated into automatic LD curation processes, by
evaluating the performance of two crowdsourcing workflows in a cost-efficient way.
In microtask settings, the first challenge is then to reduce the amount of tasks
submitted to the crowd and the number of requested assignments (different an-
swers), since both of these factors determine the overall cost of crowdsourcing
projects. For the Find stage, Algorithm 5 generated 2, 339 HITs to crowdsource
68, 976 RDF triples, consistently with the property stated by Proposition 2. In
our experiments, we approved a total of 2, 294 assignments in the Find stage and,

183

6. Crowdsourcing Linked Data Quality Issues

considering the payment per HIT (US$ 0.06), the total cost of this evaluation
resulted in US$ 137.58. Furthermore, in the Verify stage, the cost of submitting
to MTurk the problematic triples found by the experts was only US$ 43.

In summary, our experimental results confirm that crowdsourcing-based work-
flows are a feasible solution for detecting the studied LD quality issues. However,
since triples are assessed individually, the scalability of the approach is compro-
mised when issuing large datasets. Therefore, we consider that our proposed
approach could reach its full potential when it is combined with automatic ap-
proaches in two ways: i) Automatic approaches can help to significantly reduce
the number of triples that resort to crowdsourcing; ii) The outcome of the crowd
can be used as training sets consumed by automatic approaches to detect quality
issues in further portions of a given LD dataset. Building hybrid human-machine
architectures will allow for devising efficient and effective solutions for LD quality
assessment able to scale up to large datasets.

6.11. Summary and Future Work

In this chapter, we present and compare crowdsourcing workflows to evaluate the
quality of Linked Data (LD); the study is conducted on the DBpedia dataset.
We investigate two different types of crowds and mechanisms for the detection of
quality issues: object values, datatypes and language tags, and links. We focus
on adapting the Find-Fix-Verify crowdsourcing pattern to exploit the strengths of
experts and lay workers and leverage the results from the Find -only approaches.

For the first part of our study, the Find stage is implemented with a con-
test to engage with a community of LD experts. The task of the contest con-
sists in discovering and classifying quality issues of DBpedia resources using the
TripleCheckMate tool. Contributions obtained through the contest (referring to
flawed object values, incorrect datatypes or language tags, and incorrect links) are
submitted to Amazon Mechanical Turk (MTurk), where we ask workers to Verify
them. For the second part of our study, only microtask crowdsourcing is used to
perform the Find and Verify stages on the same set of DBpedia resources used in
the first part.

Our empirical results show that it is feasible to crowdsource the detection of
the studied LD issues in DBpedia. In particular, the experiments reveal that
(i) lay workers are in fact able to detect certain quality issues with satisfactory
precision; that (ii) experts perform well in identifying triples with ‘object value’
or ‘datatype’ issues, and lastly, (iii) the two approaches reveal complementary
strengths. The empirical results of our experiments could serve as a base for
further studies in the area of LD quality assessment using human computation.
Our findings could be applied to inform the design of the DBpedia extraction
tools and related community processes, which already make use of contributions
from volunteers to define the mapping rules to leverage non-RDF data.

The methodology proposed in this chapter is applicable to any LD dataset and
can be expanded to cover different types of quality issues. The TripleCheckMate
tool can be configured to assess other LD datasets using different taxonomies of

184

6. Crowdsourcing Linked Data Quality Issues

quality issues. In addition, the proposed algorithms to generate microtasks can
also be adapted to build different user interfaces that assist workers in assessing
other LD issues. However, the scope of our empirical observations is circumscribed
to the studied quality issues within the DBpedia dataset.

Finally, as with any form of computing, our work will be most useful as part
of a broader architecture, in which crowdsourcing is brought together with auto-
matic quality assessment and repair components and integrated into existing data
governance frameworks.

Future work may focus on conducting further experiments to test the value of
the crowd for different types of quality problems as well as for different LD sets
from other knowledge domains. In the longer term, we will also investigate on how
to efficiently integrate crowd contributions – by implementing the Fix stage – into
hybrid human-machine curation processes and tools, in particular with respect
to the trade-offs of costs and quality between manual and automatic approaches.
Another area of future research is the integration of baseline approaches before the
crowdsourcing step in order to filter out errors that can be detected automatically
to further increase the productivity of the crowd.

185

Chapter 7

Conclusion

7.1. Summary

This thesis studies the research problem of SPARQL query processing over RDF
graphs on the Web. In particular, we tackle the problems of efficient query pro-
cessing (Chapter 3), enhancing answer completeness (Chapter 5), and detecting
quality issues (Chapter 6). In the following, we summarize our contributions and
main findings that corroborate our research hypotheses.

First, we tackle the problem of SPARQL query processing against a novel
Linked Data source with low expressivity denominated Triple Pattern Fragments
(TPFs). We have proposed the nLDE engine, a client-side SPARQL query pro-
cessing engine to efficiently access TPF servers. The nLDE engine comprises a
query optimizer that devises plans tailored for TPFs. During query execution, the
nLDE engine implements intra-operator adaptivity as well as routing strategies to
adjust execution schedulers to runtime conditions. Our theoretical and empirical
findings indicate that – in comparison with the state-of-the-art – our proposed
solution speeds up SPARQL query processing against sources with low expressive
power such as TPFs, as stated in Hypothesis i.

X Hypothesis I SPARQL query processing can be carried out efficiently over
remote Linked Data sources with low expressive power.

Based on our findings, we provide answers to the research questions associated
with Hypothesis i.

i.1 Is it feasible to efficiently devise query plans over TPFs?
We formally and empirically prove that the nLDE optimizer runs in quadratic
time with respect to the number of triple patterns in SPARQL queries.

i.2 Does routing-based adaptivity ensure correct SPARQL query execution? We
formally demonstrate that the nLDE routers produce sound and complete
answers (with respect to the dataset) for BGP queries as defined in the
SPARQL semantics.

7. Conclusion

i.3 What is the impact of the type of plan on query processing performance
when queries are executed over TPFs?
Empirical results confirm that the shape of plans and physical operators
impact on the query runtime. In particular, the combination of bushy plans
with appropriate physical operators reduces the number of requests sent to
the source thus enabling efficient SPARQL query processing over TPFs.

i.4 How does routing-based adaptivity impact on query processing performance
when queries are executed over TPFs?
In perfect networks, experimental results indicate that the nLDE routing-
based adaptivity introduces certain overhead in terms of runtime only in
highly non-selective queries. In networks with delays, results suggest that
the nLDE routers adapt query execution continuously and produce results
faster on average, in particular, when processing selective queries.

Then, we tackle the problem of enhancing the answer completeness of SPARQL
queries. We define HARE, the first hybrid query engine over Linked Data that
is able to execute SPARQL queries as a combination of machine and human-
driven functionality. HARE supports microtask crowdsourcing features as a first-
class computational component which aims to enhance existing query answer at
execution time. We define an RDF completeness model based on the Local Closed
World Assumption. This completeness model enables HARE to decide on-the-fly
which parts of a SPARQL query should resort to crowdsourcing. The crowd
input is modeled as fuzzy RDF and stored in crowd knowledge bases that are
used to reduce the amount of questions sent to the crowd. Our theoretical and
experimental results support the acceptance of Hypothesis ii.

X Hypothesis II The answer completeness of SPARQL queries can be enhanced
with human input collected via microtask crowdsourcing.

The results of our theoretical and empirical crowdsourcing study provide in-
sights to answer the research questions related to Hypothesis ii.

ii.1 What is the computational complexity of identifying portions of SPARQL
queries that yield missing values and integrating human input during query
processing?
We formally demonstrate that HARE solves the problem of identifying and
evaluating SPARQL sub-queries that yield missing values without adding
complexity to the Evaluation problem.

ii.2 Is it feasible to augment the answer completeness of SPARQL queries via
microtask crowdsourcing?
Experimental results confirm that the crowd reached via microtasks resolves
missing values in RDF graphs with high precision and recall which, in turn,
increases the completeness of SPARQL queries. Nonetheless, there are triple
predicates for which the crowd does not perform well.

188

7. Conclusion

ii.3 What is the impact of exploiting the semantic descriptions of resources in
RDF on the performance of the crowd when solving missing values?
We compare the crowd behavior when using microtasks built with and with-
out semantics. We observe a significant difference in response time, precision
and recall in crowd answers obtained in microtasks with and without seman-
tics. Our results confirm that semantically enriched microtasks increase the
quality and efficiency of crowd answers.

Lastly, we investigate crowd-based assessment of Linked Data quality issues.
We conduct an extensive empirical study that involves Linked Data experts reached
via a contest and lay users reached via microtasks. The crowd targets incorrect ob-
jects, datatypes, language tags, or links in DBpedia. Our results provide evidence
for accepting Hypothesis iii in the studied scenario.

X Hypothesis III Linked Data quality issues concerning the semantics of the
data can be detected via crowdsourcing.

Our analysis of the crowd behavior in LD quality assessment allows us to
answer the research questions formulated along with Hypothesis iii:

iii.1 Is it feasible to detect Linked Data quality issues via crowdsourcing?
The performance reached by the crowd in our experimental study shows
that crowdsourcing is a feasible solution to detect the studied Linked Data
quality issues in DBpedia.

iii.2 In a crowdsourcing approach, is it feasible to employ unskilled lay users to
identify Linked Data quality issues and to what extent is expert validation
needed and desirable?
The crowd performance observed in our experiments suggests that the effort
of Linked Data experts must be applied on tasks demanding domain-specific
skills. Complementary, lay users proved to be very skilled at assessing the
correctness of language-tagged literals and comparing data values when some
contextual information is provided.

iii.3 What is the impact in terms of precision of applying two-fold crowdsourc-
ing workflows for detecting Linked Data quality issues, instead of one-step
solutions for pointing out quality issues?
Our empirical results confirm that the precision of the crowd increases in
almost all the cases when applying two-fold crowdsourcing workflows, inde-
pendently from the expertise of the crowd employed in the first step.

7.2. Outlook

In this thesis, we showcase flexible query processing strategies over RDF graphs
on the Web. Flexibility is key in querying environments that deal with hetero-
geneity at different levels including: data models, data structures, data quality, or

189

7. Conclusion

even data interfaces. In this context, flexibility allows the query engine to make
decisions autonomously to overcome different challenges at runtime and achieve
better performance. For example, in this work we show how engines can change
plans on-the-fly with adaptive techniques to reduce execution time or even contact
humans to enhance the quality of query answers. Nonetheless, to fully exploit the
potential of the enormous amount of RDF data on the Web, we need to devise
more flexible querying infrastructures able to cope with the intrinsic heterogeneity
of Linked Data sources. In the following we discuss open problems and opportu-
nities in query processing over Linked Data and how future work can build upon
our contributions.

One of the main challenges in query processing in client-server environments is
the high communication costs. In our work, we show the advantages of exploiting
dataset statistics (or metadata) provided by TPFs to reduce the number of re-
quests sent from the client to the server. Based on these results, a line of research
may focus on enhancing the type of metadata provided by Linked Data sources.
Although the currently available TPF metadata enables clients to devise plans in
a more informed way than other interfaces (e.g., SPARQL endpoints or simply
URI dereferencing), in many cases this metadata is insufficient to devise good
plans. Besides an approximation of triple pattern cardinality, metadata about
data distributions would assist optimizers to obtain more realistic estimates of
join selectivities and produce better plans. This would benefit not only client-side
engines which may be able to speed up query processing, but also would help to
reduce the number of requests sent to the source. This, in turn, would reduce
the workload on the server and would empower the server to attend more clients
simultaneously.

Regarding Linked Data quality, future work may focus on exploiting other
dimensions of the data to perform quality assessment, e.g., the temporal dimension
in the case of evolving RDF graphs. This thesis and also related work have
investigated the detection of quality issues relying on the data available at the
current version of an RDF graph. Nonetheless, future approaches could take into
consideration the data from previous versions to detect or predict quality issues.
In the context of data completeness, approaches could exploit previous versions
of RDF graphs to identify missing statements or estimate values.

Lastly, another relevant problem for flexible querying infrastructures is the
combination of several types of reference sources or oracles. As part of our con-
tributions, we show the feasibility of incorporating human input via crowdsourc-
ing into two tasks of Linked Data management: completing and correcting RDF
triples. Still, flexible querying infrastructure may require the integration of many
more oracles with different capabilities to assist clients to fulfill other tasks. Future
work may investigate the potential of reaching to a pool of oracles considering the
requirements of the task at hand. This line of research goes into the direction of
federated query processing where, conceptually, oracles are part of the federation
and can be seen by the query engine as another source of information. One of the
main challenges in this scenario is to describe the capabilities of different oracles
that composed the federation such that they can be considered by client-side en-
gines during source selection.

190

7. Conclusion

7.3. Closing Remarks

With the increasing amount of data published on the Web and the emergence
of novel types of data sources, the area of query processing is constantly facing
new opportunities and challenges. In this thesis, we have shown the potential of
enabling flexible querying approaches to successfully tackle variations of classic
problems of data management by exploiting current technologies. Future research
work can build upon the contributions presented in this thesis to devise more
flexible and comprehensive querying solutions able to exploit the novel forms of
data sources and the vast amount of data available on the Web.

191

Acronyms

BGP Basic Graph Pattern

CWA Closed World Assumption

FCFS First-come, First-served

HARE Hybrid Query Answering Engine

HIT Human Intelligence Task

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

LCWA Local Closed World Assumption

LD Linked Data

LOD Linked Open Data

MTurk Amazon Mechanical Turk

nLDE Network of Linked Data Eddies

OWA Open World Assumption

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

SPARQL SPARQL Protocol and RDF Query Language

SSGs Star-Shaped Groups

TPD Triple Pattern Descriptor

TPF Triple Pattern Fragment

TDQA Test-Driven Quality Assessment

URI Uniform Resource Identifier

7. Acronyms

Web World Wide Web

W3C World Wide Web Consortium

194

Bibliography

[1] Amazon Mechanical Turk.

[2] AT&T Global IP Network.

[3] CrowdFlower.

[4] OWL 2 web ontology language document overview (second edition). W3C
recommendation, W3C, 2012.

[5] Z. Abedjan, T. Grütze, A. Jentzsch, and F. Naumann. Profiling and mining
RDF data with ProLOD++. In Proceedings of the IEEE International Con-
ference on Data Engineering (ICDE), Chicago, USA, 2014. IEEE Computer
Society.

[6] S. Abiteboul. Querying semi-structured data. In Proceedings of the In-
ternational Conference on Database Theory (ICDT), London, UK, 1997.
Springer.

[7] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kaufmann Publishers Inc., San
Francisco, USA, 2000.

[8] M. Acosta, E. Simperl, F. Flöck, and M. Vidal. HARE: A hybrid SPARQL
engine to enhance query answers via crowdsourcing. In Proceedings of the
International Conference on Knowledge Capture (K-CAP), Palisades, USA,
2015. ACM.

[9] M. Acosta, E. Simperl, F. Flöck, and M.-E. Vidal. Enhancing answer com-
pleteness of SPARQL queries via crowdsourcing. 2017. Journal submission,
under review.

[10] M. Acosta and M. Vidal. Networks of Linked Data eddies: An adaptive web
query processing engine for RDF data. In Proceedings of the International
Semantic Web Conference (ISWC), Bethlehem, USA, 2015. Springer.

[11] M. Acosta, M. Vidal, F. Flöck, S. Castillo, C. B. Aranda, and A. Harth.
SHEPHERD: A shipping-based query processor to enhance SPARQL end-
point performance. In Proceedings of the International Semantic Web Con-
ference (ISWC), Posters and Demonstrations Track., pages 453–456, Riva
del Garda, Italy, 2014.

[12] M. Acosta, M. Vidal, F. Flöck, S. Castillo, and A. Harth. PLANET: query
plan visualizer for shipping policies against single SPARQL endpoints. In

7. Bibliography

Proceedings of the International Semantic Web Conference (ISWC), Posters
and Demonstrations Track., pages 189–192, Riva del Garda, Italy, 2014.
Springer.

[13] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAP-
SID: an adaptive query processing engine for SPARQL endpoints. In Pro-
ceedings of the International Semantic Web Conference (ISWC), Bonn, Ger-
many, 2011. Springer.

[14] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, and J. Lehmann.
Crowdsourcing Linked Data quality assessment. In Proceedings of the In-
ternational Semantic Web Conference (ISWC), Sydney, Australia, 2013.
Springer.

[15] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, F. Flöck, and
J. Lehmann. Detecting Linked Data quality issues via crowdsourcing: A
DBpedia study. Semantic Web Journal, Special Issue on Human Compu-
tation and Crowdsourcing (HC&C) in the Context of the Semantic Web,
2017. To appear.

[16] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan. Scrambling query
plans to cope with unexpected delays. In Proceedings of the International
Conference on Parallel and Distributed Information Systems (PDIS), Wash-
ington, USA, 1996. IEEE Computer Society.

[17] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov, and A. Somech.
OASSIS: query driven crowd mining. In Proceedings of the International
Conference on Management of Data (SIGMOD/PODS). ACM, 2014.

[18] C. B. Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. SPARQL
web-querying infrastructure: Ready for action? In Proceedings of the In-
ternational Semantic Web Conference (ISWC), Sydney, Australia, 2013.
Springer.

[19] P. Atzeni and V. De Antonellis. Relational Database Theory. Benjamin-
Cummings Publishing Co., Inc., Redwood City, USA, 1993.

[20] S. Auer, L. Bühmann, J. Lehmann, M. Hausenblas, S. Tramp, B. van Nuffe-
len, P. Mendes, C. Dirschl, R. Isele, H. Williams, and O. Erling. Manag-
ing the life-cycle of Linked Data with the LOD2 stack. In Proceedings of
the International Semantic Web Conference (ISWC), Boston, USA, 2012.
Springer.

[21] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query pro-
cessing. In Proceedings of the International Conference on Management of
Data (SIGMOD). ACM, 2000.

[22] S. Babu and P. Bizarro. Adaptive query processing in the looking glass. In
Proceedings of the Second Biennial Conference on Innovative Data Systems
Research (CIDR), Asilomar, USA, 2005.

[23] C. Batini and M. Scannapieco. Data quality dimensions. In Data and
Information Quality, chapter 2, pages 19–49. Springer, 2016.

196

7. Bibliography

[24] T. Berners-Lee. Linked Data - Design Issues.

[25] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifier
(URI): Generic syntax. RFC 3986 (INTERNET STANDARD), 2005.

[26] A. Bernstein, J. M. Leimeister, N. Noy, C. Sarasua, and E. Simperl. Crowd-
sourcing and the Semantic Web. Dagstuhl Reports, 4(7):25–51, 2014.

[27] M. S. Bernstein. Crowd-powered systems. KI - Künstliche Intelligenz,
7(21):69–73, 2012.

[28] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman,
D. R. Karger, D. Crowell, and K. Panovich. Soylent: a word processor with
a crowd inside. In Proceedings of the Annual ACM Symposium on User
Interface Software and Technology (UIST), New York, USA, 2010. ACM.

[29] L. Berti-Equille, J. M. Loh, and T. Dasu. A masking index for quantifying
hidden glitches. Knowl. Inf. Syst., 44(2):253–277, 2015.

[30] C. Bizer and R. Cyganiak. Quality-driven information filtering using the
WIQA policy framework. Web Semantics, 7(1):1 – 10, 2009.

[31] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data-the story so far.
International Journal on Semantic Web and Information Systems, 5(3):1–
22, 2009.

[32] C. Bovy, H. Mertodimedjo, G. Hooghiemstra, H. Uijterwaal, and
P. Van Mieghem. Analysis of end-to-end delay measurements in Internet.
In Proceedings of the Passive and Active Measurement Workshop (PAM),
2002.

[33] D. Brickley and R. Guha. RDF Schema 1.1. W3C recommendation, W3C,
2014.

[34] P. Buneman. Semistructured data. In Proceedings of the Sym-
posium on Principles of Database Systems (ACM SIGACT-SIGMOD-
SIGART/PODS), New York, USA, 1997. ACM.

[35] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webta-
bles: exploring the power of tables on the web. Proceedings of the VLDB
Endowment (PVLDB), 1(1):538–549, 2008.

[36] S. Chaudhuri. An overview of query optimization in relational systems.
In Proceedings of the Symposium on Principles of Database Systems (ACM
SIGACT-SIGMOD-SIGART/PODS), Seattle, USA, 1998. ACM.

[37] J. Cheng, Z. M. Ma, and L. Yan. f-sparql: A flexible extension of SPARQL.
In Proceedings of the International Conference on Database and Expert Sys-
tems Applications (DEXA), Bilbao, Spain, 2010. Springer.

[38] D. Cherix, R. Usbeck, A. Both, and J. Lehmann. CROCUS: cluster-based
ontology data cleansing. In Joint Proceedings of the Second International
Workshop on Semantic Web Enterprise Adoption and Best Practice and
Second International Workshop on Finance and Economics on the Semantic
Web (WaSABi-FEOSW), Anissaras, Greece, 2014. CEUR Workshop Pro-
ceedings.

197

7. Bibliography

[39] L. B. Chilton, G. Little, D. Edge, D. S. Weld, and J. A. Landay. Cascade:
Crowdsourcing taxonomy creation. In Proceedings of the Conference on
Human Factors in Computing Systems (CHI), New York, NY, USA, 2013.
ACM.

[40] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye.
KATARA: A data cleaning system powered by knowledge bases and crowd-
sourcing. In Proceedings of the International Conference on Management of
Data (SIGMOD), Melbourne, Australia, 2015. ACM.

[41] J. Cohen. A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1):37–46, 1960.

[42] P. Dai. Handbook of Human Computation, chapter Constructing Crowd-
sourced Workflows, pages 625–632. Springer, New York, USA, 2013.

[43] P. Dai, C. H. Lin, Mausam, and D. S. Weld. POMDP-based control of
workflows for crowdsourcing. Artificial Intelligence, 202:52 – 85, 2013.

[44] T. Dasu and J. M. Loh. Statistical distortion: Consequences of data clean-
ing. Proceedings of the VLDB Endowment (PVLDB), 5(11):1674–1683,
2012.

[45] T. Dasu, J. M. Loh, and D. Srivastava. Empirical glitch explanations. In
The International Conference on Knowledge Discovery and Data Mining
(KDD), pages 572–581, New York, USA, 2014. ACM.

[46] T. Dasu, V. Shkapenyuk, D. Srivastava, and D. F. Swayne. FIT to monitor
feed quality. Proceedings of the VLDB Endowment (PVLDB), 8(12):1729–
1740, 2015.

[47] A. P. M. Davis. Tags for identifying languages, 2009.

[48] G. Demartini, D. Difallah, and P. Cudré-Mauroux. ZenCrowd: Leveraging
probabilistic reasoning and crowdsourcing techniques for large-scale entity
linking. In Proceedings of the International Conference on World Wide Web
(WWW), Lyon, France, 2012. ACM.

[49] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. Large-scale linked
data integration using probabilistic reasoning and crowdsourcing. The
VLDB Journal – The International Journal on Very Large Data Bases,
22(5):665–687, 2013.

[50] A. Deshpande, Z. G. Ives, and V. Raman. Adaptive query processing. Foun-
dations and Trends in Databases, 1(1):1–140, 2007.

[51] D. E. Difallah, M. Catasta, G. Demartini, P. G. Ipeirotis, and P. Cudré-
Mauroux. The dynamics of micro-task crowdsourcing: The case of Amazon
MTurk. In Proceedings of the International Conference on World Wide Web
(WWW), Florence, Italy, 2015. ACM.

[52] D. DiFranzo and J. Hendler. Handbook of Human Computation, chapter
The Semantic Web and the Next Generation of Human Computation, pages
523–530. Springer, New York, USA, 2013.

198

7. Bibliography

[53] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: a web-scale ap-
proach to probabilistic knowledge fusion. In The International Conference
on Knowledge Discovery and Data Mining (KDD), New York, USA, 2014.
ACM.

[54] J. Fan, M. Zhang, S. Kok, M. Lu, and B. C. Ooi. Crowdop: Query op-
timization for declarative crowdsourcing systems. IEEE Transactions on
Knowledge and Data Engineering, 27(8):2078–2092, 2015.

[55] J. D. Fernández, M. A. Mart́ınez-Prieto, C. Gutiérrez, A. Polleres, and
M. Arias. Binary RDF representation for publication and exchange (HDT).
Web Semantics: Science, Services and Agents on the World Wide Web,
19:22–41, 2013.

[56] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyan-
pur, A. Lally, J. W. Murdock, E. Nyberg, J. M. Prager, N. Schlaefer, and
C. A. Welty. Building Watson: An overview of the DeepQA project. AI
Magazine, 31(3):59–79, 2010.

[57] O. Feyisetan, E. Simperl, M. V. Kleek, and N. Shadbolt. Improving paid
microtasks through gamification and adaptive furtherance incentives. In
Proceedings of the International World Wide Web Conference (WWW), Flo-
rence, Italy, 2015. ACM.

[58] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing. RFC 7230 (Proposed Standard), 2014.

[59] D. Fleischhacker, H. Paulheim, V. Bryl, J. Völker, and C. Bizer. Detecting
errors in numerical linked data using cross-checked outlier detection. In
Proceedings of the International Semantic Web Conference (ISWC), Riva
del Garda, Italy, 2014. Springer.

[60] J. L. Fleiss. Measuring nominal scale agreement among many raters. Psy-
chological Bulletin, 76(5):378–382, 1971.

[61] A. Flemming. Quality characteristics of Linked Data publishing datasources.
Master’s thesis, Humboldt-Universität of Berlin, 2010.

[62] M. J. Franklin, B. T. Jónsson, and D. Kossmann. Performance tradeoffs for
client-server query processing. In Proceedings of the International Confer-
ence on Management of Data (SIGMOD), New York, USA, 1996. ACM.

[63] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. CrowdDB:
answering queries with crowdsourcing. In Proceedings of the International
Conference on Management of Data (SIGMOD), Athens, Greece, 2011.
ACM.

[64] I. Fundulaki and S. Auer. Linked Open Data - Introduction to the special
theme. ERCIM News, 2014(96), 2014.

[65] C. Fürber and M. Hepp. Using semantic web resources for data quality
management. In Proceedings of the International Conference on Knowledge

199

7. Bibliography

Engineering and Management by the Masses (EKAW), Lisbon, Portugal,
2010. Springer.

[66] C. Fürber and M. Hepp. Using SPARQL and SPIN for data quality manage-
ment on the semantic web. In Proceedings of the International Conference
on Business Information Systems (BIS), Berlin, Germany, 2010. Springer.

[67] C. Fürber and M. Hepp. SWIQA - A Semantic Web information quality
assessment framework. In Proceedings of the European Conference on Infor-
mation Systems (ECIS), Helsinki, Finland, 2011. IEEE Computer Society.

[68] L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. Fast rule mining
in ontological knowledge bases with AMIE+. The VLDB Journal – The
International Journal on Very Large Data Bases, 24(6):707–730, 2015.

[69] O. Görlitz and S. Staab. SPLENDID: SPARQL endpoint federation ex-
ploiting VOID descriptions. In Proceedings of the International Workshop
on Consuming Linked Data (COLD), Bonn, Germany, 2011. CEUR Work-
shop Proceedings.

[70] G. Graefe. Query evaluation techniques for large databases. ACM Comput-
ing Surveys, 25(2):73–169, 1993.

[71] P. J. Green. Iteratively reweighted least squares for maximum likelihood
estimation, and some robust and resistant alternatives. Journal of the Royal
Statistical Society, Series B (Methodological):149–192, 1984.

[72] C. Guéret, P. T. Groth, C. Stadler, and J. Lehmann. Assessing linked data
mappings using network measures. In Proceedings of the Extended Semantic
Web Conference (ESWC), Heraklion, Greece, 2012. Springer.

[73] R. Guha, R. McCool, and E. Miller. Semantic search. In Proceedings of the
International Conference on World Wide Web (WWW), Budapest, Hun-
gary, 2003. ACM.

[74] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query
processing in Starburst. In Proceedings of the International Conference on
Management of Data (SIGMOD), Portland, USA, 1989. ACM.

[75] J. S. Hare, M. Acosta, A. Weston, E. Simperl, S. Samangooei, D. Dupplaw,
and P. H. Lewis. An investigation of techniques that aim to improve the
quality of labels provided by the crowd. In Proceedings of the MediaEval
2013 Multimedia Benchmark Workshop, Barcelona, Spain, October 18-19,
2013., 2013.

[76] A. Harth and S. Speiser. On completeness classes for query evaluation on
Linked Data. In Proceedings of the Conference on Artificial Intelligence
(AAAI), Toronto, Canada, 2012. AAAI Press.

[77] O. Hartig. Querying trust in RDF data with tSPARQL. In Proceedings of
the European Semantic Web Conference (ESWC), Heraklion, Greece, 2009.
Springer.

200

7. Bibliography

[78] O. Hartig. Zero-knowledge query planning for an iterator implementation
of link traversal based query execution. In Proceedings of the Extended
Semantic Web Conference (ESWC), Heraklion, Greece, 2011. Springer.

[79] P. Hayes and P. Patel-Schneider. RDF 1.1 semantics. W3C recommendation,
W3C, 2014.

[80] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande, K. Hil-
drum, S. Madden, V. Raman, and M. A. Shah. Adaptive query processing:
Technology in evolution. IEEE Data Engineering Bulletin, 23(2):7–18, 2000.

[81] A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres. Weaving the
pedantic web. In Proceedings of the Linked Data on the Web Workshop
(LDOW). CEUR Workshop Proceedings, 2010.

[82] A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, and S. Decker.
An empirical survey of Linked Data conformance. Journal of Web Seman-
tics, 14:14–44, 2012.

[83] J. Howe. The rise of crowdsourcing. Wired Magazine, 14(6), 06 2006.

[84] T. Ibaraki and T. Kameda. On the optimal nesting order for computing n-
relational joins. ACM Transactions on Database Systems (TODS), 9(3):482–
502, 1984.

[85] O. Inel, K. Khamkham, T. Cristea, A. Dumitrache, A. Rutjes, J. Ploeg,
L. Romaszko, L. Aroyo, and R.-J. Sips. CrowdTruth: Machine-human
computation framework for harnessing disagreement in gathering annotated
data. In Proceedings of the International Semantic Web Conference (ISWC),
Riva del Garda, Italy, 2014. Springer.

[86] Y. E. Ioannidis. Query optimization. ACM Computing Surveys, 28(1):121–
123, 1996.

[87] Z. G. Ives, A. Y. Levy, D. S. Weld, D. Florescu, and M. Friedman. Adaptive
query processing for Internet applications. IEEE Data Engineering Bulletin,
23(2):19–26, 2000.

[88] J. Juran. The Quality Control Handbook. McGraw-Hill, New York, USA,
1974.

[89] G. Jurasinski, F. Koebsch, A. Guenther, and S. Beetz. flux: Flux rate
calculation from dynamic closed chamber measurements, 2014. R package
version 0.3-0.

[90] N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-
optimal query execution plans. In Proceedings of the International Confer-
ence on Management of Data (SIGMOD), Seattle, USA, 1998. ACM.

[91] J. Katajainen and J. L. Träff. A meticulous analysis of mergesort pro-
grams. In Proceedings of the Italian Conference on Algorithms and Com-
plexity (CIAC), Rome, Italy, 1997. Springer.

[92] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, and
R. Cornelissen. Databugger: A test-driven framework for debugging the

201

7. Bibliography

web of data. In Proceedings of the International Conference on World Wide
Web (WWW), Companion Volume, Seoul, Korea, 2014. ACM.

[93] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cor-
nelissen, and A. Zaveri. Test-driven evaluation of linked data quality. In
Proceedings of the International Conference on World Wide Web (WWW),
Seoul, Korea, 2014. ACM.

[94] D. Kontokostas, A. Zaveri, S. Auer, and J. Lehmann. TripleCheckMate: A
tool for crowdsourcing the quality assessment of Linked Data. In Proceedings
of the Conference on Knowledge Engineering and Semantic Web (KESW),
St. Petersburg, Russia, 2013. Springer.

[95] D. Kossmann. The state of the art in distributed query processing. ACM
Computing Surveys, 32(4):422–469, 2000.

[96] D. Kossmann and K. Stocker. Iterative dynamic programming: A new class
of query optimization algorithms. ACM Transactions on Database Systems,
25(1):43–82, 2000.

[97] K. Laddhad and S. Sudarshan. Adaptive query processing. Technical Report
05329014, Kanwal Rekhi School of Information Technology, Indian Institute
of Technology, Bombay, Mumbai, 2006.

[98] G. Ladwig and T. Tran. SIHJoin: Querying remote and local Linked Data.
In Proceedings of the Extended Semantic Web Conference (ESWC), Herak-
lion, Greece, 2011. Springer.

[99] D. Le-Phuoc, M. Dao-Tran, J. Xavier Parreira, and M. Hauswirth. A native
and adaptive approach for unified processing of linked streams and linked
data. In Proceedings of the International Semantic Web Conference (ISWC),
Bonn, Germany, 2011. Springer.

[100] J. Lehmann, C. Bizer, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and
S. Hellmann. DBpedia - a crystallization point for the web of data. Journal
of Web Semantics, 7(3):154–165, 2009.

[101] J. Lehmann and L. Bühmann. ORE - A tool for repairing and enriching
knowledge bases. In Proceedings of the International Semantic Web Con-
ference (ISWC), Shanghai, China, 2010. Springer.

[102] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, et al. Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web, 2014.

[103] J. M. Leimeister, M. Huber, U. Bretschneider, and H. Krcmar. Leverag-
ing crowdsourcing: Activation-supporting components for IT-based ideas
competition. Journal of Management Information Systems, 26(1):197–224,
2009.

[104] H. Li, Y. Li, F. Xu, and X. Zhong. Probabilistic error detecting in numerical
linked data. In Proceedings of the International Conference on Database
and Expert Systems Applications (DEXA), volume 9261 of Lecture Notes in
Computer Science, pages 61–75, 2015.

202

7. Bibliography

[105] G. Little. TurKit: Tools for iterative tasks on Mechanical Turk. In In Pro-
ceedings of the IEEE Symposium onVisual Languages and Human-Centric
Computing (VL/HCC), pages 252–253, Corvallis, USA, 2009. IEEE.

[106] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. TurKit: human
computation algorithms on Mechanical Turk. In Proceedings of the Annual
ACM Symposium on User Interface Software and Technology (UIST), pages
57–66, New York, USA, 2010. ACM.

[107] M. Luczak-Rösch, E. Simperl, S. Stadtmüller, and T. Käfer. The role of on-
tology engineering in Linked Data publishing and management: An empiri-
cal study. International Journal on Semantic Web and Information Systems
(IJSWIS), 10(3):74–91, 2014.

[108] S. Lynden, I. Kojima, A. Matono, and Y. Tanimura. Aderis: An adaptive
query processor for joining federated sparql endpoints. In Proceedings of the
On the Move to Meaningful Internet Systems (OTM) Confederated Inter-
national Conferences: CoopIS, DOA-SVI, and ODBASE., pages 808–817,
Hersonissos, Greece, 2011. Springer.

[109] A. Malhotra and P. V. Biron. XML schema part 2: Datatypes
second edition. W3C recommendation, W3C, Oct. 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[110] A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh. Counting with
the crowd. Proceedings of the VLDB Endowment (PVLDB), 6(2):109–120,
2012.

[111] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller. Human-
powered sorts and joins. Proceedings of the VLDB Endowment PVLDB,
5(1):13–24, 2011.

[112] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced databases:
Query processing with people. In CIDR, pages 211–214, 2011.

[113] V. Markl. Query processing (in relational databases). In Encyclopedia of
Database Systems, pages 2288–2293. Springer, Boston, MA, 2009.

[114] T. Markotschi and J. Völker. GuessWhat?! - Human Intelligence for Mining
Linked Data. In Proceedings of the Workshop on Knowledge Injection into
and Extraction from Linked Data at EKAW, 2010.

[115] m.c. Schraefel and L. Rutledge, editors. Special Issue User Interaction in
Semantic Web Research, volume 8(4) of Journal of Web Semantics, 2010.

[116] R. McCann, W. Shen, and A. Doan. Matching schemas in online com-
munities: A web 2.0 approach. In G. Alonso, J. A. Blakeley, and A. Chen,
editors, Proceedings of the 24th International Conference on Data Engineer-
ing, ICDE, pages 110–119, 2008.

[117] P. N. Mendes, H. Mühleisen, and C. Bizer. Sieve: Linked data quality
assessment and fusion. In Proceedings of the Joint EDBT/ICDT Workshops,
pages 116–123. ACM, 2012.

203

7. Bibliography

[118] G. Montoya, M. Vidal, and M. Acosta. A Heuristic-Based Approach for
Planning Federated SPARQL Queries. In Proceedings of the 3rd Inter-
national Workshop on Consuming Linked Data COLD2012 at ISWC2012,
2012.

[119] B. Mozafari, P. Sarkar, M. J. Franklin, M. I. Jordan, and S. Madden. Scal-
ing up crowd-sourcing to very large datasets: A case for active learning.
Proceedings of the VLDB Endowment (PVLDB), 8(2):125–136, 2014.

[120] F. Naumann. Quality-Driven Query Answering for Integrated Information
Systems, volume 2261 of Lecture Notes in Computer Science. Springer, 2002.

[121] T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality
estimation for RDF queries with multiple joins. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE), ICDE ’11, pages
984–994, Washington, DC, USA, 2011. IEEE Computer Society.

[122] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina, N. Polyzotis,
and J. Widom. Deco: A system for declarative crowdsourcing. Proceedings
of the VLDB Endowment (PVLDB), 5(12):1990–1993, 2012.

[123] H. Park and J. Widom. Query optimization over crowdsourced data. Pro-
ceedings of the VLDB Endowment (PVLDB), 6(10):781–792, 2013.

[124] H. Park and J. Widom. Crowdfill: collecting structured data from the crowd.
In SIGMOD, pages 577–588, 2014.

[125] H. Paulheim and C. Bizer. Type inference on noisy RDF data. In Proceed-
ings of the International Semantic Web Conference (ISWC), pages 510–525.
Springer, 2013.

[126] H. Paulheim and C. Bizer. Improving the quality of linked data using statis-
tical distributions. Int. J. Semant. Web Inf. Syst., 10(2):63–86, Apr. 2014.

[127] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of
SPARQL. ACM Trans. Database Syst., 34(3), 2009.

[128] I. Popov. mashpoint: Supporting Data-centric Navigation on the Web. In
Proceedings of the 2012 ACM Annual Conference Extended Abstracts on
Human Factors in Computing Systems CHI2012, pages 2249–2254, 2012.

[129] E. Prud’hommeaux, J. E. Labra Gayo, and H. Solbrig. Shape Expressions:
An RDF Validation and Transformation Language. In Proceedings of the
10th International Conference on Semantic Systems, SEM ’14, pages 32–40,
New York, NY, USA, 2014. ACM.

[130] A. J. Quinn and B. B. Bederson. Human computation: A survey and taxon-
omy of a growing field. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, pages 1403–1412, New York, NY,
USA, 2011. ACM.

[131] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2013.

204

7. Bibliography

[132] E. Ruckhaus, O. Baldizan, and M. Vidal. Analyzing linked data quality with
liquate. In On the Move to Meaningful Internet Systems: OTM 2013 Work-
shops - Confederated International Workshops: OTM Academy, OTM In-
dustry Case Studies Program, ACM, EI2N, ISDE, META4eS, ORM, SeDeS,
SINCOM, SMS, and SOMOCO 2013, Graz, Austria, September 9 - 13,
2013, Proceedings, pages 629–638, 2013.

[133] E. Ruckhaus, M. Vidal, S. Castillo, O. Burguillos, and O. Baldizan. Ana-
lyzing linked data quality with liquate. In The Semantic Web: ESWC 2014
Satellite Events - ESWC 2014 Satellite Events, Anissaras, Crete, Greece,
May 25-29, 2014, Revised Selected Papers, pages 488–493, 2014.

[134] A. Rula, A. Maurino, and C. Batini. Data quality issues in linked open
data. In Data and Information Quality, pages 87–112. Springer, 2016.

[135] M. Sabou, K. Bontcheva, A. Scharl, and M. Föls. Games with a purpose or
mechanised labour? A comparative study. In S. Lindstaedt and M. Gran-
itzer, editors, Proceedings of the 13th International Conference on Knowl-
edge Management and Knowledge Technologies. ACM, 2013.

[136] M. Salvadores, M. Horridge, P. R. Alexander, R. W. Fergerson, M. A.
Musen, and N. F. Noy. Using SPARQL to query bioportal ontologies and
metadata. In International Semantic Web Conference (2), pages 180–195,
2012.

[137] C. Sarasua, E. Simperl, and N. Noy. CrowdMap: Crowdsourcing ontology
alignment with microtasks. In Proceedings of the International Semantic
Web Conference (ISWC), Boston, USA, 2012. Springer.

[138] C. Sarasua, E. Simperl, N. F. Noy, A. Bernstein, and J. M. Leimeister.
Crowdsourcing and the Semantic Web: A research manifesto. Human Com-
putation, 2015. to appear.

[139] M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of the linked
data best practices in different topical domains. In International Semantic
Web Conference ISWC, pages 245–260, 2014.

[140] M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query
optimization. In ICDT, pages 4–33, 2010.

[141] m. Schraefel, J. Golbeck, D. Degler, A. Bernstein, and L. Rutledge. Semantic
Web User Interactions: Exploring HCI Challenges. In Proceedings of the
2008 ACM Annual Conference Extended Abstracts on Human Factors in
Computing Systems CHI2008, pages 3929–3932. ACM, 2008.

[142] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Op-
timization techniques for federated query processing on linked data. In
International Semantic Web Conference, pages 601–616, 2011.

[143] A. Seaborne and S. Harris. SPARQL 1.1 query language. W3C recommen-
dation, W3C, 2013.

[144] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system. In

205

7. Bibliography

Proceedings of the 1979 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’79, pages 23–34, New York, NY, USA, 1979.
ACM.

[145] E. Simperl, M. Acosta, and F. Flöck. Handbook of Human Computation,
chapter Knowledge Engineering via Human Computation, pages 131–151.
Springer New York, New York, NY, 2013.

[146] E. Simperl, R. Cuel, and M. Stein. Incentive-Centric semantic web applica-
tion engineering, volume 4 of Synthesis lectures on the semantic web, theory
and technology. Morgan & Claypool Publishers, 2013.

[147] K. Siorpaes and M. Hepp. Ontogame: Weaving the semantic web by online
games. In S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis,
editors, The Semantic Web: Research and Applications, volume 5021 of Lec-
ture Notes in Computer Science, pages 751–766. Springer Berlin Heidelberg,
2008.

[148] K. Siorpaes and E. Simperl. Human intelligence in the process of semantic
content creation. World Wide Web, 13(1-2):33–59, 2010.

[149] N. Smirnov. Table for estimating the goodness of fit of empirical distribu-
tions. The annals of mathematical statistics, 19(2):279–281, 1948.

[150] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast—
but is it good?: Evaluating non-expert annotations for natural language
tasks. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’08, pages 254–263, Stroudsburg, PA, USA,
2008. Association for Computational Linguistics.

[151] U. Straccia. Foundations of Fuzzy Logic and Semantic Web Languages.
Chapman & Hall/CRC Studies in Informatics Series. CRC Press, 2013.

[152] C. Terwiesch and Y. Xu. Innovation contests, open innovation, and multi-
agent problem solving. Manage. Sci., 54(9):1529–1543, Sept. 2008.

[153] S. Thaler, K. Siorpaes, D. Mear, E. Simperl, and C. Goodman. Seafish:
A game for collaborative and visual image annotation and interlinking. In
The Semanic Web: Research and Applications, volume 6644 of LNCS, pages
466–470. Springer Berlin Heidelberg, 2011.

[154] S. Thaler, K. Siorpaes, and E. Simperl. SpotTheLink: A game for ontology
alignment. In Proceedings of the 6th Conference for Professional Knowledge
Management. ACM, 2011.

[155] F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies.
In Proceedings of the VLDB Endowment (PVLDB), pages 333–344, 2003.

[156] G. Töpper, M. Knuth, and H. Sack. Dbpedia ontology enrichment for in-
consistency detection. In Proceedings of the 8th International Conference
on Semantic Systems I-SEMANTICS, pages 33–40, 2012.

[157] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowdsourced
enumeration queries. In ICDE, pages 673–684, 2013.

206

7. Bibliography

[158] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, and P. A.
Boncz. Heuristics-based query optimisation for SPARQL. In 15th Inter-
national Conference on Extending Database Technology, EDBT, pages 324–
335, 2012.

[159] J. Umbrich, A. Hogan, A. Polleres, and S. Decker. Link traversal querying
for a diverse web of data. Semantic Web, 6(6):585–624, 2014.

[160] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres. Comparing
data summaries for processing live queries over linked data. World Wide
Web, 14(5):495–544, 2011.

[161] V. Uren, Y. Lei, V. Lopez, H. Liu, E. Motta, and M. Giordanino. The
usability of semantic search tools: A review. Knowledge Engineering Review,
22(4):361–377, 2007.

[162] T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled pipelined join
operator. IEEE Data Eng. Bull., 23(2):27–33, 2000.

[163] J. Van Herwegen, R. Verborgh, E. Mannens, and R. Van de Walle. Query ex-
ecution optimization for clients of Triple Pattern Fragments. In F. Gandon,
M. Sabou, H. Sack, C. d’Amato, P. Cudré-Mauroux, and A. Zimmermann,
editors, The Semantic Web. Latest Advances and New Domains, volume
9088 of Lecture Notes in Computer Science, pages 302–318, May 2015.

[164] M. Van Kleek, D. A. Smith, H. S. Packer, J. Skinner, and N. R. Shadbolt.
Carpé data: supporting serendipitous data integration in personal informa-
tion management. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2339–2348. ACM, 2013.

[165] R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D. Vocht, M. V.
Sande, R. Cyganiak, P. Colpaert, E. Mannens, and R. V. de Walle. Querying
datasets on the web with high availability. In International Semantic Web
Conference ISWC, pages 180–196, 2014.

[166] R. Verborgh, M. Vander Sande, P. Colpaert, S. Coppens, E. Mannens, and
R. Van de Walle. Web-scale querying through Linked Data Fragments. In
Proceedings of the 7th Workshop on Linked Data on the Web, volume 1184
of CEUR Workshop Proceedings, Apr. 2014.

[167] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht,
B. De Meester, G. Haesendonck, and P. Colpaert. Triple Pattern Frag-
ments: a low-cost knowledge graph interface for the Web. Journal of Web
Semantics, 37–38:184–206, Mar. 2016.

[168] M. Vidal, E. Ruckhaus, T. Lampo, A. Mart́ınez, J. Sierra, and A. Polleres.
Efficiently joining group patterns in SPARQL queries. In In Proceedings of
the Extended Semantic Web Conference (ESWC), pages 228–242, 2010.

[169] B. Villazón-Terrazas and O. Corcho. Methodological guidelines for pub-
lishing linked data. Una Profesión, un futuro: actas de las XII Jornadas
Españolas de Documentación: Málaga, 25(26):20, 2011.

207

7. Bibliography

[170] J. Waitelonis, N. Ludwig, M. Knuth, and H. Sack. Whoknows? - evaluating
linked data heuristics with a quiz that cleans up dbpedia. International
Journal of Interactive Technology and Smart Education (ITSE), Emerald,
8, 2011.

[171] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER: crowdsourc-
ing entity resolution. Proceedings of the VLDB Endowment (PVLDB),
5(11):1483–1494, July 2012.

[172] R. Y. Wang and D. M. Strong. Beyond accuracy: What data quality means
to data consumers. J. Manage. Inf. Syst., 12(4):5–33, Mar. 1996.

[173] C. Welty, K. Barker, L. Aroyo, and S. Arora. Query driven hypothesis gen-
eration for answering queries over NLP graphs. In International Semantic
Web Conference, pages 228–242. Springer, 2012.

[174] G. Williams, K. Clark, L. Feigenbaum, and E. Torres. SPARQL 1.1 protocol.
W3C recommendation, W3C, 2013. http://www.w3.org/TR/2013/REC-
sparql11-protocol-20130321/.

[175] A. N. Wilschut and P. M. G. Apers. Dataflow query execution in a parallel
main-memory environment. Distributed and Parallel Databases, 1(1):103–
128, 1993.

[176] M. Yakout, L. Berti-Equille, and A. K. Elmagarmid. Don’t be scared: use
scalable automatic repairing with maximal likelihood and bounded changes.
In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013,
pages 553–564, 2013.

[177] J. Yang, L. A. Adamic, and M. S. Ackerman. Competing to share expertise:
The taskcn knowledge sharing community. In Proceedings of the Second In-
ternational Conference on Weblogs and Social Media, ICWSM 2008, Seattle,
Washington, USA, March 30 - April 2, 2008, 2008.

[178] V. Zadorozhny, L. Raschid, M. E. Vidal, T. Urhan, and L. Bright. Efficient
evaluation of queries in a mediator for websources. In Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’02, pages 85–96, New York, NY, USA, 2002. ACM.

[179] A. Zaveri, D. Kontokostas, M. A. Sherif, L. Bühmann, M. Morsey, S. Auer,
and J. Lehmann. User-driven Quality Evaluation of DBpedia. In M. Sabou,
E. Blomqvist, T. D. Noia, H. Sack, and T. Pellegrini, editors, Proceedings
of 9th International Conference on Semantic Systems, I-SEMANTICS ’13,
Graz, Austria, September 4-6, 2013, pages 97–104. ACM, 2013.

[180] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer.
Quality assessment for linked data: A survey. Semantic Web, 7(1):63–93,
2016.

[181] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A general frame-
work for representing, reasoning and querying with annotated semantic web
data. Web Semantics, 11:72–95, 2012.

208

List of Figures

2.1 Graphical representation of an RDF graph. Each pair of connected
nodes is an RDF triple. Subjects and objects of RDF triples consti-
tute the nodes of the graph. Predicates of RDF triples correspond
to directed labeled edges. 16

2.2 Tradeoff between expressive power and availability of HTTP-based
interfaces to access RDF data online. Empirical results reported in
the literature suggest that low-expressivity sources achieve higher
availability. 22

2.3 Overview of query processing. The query optimizer devises a plan
to evaluate a given query over a dataset. The physical plan specifies
the order of execution of operators, the type of physical operators,
etc. The query engine carries out the execution as defined in the
plan by accessing the corresponding dataset structures to produce
the query results. 25

2.4 Different shapes of plans with join operators. 27

2.5 Eddy operator. Example of executing the given query with an
eddy. R, S, T, and U are input relations. Eddy routes tuples from
the input relations or operators to operators. Figure adapted from
Avnur and Hellerstein [21]. 29

3.1 Motivating example: query execution against TPFs. Different phys-
ical query plans can be devised to execute the query from List-
ing 3.1. The actual number of intermediate results produced by
each operator is enclosed in parenthesis. The left-linear plan gen-
erates over 70, 000 intermediate results while the bushy tree plan
produces only around 300 intermediate results. 34

3.2 Example of adaptivity achieved with routing techniques. Diverse
execution plans are generated by re-ordering the execution of op-
erators during query execution. Dashed lines represent routing of
tuples to operators. 36

7. LIST OF FIGURES

3.3 The nLDE architecture. nLDE receives as input a SPARQL query
Q to be executed against the dataset D (accessible via a TPF
server). The query optimizer exploits fragment metadata to build
plans that reduce intermediate results. The adaptive query en-
gine executes the query plan, implementing adaptivity based on a
routing policy. The routing policy decides the order in which the
operators process the intermediate results. The output of nLDE is
the results of evaluating Q over D, i.e., [[Q]]D. 40

3.4 nLDE optimizer estimations. (a) The cardinality of the tree plan
leaves is extracted from the fragment metadata. The cardinality
of the tree node in the example is estimated as in Definition 10.
(b) To place physical operators, the optimizer considers the esti-
mated cardinalities and the number of triples retrieved per request
(pagesize), and selects the operator that minimizes the number of
requests as in Definition 11. 41

3.5 Examples of Star-Shaped Groups (SSGs) that can be constructed
with the triple patterns from the SPARQL query from Listing 3.1. 44

3.6 Examples of query plans built with Star-Shaped Groups (SSGs)
from Figure 3.5. Besides the difference in the tree shape, the plan
shown in (a) comprises two SSGs, while the plan in (b) only con-
tains one SSG. 45

3.7 Physical query plan devised by the nLDE optimizer (cf. Algo-
rithm 1) for the motivating example query. The plan corresponds
to a bushy tree and physical operators are assigned according to
Definition 11. 49

3.8 Eddy operator e: Tuples are inserted into the Routing Buffer (RBe),
annotated with Ready and Done vectors. The Routing Policy (RPe)
selects the operator to route tuple t. e outputs a tuple when it has
been processed by all operators (when the tuple t is annotated with
Donet = 111). 52

3.9 Network of Linked Data Eddies (nLDE). The illustrated nLDE is
composed of two eddy operators and three adaptive operators. The
eddies consume tuples resulting from the evaluation of the query
triple patterns (1 , 2 , 3 , and 4 in the figure). Eddies and
adaptive operators constitute a bipartite graph G. Edges in G
represent routing paths of tuples. 54

3.10 Triple Pattern Descriptor (TPD). A TPD of a nLDE maintains
information about triple patterns from the query: metadata and
operator position, e.g., subject-subject join (ss), object-object join
(oo). 55

210

7. LIST OF FIGURES

3.11 Example of incomplete query answers when Condition 2 from
definition 18 is not satisfied. Assume that µ3, µ′3, µ′3 are the only
compatible mappings, i.e., the query answer is µ3 ∪ µ′3 ∪ µ′′3. The
approach terminates when eof1∪ eof2∪ eof3 is output. At in-
stant ∆t6 two eddies are trying to route µ3 and eof2 to the same
operator (highlighted in Figure 3.11c). If eof2 is processed first,
the approach terminates at ∆t10. Note that the tuple µ3∪µ′3∪µ′′3 is
not produced before ∆t10, in consequence, the approach terminates
before producing the query answer. 59

3.12 Initialization of the priorities of adaptive operators in nLDE. In
our running example, the depth (with respect to the tree root) of
the join operators with label 0 and 1 is higher than the height of
operator 2. Therefore, the initial priorities of operators 0 and 1 are
higher than the priority of operator 2. 62

3.13 Efficiency of the nLDE optimizer per SPARQL query. Elapsed
time of the nLDE optimizer (y-axis) in function of the number of
triple patterns per SPARQL query (x-axis). Linear and quadratic
regression models are computed using the method of Iteratively
Reweighted Least Squares (IRLS). 64

3.14 Normal Q-Q plots for the residuals obtained in linear and quadratic
regressions of the time spent by the optimizer when computing the
query plan (cf. Table 3.2). Residuals are nearly normally dis-
tributed. 66

3.15 Performance of the nLDE engine and the TPF client when execut-
ing Benchmark 1: 20 non-selective queries against TPFs of DBpe-
dia. No delays in data transfer. 95% confidence interval (CI) is
plotted. 67

3.16 Performance of the nLDE engine and the TPF client when execut-
ing Benchmark 2: 25 selective queries against TPFs for the English
DBpedia. No delays in data transfer. 95% confidence interval is
plotted. 69

3.17 Performance of two variants of nLDE (Not Adaptive, Adaptive)
when executing Benchmark 1. No delays in data transfer. Signifi-
cant difference (95% confidence interval) observed in Q6, Q9, Q14,
Q15, Q16, and Q17. 70

3.18 Execution time of two variants of nLDE – Not Adaptive and Adap-
tive – when executing Benchmark 2. No delays in data transfer.
No significant difference (95% confidence interval) among the two
approaches is observed. 72

3.19 Gamma distribution of simulated network delays. 73

3.20 Trace curve of answers: number of answers produced (y-axis) in
function of time (x-axis). AUC measures the approach’s perfor-
mance when producing the first j tuples. The lower the value of
AUC the better the performance. In this example, nLDE (Random)
exhibits the best performance. 74

211

7. LIST OF FIGURES

4.1 Microtask crowdsourcing. Requesters create microtasks from raw
data; microtasks contain questions that should be assessed by hu-
mans. The microtasks are then submitted to the platform, where
workers select tasks to solve. Crowd answers are retrieved from the
platform to obtain final results. 82

4.2 Find-Fix-Verify workflow implemented in Soylent [28] to shorten
text documents. The crowd identifies portions of a document that
can be reduced in the Find stage. Then, in the Fix stage, the
crowd proposes changes to shorten the overlapping portions. In
the Verify stage, workers vote for the most appropriate changes.
Figure adapted from Bernstein et al. [28]. 86

5.1 Motivating example: Missing values in RDF datasets. (a) Por-
tion of the DBpedia dataset for cities and countries. Missing val-
ues in the RDF graph are highlighted. (b) Crowd answers for the
SPARQL query from Listing 5.1 are used to complete missing val-
ues in the RDF dataset. 93

5.2 The HARE architecture. HARE receives as input a SPARQL query
Q and a quality threshold τ . The query optimizer and query engine
detects portions of Q that yield incomplete results using the RDF
completeness model. The HARE query engine combines interme-
diate results from the dataset with values provided by the crowd
to augment the answer of Q. Potential missing values are crowd-
sourced by the microtask manager. Human input is stored as RDF
data in the crowd knowledge bases. 98

5.3 Portion of the DBpedia dataset for movies. schema.org:Movie and
dbo:Person are classes. The resources dbr:Legal Eagles, dbr:Tower Heist,
dbr:Trash (2014 film), and dbr:The Interpreter are instances of the schema.org:Movie

class. Movies are linked to producers via the dbp:producer predicate.
Each movie is annotated with the object completeness CompOD

value for the dbp:producer predicate, e.g., CompOD for db:Legal Eagles

is 2/3 since this movie has two producers, and AMOD for the class
schema.org:Movie is three. Analogously, the object completeness of
producers for the resources dbr:Trash (2014 film) and dbr:The Interpreter

is 3/3. The movie dbr:Tower Heist has no producers, then CompOD =
0. 100

5.4 HARE microtasks. The HARE UI generator exploits the semantics
of RDF resources to build microtasks. The depicted interfaces in
(a), (b), and (c) are built for RDF resources from different domains:
(a) Geography, (b) Movies, and (c) Life Sciences. Predicates used
to build interfaces are highlighted. The crowd selects “Yes” when
the requested value exists, “No” when it does not exist, and “I
don’t know” when the existence of the value is unknown. 109

5.5 HARE optimizer: Phases 4 and 5. Example of bushy tree plan
built with four hybrid SSGs hs1, hs2, hs3, hs4. 114

212

7. LIST OF FIGURES

5.6 Example of query optimization with HARE. (a) Hybrid Star-Shaped
Group (SSG) built for the BGP contained in the running exam-
ple query from Listing 5.2 . (b) Query plan against DBpedia and
CROWD . 115

5.7 Effect of τ on the number of crowdsourced triple patterns. (a)
Example of an RDF graph. (b) Distribution of values MOD(s|p)
for each node in (a). When τ = 0.80, only the pattern (s5,p,?o)

is crowdsourced. When τ = 0.60, patterns with predicate p and
subjects s3, s4, s5 are crowdsourced. 126

5.8 Crowdsourcing capabilities of HARE. (a) The more incomplete a
domain is according to the completeness model, the higher the num-
ber of crowdsourced patterns. In all domains, the number of crowd-
sourced triple patterns with τ = 1.00 is zero; this represents the
case of automatic query execution (without crowdsourcing). (b)
Per knowledge domain, effectiveness of the HARE completeness
model with respect to the heuristics of the HARE optimizer. For
τ>0.0, the completeness model is able to reduce the number of
triple patterns to crowdsource in comparison to the optimizer 128

5.9 Size of query answer. (a)-(e) Number of answers (y-axis) obtained
with DBpedia (Dataset Answers) and our approach (HARE An-
swers) per knowledge domain. In each plot, benchmark queries
(x-axis) are ordered by the number of answers produced when ex-
ecution is carried over dataset. (f) Portion of completeness (PC)
achieved by HARE per knowledge domain. In all domains, HARE
is able to enhance answer completeness on average. Highlighted
value corresponds to query where HARE produced 12 times more
answers than the dataset. 131

5.10 Size of query answer achieved by baseline HARE-BL and HARE
per query and domain. Crowd answers correspond to aggregated
responses retrieved from crowd workers (including true positives
and false positives). Minimum and maximum values of percentage
of completeness (PC) are reported. 132

5.11 Precision and recall achieved by HARE per domain. Median preci-
sion values is 0.55 in the Music domain and greater than 0.9 for the
other domains. The median achieved in recall is 1.0 for all domains. 133

5.12 Crowd response time with HARE-BL and HARE. The percentage
of judgements completed (y-axis) in function of time (x-axis) is
plotted per domain. The percentage of judgements received until
the 12th minute (vertical line) are reported per knowledge domain. 136

5.13 Crowd answer distribution over time with HARE and HARE-BL.
Number of judgements (y-axis) produced by the crowd at different
and identically distributed points in time (x-axis). p-values ob-
tained from the Kolmogorov-Smirnov test [149] are reported. An-
swer distributions (a) and (b) are not significantly different; (c),
(d), (e), (f) are significantly different (p < 0.01). 137

213

7. LIST OF FIGURES

6.1 Studied workflows to crowdsource LD quality assessment. The first
workflow combines LD experts reached via a contest with laymen
from microtasks. The second workflow solely relies on microtask
crowdsourcing. 153

6.2 User interface of the TripleCheckMate crowdsourcing data quality
assessment tool. (1) Displays the RDF resource that is currently
being assessed; (2) Users can specify that a triple is erroneous by
checking the box ‘Is Wrong’; (3) Users select the quality issues
present in the triple from a pre-defined taxonomy, which contains
a hierarchy of quality issues including detailed descriptions and
examples for each issue. 154

6.3 Interface of a microtask generated in the Find stage. (1) Displays
the RDF resource that is currently assessed and also a link to the
Wikipedia page of the resource; (2) Users select the corresponding
quality issues present in the triple; (3) Displays contextual infor-
mation: In our implementation, we extracted values from the in-
fobox of the Wikipedia article associated with the resource – not
all the properties of DBpedia resources are available in the infobox,
in this case the microtask interface displays ‘Not specified’ in the
Wikipedia column. 157

6.4 Interface for incorrect object value microtask. Crowd workers must
compare the DBpedia and Wikipedia values and decide whether
the DBpedia entry is correct or not for a given subject and predicate.160

6.5 Interface for incorrect link microtask. The crowd must decide
whether the content of a link (indicated as “External page” in the
user interface) is related to the subject. When assessing links be-
tween RDF resources, the preview of the “External page” displays
the resource’s page (most of the datasets linked from DBpedia –
Wikidata, YAGO – support Linked Data browsers). 161

6.6 Results for the “Incorrect datatype/language tag” task in the expert-
worker crowdsourcing workflow. Precision, sensitivity, and speci-
ficity per datatype in each stage (Find, Verify) are reported. Bars
with values N/A indicate that the metric could not be computed
since the denominator was equal to zero. 171

6.7 Results for the “Incorrect datatype/language tag” task in the second
crowdsourcing workflow (crowd workers in both stages). Metrics
precision, sensitivity, and specificity per datatype in each stage
(Find, Verify) in the worker-worker crowdsourcing workflow. Bars
with values N/A indicate that the metric could not be computed
since the denominator was equal to zero. 177

214

List of Tables

3.1 Results of executing the example query from Listing 3.1. The ex-
ecution of a bushy tree plan exhibits better performance than a
left-linear plan. 35

3.2 Regression models for the time spent by the nLDE optimizer when
retrieving metadata and computing the plan. RSE = Residual
Standard Error. R2 = Coefficient of Determination. Values marked
with ∗∗∗ indicate a significance at 0.01. Indicators that suggest a
better regression are highlighted. 65

3.3 Number of answers produced by nLDE (Not Adaptive) and nLDE
(Adaptive) in Benchmark 1 queries that timed out. No delays in
data transfer. Mean and confidence interval (CI) values are re-
ported. The performance of nLDE (Adaptive) is negatively im-
pacted in non-selective queries, e.g., Q11 and Q18. 71

3.4 Mean values of the area under the curve AUC for answer traces
when executing Benchmark 1 with nLDE: Not Adaptive (NA), Se-
lectivity (Sel), and Random (Ran). Highlighted cells correspond to
the best performant approach per query. 75

3.5 Mean values of the area under the curve AUC for answer traces
when executing Benchmark 2 with nLDE: Not Adaptive (NA), Se-
lectivity (Sel), and Random (Ran). Highlighted cells correspond to
the best performant approach per query. 76

4.1 Correspondence of microtask concepts used in this work to terms
used in the CrowdFlower and Amazon Mechanical Turk platforms. 84

5.1 Predicates dereferenced by the UI generator in order to build the
HARE microtasks. The RDF resource type of the object of each
predicate are shown. Predicate objects are displayed using appro-
priate HTML tags. 110

5.2 Results when executing the benchmark with HARE-BL and HARE.
Total number of crowdsourced triple patterns with each approach
and answers retrieved from the crowd. Average and standard de-
viation of crowd workers’ confidence as reported by CrowdFlower.

129

7. LIST OF TABLES

5.3 Quality of crowd answers achieved by HARE and HARE-BL. Preci-
sion and recall values are reported for each query. Highlighted cells
represent the cases where HARE exhibits a similar or better per-
formance than HARE-BL. Precision equal to n/a corresponds to
cases where the crowd answered “I don’t know” in all query instances.134

5.4 Statistical hypothesis test for crowd response time. p-values of ap-
plying the Kolmogorov-Smirnov test [149] to compare crowd answer
distributions of HARE-BL and HARE. ∗∗∗ indicates a difference sig-
nificant at 0.01. 138

6.1 Linked Data quality dimensions classified according to Zaveri et
al [180]. 145

6.2 Comparison between the proposed crowdsourcing mechanisms to
perform LD quality assessment. 152

6.3 Comparison between the microtask generators for Find and Verify
stages. T is the set of RDF triples assessed; QI corresponds to the
set of quality issues; S is the set of distinct subjects of the triples
in T ; α, β are the parameters that define the number of questions
per microtask in the Find and Verify stages, respectively. 164

6.4 Results in each type of crowdsourcing approach in the expert-
worker crowdsourcing workflow: Combining LD experts (Find stage)
and microtask workers (Verify stage). 168

6.5 Crowd performance when assessing ‘object value’ issues. Metrics
(computed against the Gold Standard) achieved in the expert-
worker workflow. 169

6.6 Crowd performance when assessing ‘datatype / language tag’ is-
sues. Metrics (computed against the Gold Standard) achieved in
the expert-worker workflow. 170

6.7 Frequency of datatypes and language tags in the crowdsourced
triples in the expert-worker crowdsourcing workflow. 170

6.8 Crowd performance when assessing ‘link’ issues. Metrics (com-
puted against the Gold Standard) achieved in the expert-worker
crowdsourcing workflow. 171

6.9 Overall results in the worker-worker crowdsourcing workflow: Ap-
plying microtask workers in both stages Find and Verify. 174

6.10 Crowd performance when assessing ‘object value’ issues. Metrics
(computed against the Gold Standard) achieved in the worker-
worker workflow. 175

6.11 Crowd performance when assessing ‘datatype / language tag’ is-
sues. Metrics (computed against the Gold Standard) achieved in
the worker-worker workflow. 176

6.12 Frequency of datatypes and language tags in the crowdsourced
triples in the worker-worker crowdsourcing workflow. 177

6.13 Crowd performance when assessing ‘link’ issues. Metrics (com-
puted against the Gold Standard) achieved in the worker-worker
crowdsourcing workflow. 178

216

7. LIST OF TABLES

6.14 Summary of RDFUnit test cases: Aggregation of errors of the 850
triples. 179

6.15 Aggregation of errors based on the source pattern. We provide the
pattern, the number of failed test cases for the pattern (F. TCs)
along with the total violation instances (Total) and based on the
test case generation type: automatic (Aut.), enriched (Ern.) and
manual (Man.). 180

6.16 Number and the types of links present in the dataset verified by
the experts in the contest. 182

217

List of Algorithms

1 nLDE Query Optimizer 46
2 nLDE Eddy Operator 53

3 HARE BGP Optimizer 113
4 HARE BGP Executor 122

5 Microtask Generator for Find Stage 156
6 Microtask Generator for Verify Stage 159

Appendix A

Query Benchmarks

A.1. Benchmark 1

##Q1.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/CombinationAntibiotics > .

?d2 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Benzoates > .

?d2 <http :// dbpedia.org/property/routesOfAdministration > ?m .

?d1 <http :// dbpedia.org/property/routesOfAdministration > ?m .

?d1 <http :// dbpedia.org/property/smiles > ?sm1 .

?d2 <http :// dbpedia.org/property/drugbank > ?d .}

##Q2.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/CombinationAntibiotics >.

?d2 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Benzoates >.

?d2 <http :// dbpedia.org/property/routesOfAdministration > ?o.

?d1 <http :// dbpedia.org/property/routesOfAdministration > ?o.

?d1 <http :// dbpedia.org/property/component > ?o1.

?d2 <http :// dbpedia.org/property/drugbank > ?o2.}

##Q3.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/Steroids > .

?d2 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Steroids > .

?d2 <http :// dbpedia.org/property/molecularWeight > ?m.

?d1 <http :// dbpedia.org/property/molecularWeight > ?m.

?d1 <http :// dbpedia.org/property/smiles > ?sm1.

?d2 <http :// dbpedia.org/property/unii > ?u2.}

##Q4.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/Steroids > .

A. Query Benchmarks

?d2 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Steroids > .

?d2 <http :// dbpedia.org/property/routesOfAdministration > ?m.

?d1 <http :// dbpedia.org/property/routesOfAdministration > ?m.

?d2 <http :// dbpedia.org/property/smiles > ?sm2.

?d1 <http :// dbpedia.org/property/unii > ?u1.}

##Q5.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Song >.

?d1 <http :// dbpedia.org/property/producer > ?o1.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Person >.

?d2 <http :// dbpedia.org/property/name > ?o1.}

##Q6.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

umbel.org/umbel/rc/Building >.

?d1 <http :// dbpedia.org/property/parking > ?o.

?d1 <http :// dbpedia.org/property/ada > ?o1.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Station >.

?d2 <http :// dbpedia.org/property/passengers > ?o.

?d2 <http :// dbpedia.org/property/zone > ?o2.}

##Q7.sparql

SELECT * WHERE {

?d1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Alcohols >.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/Alcohols > .

?d1 <http :// dbpedia.org/property/routesOfAdministration > ?o.

?d2 <http :// dbpedia.org/property/routesOfAdministration > ?o.

?d1 <http :// dbpedia.org/ontology/chEBI > ?c1.

?d2 <http :// dbpedia.org/property/proteinBound > ?p2.

?d2 <http :// dbpedia.org/property/unii > ?u2.

?d2 <http :// dbpedia.org/property/stdinchikey > ?s2.

?d1 <http :// dbpedia.org/property/smiles > ?sm1.

?d2 <http :// dbpedia.org/property/pubchem > ?pu2.

?d2 <http :// dbpedia.org/property/molecularWeight > ?m2.

?d1 <http :// dbpedia.org/property/kegg > ?k1.

?d1 <http :// dbpedia.org/property/excretion > ?e1.

?d1 <http :// dbpedia.org/property/drugbank > ?dg1.}

##Q8.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Song >.

?d1 <http :// dbpedia.org/property/producer > ?o1.

?d1 <http :// dbpedia.org/property/album > ?o2.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Person >.

?d2 <http :// dbpedia.org/property/name > ?o1.

222

A. Query Benchmarks

?d2 <http :// purl.org/dc/terms/subject > ?o3.}

##Q9.sparql

SELECT * WHERE {

?d1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Alcohols > .

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/Alcohols > .

?d1 <http :// dbpedia.org/property/routesOfAdministration > ?o .

?d2 <http :// dbpedia.org/property/routesOfAdministration > ?o .

?d1 <http :// dbpedia.org/property/smiles > ?sm1.

?d2 <http :// dbpedia.org/property/molecularWeight > ?dg1.}

##Q10.sparql

SELECT * WHERE {

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Software > .

?d2 <http :// dbpedia.org/property/platforms > ?o.

?d1 <http :// dbpedia.org/property/released > ?o2.

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/VideoGame >.

?d1 <http :// dbpedia.org/property/ratings > ?o.

?d1 <http :// dbpedia.org/ontology/computingPlatform > ?o1.}

##Q11.sparql

SELECT * WHERE {

?d1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Living_people >.

?d1 <http :// dbpedia.org/property/name > ?o1.

?d1 <http :// dbpedia.org/property/instrument > ?o3.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

schema.org/MusicGroup >.

?d2 <http :// xmlns.com/foaf /0.1/ givenName > ?o1.}

##Q12.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Bridge >.

?d1 <http :// dbpedia.org/property/width > ?o.

?d1 <http :// purl.org/dc/terms/subject > ?o2.

?d2 <http :// dbpedia.org/property/faa > ?o.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

umbel.org/umbel/rc/Building >.

?d2 <http :// dbpedia.org/property/r1Number > ?o1.

?d2 <http ://www.w3.org /2002/07/ owl#sameAs > ?o3.}

##Q13.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Automobile >.

?d1 <http :// dbpedia.org/property/weight > ?o.

?d2 <http :// dbpedia.org/property/longm > ?o.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/ArchitecturalStructure >.

?d1 <http :// dbpedia.org/property/engine > ?o1.

223

A. Query Benchmarks

?d2 <http :// dbpedia.org/ontology/elevation > ?o2.}

##Q14.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/School > .

?d1 <http :// dbpedia.org/property/city > ?o.

?d1 <http ://www.w3.org /2003/01/ geo/wgs84_pos#lat > ?o1.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

umbel.org/umbel/rc/Place > .

?d2 <http :// dbpedia.org/property/location > ?o .

?d2 <http :// dbpedia.org/property/latDirection > ?o2.}

##Q15.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

umbel.org/umbel/rc/Building >.

?d1 <http :// dbpedia.org/property/platforms > ?o.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Station >.

?d2 <http :// dbpedia.org/property/ada > ?o.}

##Q16.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Place >.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Infrastructure >.

?d1 <http :// dbpedia.org/property/r2LengthF > ?o.

?d2 <http :// dbpedia.org/property/lats > ?o.

?d1 <http ://www.georss.org/georss/point > ?o1.

?d2 <http :// dbpedia.org/property/coordinatesRegion > ?o2.}

##Q17.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/ShoppingMall >.

?d1 <http :// dbpedia.org/property/numberOfAnchors > ?o.

?d1 <http :// dbpedia.org/property/floors > ?o1.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Building >.

?d2 <http :// dbpedia.org/property/stars > ?o.

?d2 <http ://www.georss.org/georss/point > ?o2.}

##Q18.sparql

SELECT * WHERE {

?d1 <http :// dbpedia.org/property/released > ?o2.

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

umbel.org/umbel/rc/SoftwareObject >.

?d1 <http :// dbpedia.org/ontology/computingPlatform > ?o1.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Software > .

?d2 <http :// dbpedia.org/property/platforms > ?o1.

?d2 <http :// dbpedia.org/property/developer > ?t.}

224

A. Query Benchmarks

##Q19.sparql

SELECT * WHERE {

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

umbel.org/umbel/rc/Lake >.

?d2 <http :// dbpedia.org/property/cities > ?o.

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

umbel.org/umbel/rc/River >.

?d1 <http :// dbpedia.org/property/city > ?o.}

##Q20.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/School > .

?d1 <http :// dbpedia.org/property/city > ?o.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

umbel.org/umbel/rc/Lake > .

?d2 <http :// dbpedia.org/property/cities > ?o.}

A.2. Benchmark 2

##Q1 -History.sparql

SELECT * WHERE {

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/Battle100953559 >.

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/MilitaryAction100952963 >.

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/BritishMilitaryOccupations >.

?s <http :// dbpedia.org/property/place > ?p.

?p <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

schema.org/Place >.}

##Q2 -History.sparql

SELECT * WHERE {

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/Battle100953559 >.

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/MilitaryAction100952963 >.

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/BattlesInvolvingWessex >.

?s <http :// dbpedia.org/property/combatant > ?p.

?p <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/EthnicGroup >.}

##Q3-History.sparql

SELECT * WHERE {

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/Battle100953559 >.

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/MilitaryAction100952963 >.

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/BattlesInvolvingBritishIndia >.

?s <http :// dbpedia.org/property/combatant > ?p.

225

A. Query Benchmarks

?p <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

schema.org/Country >.}

##Q4 -History.sparql

SELECT * WHERE {

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/MilitaryConflict >.

?s <http :// dbpedia.org/property/combatant > ?p.

?p <http :// dbpedia.org/property/largestCity > ?o.

?p <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

schema.org/Country >.}

##Q5 -History.sparql

SELECT * WHERE {

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/Battle100953559 >.

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/MilitaryAction100952963 >.

?s <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/BattlesInvolvingTheRomanRepublic >.

?s <http :// dbpedia.org/ontology/combatant > ?p.}

##Q1 -LifeSciences.sparql

SELECT * WHERE {

?d1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Anabolic_steroids >.

?d1 <http :// dbpedia.org/property/routesOfAdministration > ?o.

?o <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Routes_of_administration >.}

##Q2 -LifeSciences.sparql

SELECT * WHERE {

?d1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Hereditary_cancers >.

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

umbel.org/umbel/rc/AilmentCondition >.

?d1 <http :// dbpedia.org/property/diseasesdb > ?o.

?d1 <http :// dbpedia.org/property/name > ?n.

?d1 <http :// dbpedia.org/ontology/icd9 > ?g.}

##Q3 -LifeSciences.sparql

SELECT * WHERE {

?d2 <http :// dbpedia.org/property/proteinBound > ?k1.

?d2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Drug >.

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/Antibody115027189 >.

?d1 <http :// dbpedia.org/property/target > ?k1.}

##Q4 -LifeSciences.sparql

SELECT * WHERE {

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Drug >.

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/AnabolicSteroids >.

226

A. Query Benchmarks

?d1 <http :// dbpedia.org/property/drugbank > ?k1.}

##Q5 -LifeSciences.sparql

SELECT * WHERE {

?d2 <http :// dbpedia.org/property/inchi > ?k1.

?d2 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Alcohols >.

?d1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Drug >.

?d1 <http :// dbpedia.org/property/target > ?k1.}

##Q1 -Movies.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

schema.org/Movie >.

?s1 <http :// dbpedia.org/property/languages > ?l.

?s2 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Universal_Pictures_films >.

?s2 <http :// dbpedia.org/ontology/language > ?l.}

##Q2 -Movies.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

schema.org/Movie >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Films_set_in_the_San_Francisco_Bay_Area >.

?s1 <http :// dbpedia.org/property/distributor > ?a.

?a <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Company >.}

##Q3 -Movies.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

schema.org/Movie >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Universal_Pictures_films >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Films_shot_in_New_York_City >.

?s1 <http :// dbpedia.org/property/language > ?l.}

##Q4 -Movies.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

schema.org/Movie >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Universal_Pictures_films >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Films_shot_in_New_York_City >.

?s1 <http :// dbpedia.org/property/music > ?l.}

##Q5 -Movies.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

schema.org/Movie >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

227

A. Query Benchmarks

resource/Category:Universal_Pictures_films >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Films_shot_in_New_York_City >.

?s1 <http :// dbpedia.org/property/producer > ?l.}

##Q1 -Music.sparql

SELECT * WHERE {

?s1 <http :// dbpedia.org/property/background > ?b.

?s1 <http :// dbpedia.org/ontology/occupation > <http :// dbpedia.org/

resource/Composer >.

?s1 <http :// dbpedia.org/property/associatedActs > ?a.

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/AmericanBluesMusicians >.

?s1 <http :// dbpedia.org/property/birthName > ?n.}

##Q2 -Music.sparql

SELECT * WHERE {

?s1 <http :// dbpedia.org/property/background > ?b.

?s1 <http :// dbpedia.org/ontology/occupation > <http :// dbpedia.org/

resource/Composer >.

?s1 <http :// dbpedia.org/property/associatedActs > ?a.

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/AmericanBluesMusicians >.

?s1 <http :// dbpedia.org/property/genre > ?n.}

##Q3 -Music.sparql

SELECT * WHERE {

?s1 <http :// dbpedia.org/ontology/occupation > <http :// dbpedia.org/

resource/Singing >.

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/EnglishPopSingers >.

?s1 <http :// dbpedia.org/ontology/associatedBand > ?o.}

##Q4 -Music.sparql

SELECT * WHERE {

?s1 <http :// dbpedia.org/property/background > ?b.

?s1 <http :// dbpedia.org/ontology/occupation > <http :// dbpedia.org/

resource/Musician >.

?s1 <http :// dbpedia.org/property/associatedActs > ?a.

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/class/yago/AmericanBluesMusicians >.}

##Q5 -Music.sparql

SELECT * WHERE {

?s1 <http :// dbpedia.org/property/associatedActs > ?a.

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Artist >.

?a <http :// dbpedia.org/property/background > ?b.

?a <http :// dbpedia.org/ontology/occupation > <http :// dbpedia.org/

resource/Composer >.}

##Q1 -Sports.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Sport >.

228

A. Query Benchmarks

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Gaelic_games >.

?s1 <http :// dbpedia.org/ontology/teamSize > ?o.}

##Q2 -Sports.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Sport >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Ball_games >.

?s1 <http :// xmlns.com/foaf /0.1/ depiction > ?o.

?s1 <http :// dbpedia.org/property/name > ?n.}

##Q3 -Sports.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Sport >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Ball_games >.

?s1 <http :// dbpedia.org/property/name > ?n.}

##Q4 -Sports.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Sport >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Ball_games >.

?s1 <http :// dbpedia.org/property/mgender > ?o.}

##Q5 -Sports.sparql

SELECT * WHERE {

?s1 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > <http ://

dbpedia.org/ontology/Sport >.

?s1 <http :// purl.org/dc/terms/subject > <http :// dbpedia.org/

resource/Category:Ball_games >.

?s1 <http :// dbpedia.org/property/union > ?o.}

229

	Abstract
	Introduction
	Motivation
	Problem Statement
	Challenges and Overview of the State-of-the-Art
	Challenges for Efficient SPARQL Query Processing
	Challenges for Effective SPARQL Query Processing

	Hypotheses and Research Questions
	Contributions
	Outline

	Foundations of Linked Data Management
	Linked Data
	The Resource Description Framework (RDF)
	Querying RDF Data: The SPARQL Query Language
	Querying RDF Data on the Web
	URI Dereferencing and Link Traversal
	SPARQL Endpoints
	Linked Data Fragments

	Foundations of Query Processing
	Query Optimization
	Adaptive Query Processing

	Adaptive Query Processing over Linked Data
	Introduction
	Research Questions
	Contributions
	Structure of the Chapter

	Motivating Example
	Related Work
	Adaptive Link Traversal Approaches
	Adaptive Query Processing Against SPARQL Endpoints
	Query Processing Approaches Against TPF Servers

	The nLDE Approach
	nLDE Query Optimizer
	Estimation of Query Plan Cardinalities
	Placing Physical Operators
	Building Query Tree Plans
	nLDE Optimizer: Algorithm Description
	Complexity of the nLDE Query Optimizer

	nLDE Adaptive Routing Query Engine
	Adaptive Operators
	Eddies
	Network of Linked Data Eddies (nLDE)
	Termination of nLDE
	Correctness of nLDE

	Routing Policies
	Routing Policy from Eddies to Adaptive Operators
	Routing Policy from Adaptive Operators to Eddies

	Experimental Study
	Experimental Settings
	Efficiency of the nLDE Optimizer
	Effectiveness of the nLDE Optimizer
	Impact of the nLDE Routing-based Adaptivity on Execution Time in Perfect Networks
	Effectiveness of the nLDE Routing-based Adaptivity Under the Presence of Network Delays

	Summary and Future Work

	Foundations of Crowdsourcing
	Overview
	Types of Crowdsourcing
	Microtasks
	Contests

	Crowdsourcing Workflows
	Hybrid Crowdsourcing Workflows
	Human-based Workflow: Find-Fix-Verify

	Crowdsourcing Query Answer Completeness over Linked Data
	Introduction
	Research Questions
	Contributions
	Structure of the Chapter

	Motivating Example
	Related Work
	Hybrid Query Processing for Relational Data
	Crowd-based Linked Data Management Applications
	Web Data Quality Assessment

	The HARE Approach
	Problem Definition
	Proposed Solution

	RDF Completeness Model
	Representation of the Crowd Knowledge
	Crowd Contradiction
	Crowd Unknownness

	HARE Microtask Manager
	User Interface Generator
	Microtask Executor

	HARE Query Optimizer
	Complexity of the HARE Query Optimizer

	HARE Query Engine
	A SPARQL Fuzzy Set Semantics
	HARE BGP Executor
	Complexity of HARE Query Evaluation

	Experimental Study
	Experimental Settings
	HARE Crowdsourcing Capabilities
	Size of Query Answer
	Quality of Crowd Answers
	Crowd Response Time

	Summary and Future Work

	Crowdsourcing Linked Data Quality Issues
	Introduction
	Research Questions
	Contributions
	Structure of the Chapter

	Preliminaries: Linked Data Quality Issues
	Related Work
	Using Crowdsourcing in Linked Data Management
	Web Data Quality Assessment

	Crowdsourcing Linked Data Quality Assessment
	Problem Statement
	Proposed Hybrid Crowdsourcing Workflow
	Crowdsourcing Workflows Proposed in Our Approach

	Find Stage: Contest-based Crowdsourcing
	Find Stage: Paid Microtask Crowdsourcing
	Verify Stage: Microtask Crowdsourcing
	Task for Incorrect Object Value
	Task for Incorrect Datatypes or Language Tags
	Task for Incorrect Links

	Properties of Our Approach
	Experimental Study
	Experimental Settings
	Evaluation of the Expert-Worker Workflow: Combining LD Experts (Find Stage) and Microtasks (Verify Stage)
	Evaluation of Using Microtask Crowdsourcing in Find and Verify Stages
	Evaluation of (Semi-)Automatic Approaches

	Final Discussions
	Summary and Future Work

	Conclusion
	Summary
	Outlook
	Closing Remarks

	Acronyms
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Query Benchmarks
	Benchmark 1
	Benchmark 2

